
A brief tour of R/qtl

Karl W Broman

Department of Biostatistics, Johns Hopkins University
http://www.biostat.jhsph.edu/˜kbroman/qtl

19 November 2004

Overview of R/qtl

R/qtl is an extensible, interactive environment for mapping quantitative trait loci (QTLs) in experimental crosses. It is imple-
mented as an add-on package for the freely available and widely used statistical language/software R (see www.r-project.org).
The development of this software as an add-on to R allows us totake advantage of the basic mathematical and statistical func-
tions, and powerful graphics capabilities, that are provided with R. Further, the user will benefit by the seamless integration of
the QTL mapping software into a general statistical analysis program. Our goal is to make complex QTL mapping methods
widely accessible and allow users to focus on modeling rather than computing.

A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing
with missing genotype data. We have implemented the main HMMalgorithms, with allowance for the presence of genotyping
errors, for backcrosses, intercrosses, and phase-known four-way crosses.

The current version of R/qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing
single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-
Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment).
The fit of higher-order QTL models, with sophisticated techniques for model comparison and model search, will be incorporated
soon.

R/qtl is distributed as source code for Unix or compiled codefor Windows or Mac OS X. R/qtl is released under the GNU
General Public License. To download the software, you must agree to the terms in that license.

Overview of R

R is an open-source implementation of the S language. As described on the R-project homepage (www.r-project.org):

R is ‘GNU S’—A language and environment for statistical computing and graphics. R is similar to the award-
winning S system, which was developed at Bell Laboratories by John Chambers et al. It provides a wide variety
of statistical and graphical techniques (linear and nonlinear modelling, statistical tests, time series analysis, classi-
fication, clustering, . . .).

R is designed as a true computer language with control-flow constructions for iteration and alternation, and it allows
users to add additional functionality by defining new functions. For computationally intensive tasks, C, C++ and
Fortran code can be linked and called at run time.

R is freely available for Windows, Unix and Mac OS X, and may bedownloaded from the Comprehensive R Archive
Network (CRAN; cran.r-project.org).

Learning R may require a formidable investment of time, but it will definitely be worth the effort. Numerous free documents
on getting started with R are available on CRAN. In additional, several books are available. For example, see WN Venables,
BD Ripley (2002)Modern Applied Statistics with S, 4th edition. Springer.

Citation for R/qtl

To cite R/qtl in publications, use

Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mappingin experimental crosses. Bioinformatics
19:889-890

1

Selected R/qtl functions
Sample data badorder An intercross with misplaced markers

bristle3 Data on bristle number for Drosophila chromosome 3
bristleX Data on bristle number for Drosophila X chromosome
fake.4way Simulated data for a 4-way cross
fake.bc Simulated data for a backcross
fake.f2 Simulated data for an F2 intercross
hyper Backcross data on salt-induced hypertension
listeria Intercross data on Listeria monocytogenes susceptibility
map10 A genetic map modeled after the mouse genome (10 cM spacing)

Input/output read.cross Read data for a QTL experiment
write.cross Write data for a QTL experiment to a file

Simulation sim.cross Simulate a QTL experiment
sim.map Generate a genetic map

Summaries geno.table Create table of genotype distributions
plot.cross Plot various features of a cross object
plot.missing Plot grid of missing genotypes
plot.info Plot the proportion of missing genotype data
summary.cross Print summary of QTL experiment
nchr, nind, nmar, nphe, totmar, nmissing

Data manipulation c.cross Combine crosses
clean Remove intermediate calculations from a cross
drop.markers Remove a list of markers
drop.nullmarkers Remove markers without data
fill.geno Fill in holes in genotype data by imputation or Viterbi
movemarker Move a marker from one chromosome to another
pull.map Pull out the genetic map from a cross
replace.map Replace the genetic map of a cross
subset.cross Select a subset of chromosomes and/or individuals from a cross
switch.order Switch the order of markers on a chromosome

HMM engine argmax.geno Reconstruct underlying genotypes by the Viterbi algorithm
calc.genoprob Calculate conditional genotype probabilities
sim.geno Simulate genotypes given observed marker data

