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Abstract

Software that fits a multivariate proportional hazards model to in-
terval censored event data is urgently needed in medical research. Pan
describes the use of the iterative convex minorant algorithm (ICM) to
achieve this purpose. The implementation of the ICM is presented as well
as a bootstrap procedure to derive information for statistical inference on
the regression coefficients. An example is studied and the intcox results
are compared to results of alternative procedures available in commercial
software products.

1 Introduction

The occurrence of an event represents important information on the prognosis or
treatment efficacy of a disease. It often plays the role of the primary endpoint in
clinical studies. But, like the recurrence of a tumor, the time of its occurrence
cannot be exactly observed. Events which are known to occur only within
intervals represent interval censored event data.
Especially of interest is the influence of a covariate vector x on the probability
of the occurrence of events which is formalized by the survival function S(t|x) =
1− F (t|x) with F the cumulative distribution function.
In case of right censored event data, the quantification is achieved by applying
the extended proportional hazard model of Cox, cf. Therneau and Grambsch
[6] which makes the following assumption on the survival function

S(t|x) = exp{−Λ(t|x)}

= exp
{
−

∫ t

0

λ0(s) exp{β′x}ds

}
.

The expression Λ(t|x) is called the cumulative hazard which is the integral of
the hazard function λ(s|x) up to time t

λ(s,x) = λ0(s) exp{β′x}.
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The model is called proportional hazards model because the regression coef-
ficients act via a factor on the hazard function. The exponential value of a
component of the coefficient vector is called relative hazard of the correspond-
ing factor.
In Pan [4], a proportional hazard model is fit to interval censored data by means
of the iterative convex minorant algorithm (ICM). This model allows to infer
relative hazards from interval censored event data.
The omnipresence of multivariate interval censored data in medical research
creates a strong need for appropriate software. In spite of the high practical
relevance, the algorithm of Pan is not implemented in a statistical software
environment and available for public use. In this note, we describe an imple-
mentation of the ICM-based algorithm for interval censored event data in the
R software.
After a short description of the mathematical background, a clinical example
of interval censored event data is presented and analyzed. The results are com-
pared to alternative procedures available in commercial software products.

2 Mathematical Background

The proportional hazards assumption combines the covariate vector x and the
vector of regression coefficients β via a linear predictor with the baseline hazard
λ0(t):

λ(t,x) = λ0(t) exp{β′x}.

A straightforward calculation gives the likelihood contribution of an observation
which takes place in the interval [s, t] and allows to find the log-likelihood of the
data

L(F0,β) =
n∑

i=1

ln
{

(1− F0(Si−))exp(β′xi) − (1− F0(Ti))exp(β′xi)
}

.

This calculations uses the following relationship between survival and distribu-
tion function in the proportional hazards model

(1− F (t|x)) = S(t|x)

= S0(t|x)exp{β′x}

= (1− F0(t|x))exp{β′x}.

The objective of the ICM-algorithm is to maximize the log-likelihood by a modi-
fied Newton-Raphson algorithm. The gradients needed for the maximization are
∇1L(F0,β) = ∂L(F0,β)

∂F0
and ∇2L(F0,β) = ∂L(F0,β)

∂β . The baseline distribution
function F0 is considered to be piecewise constant and thus can be represented
by a finite dimensional vector which is parameterized by the finite steps of the
cumulative baseline hazard function. The derivative with respect to F0 is the
gradient of the log-likelihood with respect to the vector of the baseline cumula-
tive distribution function values. The derivative with respect to β is the usual
derivative of the log-likelihood with respect to the components of beta. The
full Hessian in the in the original Newton-Raphson algorithm is replaced by the
diagonal matrices of the negative second derivatives G1(F0,β) and G2(F0,β).
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The update from F (m) to F (m+1) is done iteratively with control of the stepsize.
Starting point is always a stepsize of α = 1. The new candidates for F0 and β
result from

F
(m+1)
0 =Proj

[
F

(m)
0 + αG1(m)−1∇1L(m), G1(m),R

]
β(m+1) =β(m) + αG2(m)−1∇2L(m).

A projection into the restricted range R weighted by G is used to assure that
F

(m+1)
0 is again a distribution function:

Proj[y, G,R] = arg min
x

{ k∑
i=1

(yi − xi)2Gii : 0 ≤ x1 ≤ · · · ≤ xk ≤ 1
}

.

In case of L(F (m+1)) < L(F (m)), α is halved and the step is reiterated. A
numerical procedure for the restricted projection is the pool adjacent violators
algorithm (PAVA), which is described in Robertson et al. [5].
Starting values are calculated by treating the data as right censored and using
the classical proportional hazards model. An event within a bounded interval
[s, t] will be interpreted as event observed at time t. An event within an interval
unbounded to the right [s,∞] will be interpreted as a right censored event at
time s. The Breslow-estimator is used to get a starting value for the baseline
hazard Λ0(t).

3 Example

Meisel et al. [3] present data on the shrinkage of aneurisms associated with cere-
bral arteriovenous malformations (cAVM) after embolization treatment. The
time to a shrinkage of the aneurism to below 50% of the baseline volume was of
interest. Several patients had multiple aneurisms. Each patient was inspected
at a random inspection time obs.t. The censoring variable z was set to one,
if at the inspection time sufficient shrinkage was observed, else the censoring
indicator was set to zero.
Two covariates were considered: the degree of cAMV occlusion by embolization
(dichotomized at 50%, variable mo) and the location of the aneurism, whether
at the midline arteries or at other afferent cerebral arteries, variable lok.
The single aneurisms are not independent because aneurisms within a patient
may shrink in the same way (because the share the same ”environment”). Mul-
tiple aneurisms were observed per patient. This clustering of aneurisms is indi-
cated by the grouping variable gr.
The data is loaded and inspected for the first five patients.

> library(survival)

> library(intcox)

> data(AA.data)

> AA.data[1:11, ]

obs.t z mo gr lok
1 1.7698630 0 0 1 1
2 0.9972603 0 1 2 1
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3 0.9972603 0 1 2 1
4 0.9972603 0 1 2 1
5 1.0712329 0 0 3 0
6 1.0712329 0 0 3 1
7 5.6547945 0 0 4 1
8 1.5780822 0 0 5 1
9 1.5780822 1 0 5 0
10 1.5780822 1 0 5 0
11 1.5780822 1 0 5 1

The data is analyzed by applying the intcox algorithm. The algorithm requires
the interval censored observation given in interval format with left and right
boundaries. The Surv function does not allow the use of current status censored
data as given in the aneurism example. In case of right censored data the right
boundaries are set arbitrary to NA.

> AA.data$t.left <- ifelse(AA.data$z == 1, 0, AA.data$obs.t)

> AA.data$t.right <- ifelse(AA.data$z == 1, AA.data$obs.t, NA)

The fit with intcox gives an object of class ”coxph”without the standard errors
of the regression coefficients. The summary function for class ”coxph” allows to
summarize the output of the estimation procedure.

> AA.fit <- intcox(Surv(t.left, t.right, type = "interval2") ~

+ mo + lok, data = AA.data)

> summary(AA.fit)

Call:
intcox(formula = Surv(t.left, t.right, type = "interval2") ~

mo + lok, data = AA.data)

n= 149

coef exp(coef) se(coef) z p
mo -1.007 0.365 NA NA NA
lok -0.831 0.435 NA NA NA

exp(coef) exp(-coef) lower .95 upper .95
mo 0.365 2.74 NA NA
lok 0.435 2.30 NA NA

Rsquare= NA (max possible= 0.678 )
Likelihood ratio test= NA on 2 df, p=NA
Wald test = NA on 2 df, p=NA
Score (logrank) test = NA on 2 df, p=NA

Additionally to the components of a class ”coxph” object there are given:

lambda0: the estimated cumulative baseline hazard;

time.point: the corresponding time points at which the cumulative baseline
hazard was estimated;
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likeli.vec: a vector of the estimated loglik of each ICM step;

termination: an indicator for the reason of termination (see HTML Help for
details), 1 indicates that the algorithm converged.