QTL mapping scanone Genome scan with a single QTL model
scantwo Two-dimensional genome scan with a two-QTL model
max.scanone Maximum LOD score in one-dimensional genome scan
max.scantwo Maximum LOD score in two-dimensional genome scan
plot.scanone Plot output for a one-dimensional genome scan
plot.scantwo Plot output for a two-dimensional genome scan
summary.scanone Print summary of scanone output
summary.scantwo Print summary of scantwo output
effectplot Plot phenotype means of genotype groups defined by 1 or 2 markers
plot.pxg Like effectplot, but as a dot plot of the phenotypes

Genetic mapping est.map Estimate genetic map
est.rf Estimate pairwise recombination fractions
plot.map Plot genetic map(s)
plot.rf Plot recombination fractions
ripple Assess marker order by permuting groups of adjacent markers
summary.ripple Print summary of ripple output

Genotyping errors calc.errorlod Calculate Lincoln & Lander (1992) error LOD scores
plot.errorlod Plot grid of error LOD values
plot.geno Plot observed genotypes, flagging likely errors
top.errorlod List genotypes with highest error LOD values

Multiple QTL models makeqtl Make a qtl object for use by fitqtl
fitqtl Fit a multiple QTL model, using multiple imputation
summary.fitqtl Get summary of the result of fitqtl
scanqtl Perform a multi-dimensional genome scan, using multiple imputation

2

Preliminaries

Use of the R/qtl package requires considerable knowledge ofthe R language/environment. We hope that the examples presented
here will be understandable with little prior knowledge of Ror Splus, especially because we neglect to explain the syntax of R.
Several books, as well as some free documents, are availableto assist the user in learning R; see the R project websites cited
above. We assume here that the user is running either Windowsor Mac OS X. system.

1. To start R, double-click its icon.

2. To exit, type:

q()

Click yes or no to save or discard your work.

3. Load the R/qtl package:

library(qtl)

4. View the objects in your workspace:

ls()

5. The best way to get help on the functions and data sets in R (and in R/qtl) is via the html version of the help files. One
way to get access to this is to click (on the menu bar)Help→ R language (html). (In Mac OS X,Help→ R Help.) If
you then click onPackages→ qtl, you can see all of the available functions and datasets in R/qtl. For example, look at
the help file for the functionread.cross .

An alternative method to view this help file is to type one of the following:

help(read.cross)
?read.cross

The html version of the help files are somewhat easier to read,and allow use of hotlinks between different functions.
Typing the following will make the above commands open the html version of help.

options(htmlhelp=TRUE)

You can create a file"c:\.Rprofile" (˜/.Rprofile in Mac OS X) containing any R code to be executed whenever
R is started. The commandslibrary(qtl) andoptions(htmlhelp=TRUE) are good candidates for placement
in such a file.

6. All of the code in this tutorial is available as a file from which you may copy and paste into R, if you prefer that to typing.
Type the following within R to get access to the file:

url.show("http://www.biostat.jhsph.edu/˜kbroman/qtl /rqtltour.R")

Data import

A difficult first step in the use of most data analysis softwareis the import of data. With R/qtl, one may import data in
several different formats by use of the functionread.cross . The internal data structure used by R/qtl is rather compli-
cated, and is described in the help file forread.cross . We won’t discuss data import any further here, except to saythat
the comma-delimited format ("csv") is recommended. If you have trouble importing data, send anemail to Karl Broman
(kbroman@jhsph.edu) perhaps attaching examples of your data files. (Such data will be kept confidential.)

Example 1: Hypertension

As a first example, we consider data from an experiment on hypertension in the mouse (Sugiyama et al., Genomics 71:70-77,
2001), kindly provided by Bev Paigen and Gary Churchill.

1. First, get access to the data, see that it is in your workspace, and view its help file. These data are included with the R/qtl
package, and so you can get access to the data with the function data() .

data(hyper)
ls()
?hyper

3

2. We will postpone discussion of the internal data structure used by R/qtl until later. For now we’ll just say that the data
hyper has “class”"cross" . The functionsummary.cross prints summary information on such data. We can call
that function directly, or we may simply usesummary and the data is sent to the appropriate function according toits
class.

summary(hyper)

Several other utility functions are available for getting summary information on the data. Hopefully these are self-
explanatory.

nind(hyper)
nphe(hyper)
nchr(hyper)
totmar(hyper)
nmar(hyper)

3. Plot a summary of these data.

plot(hyper)

In the upper left, black pixels indicate missing genotype data. Note that one marker has no genotype data. In the upper
right, the genetic map of the markers is shown. In the lower left, a histogram of the phenotype is shown.

The Windows version of R has a slick method for recording graphs, so that one may page up and down through a series
of plots. To initiate this, click (on the menu bar)History→ Recording.

We may plot the individual components of the above multi-plot figure as follows.

plot.missing(hyper)
plot.map(hyper)
hist(hyper$pheno[,1], breaks=30)

4. Note the odd pattern of missing data; we may make this missing data plot with the individuals ordered according to the
value of their phenotype.

plot.missing(hyper,reorder=TRUE)

We see that, for most markers, only individuals with extremephenotypes were genotyped. At many markers (in regions
of interest), markers were typed only on recombinant individuals.

5. The functiondrop.nullmarkers may be used to remove markers that have no genotype data (suchas the marker on
chromosome 14). A call tototmar will show that there are now 173 markers (rather than 174, as there were initially).

hyper <- drop.nullmarkers(hyper)
totmar(hyper)

6. Estimate recombination fractions between all pairs of markers, and plot them. This also calculates LOD scores for the
test of H0: r = 1/2. The plot of the recombination fractions can be either with recombination fractions in the upper part
and LOD scores below, or with just recombination fractions or just LOD scores. Note that red corresponds to a small
recombination fraction or a big LOD score, while blue is the reverse. Gray indicates missing values.

hyper <- est.rf(hyper)
plot.rf(hyper)
plot.rf(hyper,c(1,4))

There are some very strange patterns in the recombination fractions, but this is due to the fact that some markers were
typed largely on recombinant individuals.

For example, on chr 6, the tenth marker shows a high recombination fraction with all other markers on the chromosome,
but a plot of the missing data shows that this marker was typedonly on a selected number of individuals (largely those
showing recombination events across the interval).

plot.rf(hyper,6)
plot.missing(hyper,6)

7. Re-estimate the genetic map (keeping the order of markersfixed), and plot the original map against the newly estimated
one.

newmap <- est.map(hyper, error.prob=0.01, verbose=TRUE)
plot.map(hyper, newmap)

4

We see some map expansion, especially on chromosomes 6, 13 and 18. It is questionable whether we should replace the
map or not. Keep in mind that the previous map locations are based on a limited number of meioses. If one wished to
replace the genetic map with the estimated one, it could be done as follows:

hyper <- replace.map(hyper, newmap)

8. We now turn to the identification of genotyping errors. In the following, we calculate the error LOD scores of Lincoln
and Lander (1992). A LOD score is calculated for each individual at each marker; large scores indicate likely genotyping
errors.

The core of R/qtl is a set of functions which make use of the hidden Markov model (HMM) technology to calculate
QTL genotype probabilities, to simulate from the joint genotype distribution and to calculate the most likely sequenceof
underlying genotypes (all conditional on the observed marker data). This is done in a quite general way, with possible
allowance for the presence of genotyping errors. Of course,we must assume no crossover interference. The function
calc.genoprob performs the first of these; the values are used in the calculation of the error LOD scores.

hyper <- calc.genoprob(hyper, error.prob=0.01)
hyper <- calc.errorlod(hyper, error.prob=0.01)

We may now make various plots and receive other summary information regarding which genotypes are likely in error.

plot.errorlod(hyper)
top.errorlod(hyper)
plot.errorlod(hyper, chr=c(4,11,16))

9. The functionplot.geno may be used to inspect the observed genotypes for a chromosome, with likely genotyping
errors flagged. Of course, it’s difficult to look at too many individuals at once. Note that white = AA and black = AB (for
a backcross).

plot.geno(hyper, chr=16, ind=71:90, min.sep=4)

We don’t have any utilities for fixing any apparent errors; itwould be best to go back to the raw data.