The estimated coefficients and cumulative baseline hazard can be used to esti-
mated and plot group specific survival curves.

> surv.base <- exp(-AA.fit$lambda0)

> plot(AA.fit$time.point, surv.base, type = "s", xlab = "time [years]",

+ ylab = "Survival function", lty = 1)

> lines(AA.fit$time.point, surv.base^exp(AA.fit$coefficients["mo"]),

+ type = "s", lty = 2)

> lines(AA.fit$time.point, surv.base^exp(AA.fit$coefficients["lok"]),

+ type = "s", lty = 3)

> lines(AA.fit$time.point, surv.base^exp(sum(AA.fit$coefficients[c("mo",

+ "lok")])), type = "s", lty = 5)

> leg.names <- c("mo=0, lok=0", "mo=0, lok=1", "mo=1, lok=0", "mo=1, lok=1")

> legend(4, 1, leg.names, lty = c(1, 2, 3, 5), bty = "n")
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It is of interest to calculate basic bootstrap confidence intervals [2] of the
regression coefficients. A wild bootstrap procedure is used, c.f. Burr [1]. Because
several patients present with multiple aneurisms, the bootstrap respected this
clustering by sampling patients and not individual aneurisms. A patient enters
with all of her/his aneurisms in the analysis. This procedure is in accordance
with the analysis of marginal models as presented in chapter 8 of Therneau and
Grambsch [6]. The bias between the ICM estimates and the median/mean of
the bootstrap samples will also be assessed.
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Remark. The number of replicates should be set to at least 999. The low number
of nine is only chosen for a fast check by CRAN.

> set.seed(123)

> pat <- unique(AA.data$gr)

> intcox.boot.AA <- function(i, form) {

+ boot.sample <- sample(pat, length(pat), replace = T)

+ data.ind <- unlist(lapply(boot.sample, function(x, yy) which(yy ==

+ x), yy = AA.data$gr))

+ data.sample <- AA.data[data.ind, ]

+ boot.fit <- intcox(form, data = data.sample, no.warnings = TRUE)

+ return(list(coef = coef(boot.fit), term = boot.fit$termination))

+ }

> n.rep <- 9

> AA.boot <- lapply(1:n.rep, intcox.boot.AA, form = Surv(t.left,

+ t.right, type = "interval2") ~ mo + lok)

> AA.boot <- matrix(unlist(AA.boot), byrow = T, nrow = n.rep)

> colnames(AA.boot) <- c(names(coef(AA.fit)), "termination")

> inf.level <- 0.05

> mo.ord <- order(AA.boot[, "mo"])

> lok.ord <- order(AA.boot[, "lok"])

> pos.lower <- ceiling((n.rep + 1) * (inf.level/2))

> pos.upper <- ceiling((n.rep + 1) * (1 - inf.level/2))

> ci.mo <- AA.boot[mo.ord, "mo"][c(pos.lower, pos.upper)]

> ci.lok <- AA.boot[mo.ord, "lok"][c(pos.lower, pos.upper)]

> ci.mo

[1] -1.784836 NA

> ci.lok

[1] -1.063285 NA

> summary(AA.boot[, "mo"])

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.7850 -1.5960 -1.1650 -1.2330 -1.0590 -0.5932

> summary(AA.boot[, "lok"])

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.2000 -1.0630 -0.8941 -0.9276 -0.8401 -0.5790

> bias.mo <- c(mean.bias = coef(AA.fit)["mo"] - mean(AA.boot[,

+ "mo"]), median.bias = coef(AA.fit)["mo"] - median(AA.boot[,

+ "mo"]))

> bias.lok <- c(mean.bias = coef(AA.fit)["lok"] - mean(AA.boot[,

+ "lok"]), median.bias = coef(AA.fit)["lok"] - median(AA.boot[,

+ "lok"]))

> bias.mo

mean.bias.mo median.bias.mo
0.2260122 0.1577364
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> bias.lok

mean.bias.lok median.bias.lok
0.09615781 0.06263106

> table(AA.boot[, "termination"])

1 2
8 1

The analysis shows a light bias between the the ICM estimates on the original
data and the median/mean of the bootstrap samples which will not invalidate
the statistical inference on the regression coefficient based on the basic bootstrap
confidence interval which show the significant (level α = 0.05) influence of both
covariates on the shrinkage.
There are some caveats:

Single group setting: A single group model can not be calculated by the ICM
algorithm. The calculation needs explicitly one or more covariates.