10. The functionplot.info plots a measure of the proportion of missing genotype information in the genotype data.
The missing information is calculated in two ways: as entropy, or via the variance of the conditional genotypes, given
the observed marker data. (See the help file, using?plot.info .) The function makes use of the results from
calc.genoprob , and so we first calculate the genotype probabilities at 2 cM steps.

hyper <- calc.genoprob(hyper, step=2, err=0.01)
plot.info(hyper)
plot.info(hyper, chr=c(1,4,15))
plot.info(hyper, chr=c(1,4,15), method="entropy")
plot.info(hyper, chr=c(1,4,15), method="variance")

11. We now, finally, get to QTL mapping. The QTL genotype probabilities must first be calculated, usingcalc.genoprob ,
but we did that above. We use the functionscanone to perform a single-QTL genome scan with a normal model. We
may use maximum likelihood via the EM algorithm or use Haley-Knott regression (Haley and Knott 1992).

out.em <- scanone(hyper)
out.hk <- scanone(hyper, method="hk")

We may also use the multiple imputation method of Sen and Churchill (2001). This requires that we first usesim.geno
to simulate from the joint genotype distribution, given theobserved marker data.

hyper <- sim.geno(hyper, step=2, n.draws=16)
out.imp <- scanone(hyper, method="imp")

12. The output of scanone has class"scanone" ; the functionsummary.scanone displays the maximum LOD score on
each chromosome for which the LOD exceeds a specified threshold.

summary(out.em)
summary(out.em, 3)
summary(out.hk, 3)
summary(out.imp, 3)

13. The functionmax.scanone returns just the highest peak from output ofscanone .

5

max(out.em)
max(out.hk)
max(out.imp)

14. We may also plot the results.plot.scanone can plot up to three genome scans at once, provided that they conform
appropriately. Alternatively, one may use the argumentadd .

plot(out.em, chr=c(1,4,15))
plot(out.hk, out.imp, out.em, chr=c(1,4,15), col=c("red ","blue","black"), lty=1)
plot(out.em, chr=c(1,4,15))
plot(out.hk, chr=c(1,4,15), col="blue", add=TRUE)
plot(out.imp, chr=c(1,4,15), col="red", add=TRUE)

15. The functionscanone may also be used to perform a permutation test to get a genome-wide LOD significance threshold.
This can take a long time, so we’ll just do ten permutations.

operm.hk <- scanone(hyper, method="hk", n.perm=10)
quantile(operm.hk, 0.95)

16. We should mention at this point that the functionsave.image may be used to save your workspace to disk. If R
crashes, you will wish you had used this.

save.image()

17. The functionscantwo performs a two-dimensional genome scan with a two-QTL model. For every pair of positions, it
calculates a joint LOD score and a LOD score for a test of epistasis. This can be quite time consuming, and so you may
wish to do the calculations on a coarser grid.

hyper.coarse <- calc.genoprob(hyper, step=10, error.pro b=0.01)
out2.hk <- scantwo(hyper.coarse, method="hk")

One can also usemethod="em" or method="imp" , but they are too computationally intensive to consider here.

18. The output ofscantwo has class"scantwo" ; there are functions for obtaining summaries and plots, of course.

summary(out2.hk, c(8,3,3))
summary(out2.hk, c(0,4,1000))
summary(out2.hk, c(0,1000,4))

The summary function requires LOD thresholds on the joint LOD score, the epistasis LOD score, and on the conditional
LOD score for a single QTL. For each pair of chromosomes, the locus pair with the maximum joint LOD is printed if
the joint LOD exceeds its threshold and either the epistasisLOD score exceeds its threshold or both loci have conditional
LOD scores that exceed their threshold.

plot(out2.hk)
plot(out2.hk,chr=c(1,4))

In the plot of the results ofscantwo , the epistasis LOD scores appear in the upper-left triangle; the lower-right triangle
contains a LOD score comparing a 2-QTL versus the best 1-QTL model, though the contents of the lower-right may be
changed with the argumentlower . The color scale on the right indicates separate scales for the epistasis and joint LOD
scores (on the left and right, respectively).