Stop after first step: There are situations where the ICM algorithm does not
iterate. Then the starting values calculated from Cox model by interpret-
ing the data as right censored give a likelihood value which can not be
improved by the ICM algorithm. The occurrence of this situation will be
announced by a warning.

Model selection: Look at the following model selection problem: Does the
model Surv(t.left,t.right,type="interval2")∼ mo*lok improve the
fit to the data. One way to answer this question is to check the bootstrap
confidence interval for the interaction regression coefficient. The calcu-
lation below renders a 95% bootstrap confidence interval of [−1.22; 1.77]
and a small bias which does not influences the statistical decision. One
can conclude that there is no significant interaction between the covariates
with respect to shrinkage.

Remark. The number of replicates should be set to at least 999. The low
number of nine is only chosen for a fast check by CRAN.

> AA.int.fit <- intcox(Surv(t.left, t.right, type = "interval2") ~

+ mo * lok, data = AA.data)

> summary(AA.int.fit)

Call:
intcox(formula = Surv(t.left, t.right, type = "interval2") ~

mo * lok, data = AA.data)

n= 149

coef exp(coef) se(coef) z p
mo -1.144 0.318 NA NA NA
lok -0.880 0.415 NA NA NA
mo:lok 0.246 1.279 NA NA NA
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exp(coef) exp(-coef) lower .95 upper .95
mo 0.318 3.140 NA NA
lok 0.415 2.412 NA NA
mo:lok 1.279 0.782 NA NA

Rsquare= NA (max possible= 0.679 )
Likelihood ratio test= NA on 3 df, p=NA
Wald test = NA on 3 df, p=NA
Score (logrank) test = NA on 3 df, p=NA

> set.seed(234)

> n.rep <- 9

> AA.int.boot <- lapply(1:n.rep, intcox.boot.AA, form = Surv(t.left,

+ t.right, type = "interval2") ~ mo * lok)

> AA.int.boot <- matrix(unlist(AA.int.boot), byrow = T, nrow = n.rep)

> colnames(AA.int.boot) <- c(names(coef(AA.int.fit)), "termination")

> inf.level <- 0.05

> int.ord <- order(AA.int.boot[, "mo:lok"])

> pos.lower <- ceiling((n.rep + 1) * (inf.level/2))

> pos.upper <- ceiling((n.rep + 1) * (1 - inf.level/2))

> ci.int <- AA.int.boot[int.ord, "mo:lok"][c(pos.lower, pos.upper)]

> ci.int

[1] -0.8864028 NA

> summary(AA.int.boot[, "mo:lok"])

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.8864 -0.3491 -0.1379 -0.1192 0.3173 0.7166

> bias.int <- c(mean.bias = coef(AA.int.fit)["mo:lok"] - mean(AA.int.boot[,

+ "mo:lok"]), median.bias = coef(AA.int.fit)["mo:lok"] - median(AA.int.boot[,

+ "mo:lok"]))

> bias.int

mean.bias.mo:lok median.bias.mo:lok
0.3648784 0.3836323

> table(AA.int.boot[, "termination"])

1 2
8 1

Likelihood ratio test: There are caveats when using the calculated likelihood
to perform a likelihood ratio test for model selection. First, we are not
aware of an asymptotic theory for this test, second, the likelihood of the
larger model may be smaller as the likelihood of the sparser model as can
be seen in our example.

> AA.int.fit$loglik

[1] -84.54277
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Figure 1: Turnbull’s generalization of the Kaplan-Meier estimator

> AA.fit$loglik

[1] -84.51275

A non-parametric approach to the data uses Turnbull’s [7] generalization of the
Kaplan-Meier estimator which is implemented in S-Plus (Insightful Corpora-
tion). The following S-Plus code will not work in R.

> surv.formula<-censor(left,right,cens*3,type="interval")~mo+lok
> plot(kaplanMeier(surv.formula,data=aneur),lty=c(1,2,3,5),
+ xlab="time (years)",ylab="Survival function")

Figure 1 shows the results when applied to the four subgroups of patients. The
fitting of an accelerated failure time model for interval censored data could be
carried out by means of the SAS-procedure LIFEREG (SAS-Institute Inc. Cary,
North Carolina, USA). Because of technical reasons, the value 0 for the lower
end of an interval had to be replaced by the equivalent of 1 day: 1/365. The
Weibull distribution was chosen for the error term. Then the estimates of the
coefficients can be interpreted as log-transformed relative hazards: mo -1.64
[-2.88, -0.57], lok -1.22 [-2.21, -0.36]. The baseline hazard is determined by
intercept 0.47 [-0.36, 1.37] and scale 1.67 [1.25, 2.01].
To reproduce the calculation, the dataset AA.data (columns separated by a
semicolon) is written as comma seperated value file ”AA.csv” to the working
directory (shown by the getwd call) and is available for the given SAS procedure.

> getwd()

[1] "C:/Rdevel/intcox.Rcheck/intcox/doc"

> write.table(AA.data, file = "AA.csv", sep = ",", na = ".", col.names = NA)
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PROC IMPORT OUT= WORK.aneur
DATAFILE= "Pfad \AA.csv"
DBMS=CSV REPLACE;

GETNAMES=YES;
DATAROW=2;

RUN;
data aneur;

set aneur;
if t_left=0 then t_left=1/365.25;
gruppe=2*mo+lok;

run;
proc lifereg data=aneur;

model (t_left,t_right)=mo lok / d=weibull;
output out=outcdf cdf=cdf;

run;
data outcdf;

set outcdf;
svf=1-cdf;

run;
proc sort data=outcdf;

by gruppe svf;
run;
symbol1 color=black i=spline line=1;
symbol2 color=black i=spline line=33;
symbol3 color=black i=spline line=41;
symbol4 color=black i=spline line=43;
AXIS1 label=none MINOR=(number=1)
LABEL=(justify=center angle=90 Rotate=0 ’Survival function’);
AXIS2 Label=none MINOR=(number=1) order=(0 to 9 by 1)
LABEL=(JUSTIFY=CENTER ’time (years)’);
LEGEND across=1 label=none position=(top right inside)
value=(’mo=0, lok=0’ ’mo=0, lok=1’ ’mo=1, lok=0’ ’mo=1, lok=1’);
proc gplot data=outcdf;

plot svf*t_left=gruppe / vaxis=axis1 haxis=axis2 legend=legend;
run; quit;
goptions reset=all;

Figure 2 represents the result of the Weibull approach.

4 Discussion

The ICM-based algorithm of Pan follows the maximum likelihood rationale of
estimation. The computational effort is low, because only the diagonal elements
of the Hessian matrix are used, as well as the PAVA for the restricted regression.
The ICM-algorithm is implemented in a R-package which includes a dynami-
cally loaded C-routine for the PAVA. It has to be used with care.
Simulation studies showed a light positive bias in the estimated regression co-
efficients. From a practical point of view, this bias seems to be acceptable but
has to be taken into consideration when the results of a study will be inter-
preted. The ICM gives a rather rough estimate of the baseline hazard, because
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Figure 2: Accelerated failure time model

the PAVA smoothes this function to large intervals of constant hazard. As an
example the obtained bias of the coefficients of a bootstrap of 999 samples from
the intcox.example, see HTML Help, is shown in figure 3.
The algorithm is able to handle the combination of real right censored data

and real interval censored data. It is not wise to transfer right censored data
artificially to interval censored data by substituting a large number as right end-
point of a right censored event. This introduces bias into the relative hazards
estimates.
We observed problems in the algorithm with respect to maximizing the likeli-
hood in case of a high percentage of right censored data (> 30%). In this case,
the algorithm does not move away from the starting values calculated from the
Cox model as described in the first paragraph of section 2.
This work was supported by DFG grant MA 1723/2-1.
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