19. The functionmax.scantwo returns the two-locus position with the maximum joint LOD score, and that with the
maximum epistatic LOD score.

max(out2.hk)

20. One may also usescantwo to perform permutation tests in order to obtain genome-wideLOD significance thresholds.
These may take days to complete, so we won’t try it.

21. Finally, we consider the fit of multiple-QTL models. Currently, only the use of multiple imputation has been imple-
mented. We first create a QTL object using the functionmakeqtl , with five QTLs at specified, fixed positions.

chr <- c(1, 1, 4, 6, 15)
pos <- c(50, 76, 30, 70, 20)
qtl <- makeqtl(hyper, chr, pos)

6

Finally, we use the functionfitqtl to fit a model with five QTLs, and allowing the QTLs on chromosomes 6 and 15 to
interact.

my.formula <- y ˜ Q1 + Q2 + Q3 + Q4 + Q5 + Q4:Q5
out.fitqtl <- fitqtl(hyper$pheno[,1], qtl, formula=my.f ormula)
summary(out.fitqtl)

22. You may wish to clean up your workspace before we move on tothe next example.

ls()
rm(list=ls())

Example 2: Genetic mapping

R/qtl includes some utilities for estimating genetics mapsand checking marker orders. In this example, we describe theuse of
these utilities.

1. Get access to some sample data. This is simulated data withsome errors in marker order.

data(badorder)
summary(badorder)
plot(badorder)

2. Estimate recombination fractions between all pairs of markers, and plot them.

badorder <- est.rf(badorder)
plot.rf(badorder)

It appears that markers on chromosomes 2 and 3 have been switched.

Also note that, if we look more closely at the recombination fractions for chromosome 1, there seem to be some errors in
marker order.

plot.rf(badorder, chr=1)

3. Re-estimate the genetic map.

newmap <- est.map(badorder, verbose=TRUE)
plot.map(badorder, newmap)

This really shows the problems on chromosomes 2 and 3.

4. Fix the problems on chromosomes 2 and 3. First, we look moreclosely at the recombination fractions for these chro-
mosoems

plot.rf(badorder, chr=2:3)

We need to move the sixth marker on chromosome 2 to chromosome3, and the fifth marker on chromosome 3 to
chromosome 2. We need to figure out which markers these are.

badorder$geno[[2]]$map[6]
badorder$geno[[3]]$map[5]

Now we can use the functionmovemarker to move the markers. It seems like they should be exactly switched.

badorder <- movemarker(badorder, "D2M937", 3, 48)
badorder <- movemarker(badorder, "D3M160", 2, 28.8)

We need to re-estimate the recombination fractions after moving markers around.

badorder <- est.rf(badorder)
plot.rf(badorder, chr=2:3)

5. We can check the marker order on chromosome 1. The functionripple will consider all permutations of a sliding
window of adjacent markers. A quick-and-dirty approach is to count the number of obligate crossovers for each possible
order, to find the order with the minimum number of crossovers. A more refined, but also more computationally intensive,
approach is to re-estimate the genetic map for each order, calculating LOD scores (log10 likelihood ratios) relative to the
initial order. (This may be done with allowance for the presence of genotyping errors.) The default approach is the
quick-and-dirty method.

7

The following checks the marker order on chromosome 1, permuting groups of six contiguous markers.

rip1 <- ripple(badorder, chr=1, window=6)
summary(rip1)

In the summary output, markers 9–11 clearly need to be flipped. There also seems to be a problem with the order of
markers 4–6.

6. The following performs the likelihood analysis, permuting groups of three adjacent markers, assuming a genotyping error
rate of 1%. It’s considerably slower, but more trustworthy.

rip2 <- ripple(badorder, chr=1, window=3, err=0.01, metho d="likelihood")
summary(rip2)

Note that positive LOD scores indicate that the alternate order has a higher likelihood than the original.

7. We can switch the order of markers 9–11 with the functionswitch.order (which works only for a single chromo-
some) and then re-assess the order. Note that the second row of rip1 corresponds to the improved order.

badorder.rev <- switch.order(badorder, 1, rip1[2,])
rip1r <- ripple(badorder.rev, chr=1, window=6)
summary(rip1r)

It looks like the marker pairs (5,6) and (1,2) should each be inverted. We useswitch.order again, and then check
marker order using the likelihood method.

badorder.rev <- switch.order(badorder.rev, 1, rip1r[2,])
rip2r <- ripple(badorder.rev, chr=1, window=3, err=0.01)
summary(rip2r)

It’s probably best to start out using the quick-and-dirty method, with a large window size, to find the marker order with
the minimum number of obligate crossovers, and then refine that order using the slower, but more trustworthy, likelihood
method.

8. We can look again at the recombination fractions for this chromosome.

badorder.rev <- est.rf(badorder.rev)
plot.rf(badorder.rev, 1)

Example 3: Listeria susceptibility

In order to demonstrate further uses of the functionscanone , we consider some data on susceptibility toListeria monocyto-
genes in mice (Boyartchuk et al., Nature Genetics 27:259-260, 2001). These data were kindly provided by Victor Boyartchuk
and Bill Dietrich.

1. Get access to the data and view some summaries.

data(listeria)
summary(listeria)
plot(listeria)
plot.missing(listeria)

Note that in the missing data plot, gray pixels are partiallymissing genotypes (e.g., a genotype may be known to be either
AA or AB, but not which).

The phenotype here is the survival time of a mouse (in hours) following infection withListeria monocytogenes. Individ-
uals with a survival time of 264 hours are those that recovered from the infection.

2. We’ll take the log phenotype and add it to the phenotype data.

y <- log(listeria$pheno[,1])
listeria$pheno <- cbind(listeria$pheno, logSurv=y)
plot(listeria)

3. Estimate pairwise recombination fractions.

listeria <- est.rf(listeria)
plot.rf(listeria)
plot.rf(listeria,c(5,13))

8

4. Re-estimate the genetic map.

newmap <- est.map(listeria)
plot.map(listeria, newmap)

5. Investigate genotyping errors.

listeria <- calc.genoprob(listeria,error.prob=0.01)
listeria <- calc.errorlod(listeria,error.prob=0.01) pl ot.errorlod(listeria)
top.errorlod(listeria)
plot.errorlod(listeria,c(5,13))
plot.geno(listeria, chr=13, ind=61:70, min.sep=2)

Note that in the plot given byplot.geno , for an intercross, white = AA, gray = AB, black = BB, green = AAor AB,
and orange = AB or BB.

6. Now on to the QTL mapping. Recall that the phenotype distribution shows a clear departure from the standard assump-
tions for interval mapping; 30% of the mice survived longer than 264 hours, and were considered recovered from the
infection.

One approach for these data is to use the two-part model considered by Boyartchuk et al. (2001). In this model, a
mouse with genotypeg has probabilitypg of surviving the infection. If it does die, its log survival time is assumed to
be distributed normal(µg,σ2). Analysis proceeds by maximum likelihood via an EM algorithm. Three LOD scores are
calculated. LOD(p, µ) is for the test of the null hypothesispg ≡ p andµg ≡ µ. LOD(p) is for the test of the hypothesis
pg ≡ p but theµ are allowed to vary. LOD(µ) is for the test of the hypothesisµg ≡ µ but thep are allowed to vary.

The functionscanone will fit the above model when the argumentmodel="2part" . One must also specify the
argumentupper , which indicates whether the spike in the phenotype is the maximum phenotype (as it is with this phe-
notype; takeupper=TRUE) or the minimum phenotype (takeupper=FALSE). For this model, only the EM algorithm
has been implemented so far.

listeria <- calc.genoprob(listeria, step=2)
out.2p <- scanone(listeria, pheno.col=2, model="2part", upper=TRUE)

Note that, because this model has three extra parameters, the appropriate LOD threshold is higher—around 4.5 rather
than 3.5. The three different LOD curves are in columns 3–5 ofthe output. The functionplot.scanone assumes the
LOD score is in the third column, and so we plot these extra LODscores by removing the earlier columns.

summary(out.2p)
summary(out.2p, 4.5)
plot(out.2p)
plot(out.2p, out.2p[,-3], out.2p[,-(3:4)], chr=c(1,5,1 3,15),

lty=1, col=c("black", "red", "blue"))

Note that the locus on chromosome 1 shows effect mostly on themean time-to-death, conditional on death; the locus on
chromosome 5 shows effect mostly on the probability of survival; and the loci on chromosomes 13 and 15 shows some
effect on each.

7. Permutation tests may be performed as before. The output will have three columns, corresponding to the three LOD
scores.

operm.2p <- scanone(listeria, model="2part", pheno.col= 2,
upper=TRUE, n.perm=3)

apply(operm.2p, 2, quantile, 0.95)

8. Alternatively, one may perform separate analyses of the log survival time, conditional on death, and the binary phenotype
survival/death. First we set up these phenotypes.

z <- y <- x <- listeria$pheno[,2]
mx <- max(x, na.rm=TRUE)
y[!is.na(x) & x==mx] <- NA
z[!is.na(x) & x<mx] <- 0
z[!is.na(x) & x==mx] <- 1
listeria$pheno <- cbind(listeria$pheno, logSurv2=y, bin ary=z)
plot(listeria)

9

We use standard interval mapping for the log survival time conditional on death; the results are slightly different from
LOD(µ).

out.mu <- scanone(listeria, pheno.col=3)
plot(out.mu, out.2p[,-(3:4)], chr=c(1,5,13,15))

We can usescanone with model="binary" to analyze the binary phenotype. Again, the results are onlyslight
different from LOD(p).

out.p <- scanone(listeria, pheno.col=4, model="binary")
plot(out.p, out.2p[,-3], chr=c(1,5,13,15))

9. A further approach is to use a non-parametric form of interval mapping. R/qtl uses an extension of the Kruskal-Wallis
test statistic. Usescanone with model="np" . In this case, the argumentmethod is ignored; the analysis method
is much like Haley-Knott regression. If the argumentties.random=TRUE , tied phenotypes are ranked at random. If
ties.random=FALSE , tied phenotypes are given the average rank and a correctionis applied to the LOD score.

out.np1 <- scanone(listeria, model="np", ties.random=TR UE)
out.np2 <- scanone(listeria, model="np", ties.random=FA LSE)
plot(out.np1, out.np2)
plot(out.2p, out.np1, out.np2, chr=c(1,5,13,15), lty=1,

col=c("black", "blue", "red"))

Note that the significance threshold for the non-parametricgenome scan will be quite a bit smaller than that for the
two-part model. The two approaches give basically the same results. Randomizing ties for the non-parametric ap-
proach can give quite variable results in the case of a great number of ties, and so we would recommend the use of
ties.random=FALSE in this case.

Example 4: Covariates in QTL mapping

As a further example, we illustrate the use of covariates in QTL mapping. We consider some simulated backcross data.

1. Get access to the data.

data(fake.bc)
summary(fake.bc)
plot(fake.bc)

2. Perform genome scans for the two phenotypes without covariates.

fake.bc <- calc.genoprob(fake.bc, step=2.5)
out1.nocovar <- scanone(fake.bc, pheno.col=1)
out2.nocovar <- scanone(fake.bc, pheno.col=2)

3. Perform genome scans with age as an additive covariate

ac <- fake.bc$pheno[,"age"]
out1.covar.a <- scanone(fake.bc, pheno.col=1, addcov=ac)
out2.covar.a <- scanone(fake.bc, pheno.col=2, addcov=ac)

4. Perform genome scans with age as an additive covariate andsex as a covariate interacting with QTL genotype.

ac <- fake.bc$pheno[,c("sex","age")]
ic <- fake.bc$pheno[,"sex"]
out1.covar.b <- scanone(fake.bc, pheno.col=1, addcov=ac , intcov=ic)
out2.covar.b <- scanone(fake.bc, pheno.col=2, addcov=ac , intcov=ic)

5. Get some summaries.

summary(out1.nocovar, 3)
summary(out1.covar.a, 3)
summary(out1.covar.b, 3)

summary(out2.nocovar, 3)
summary(out2.covar.a, 3)
summary(out2.covar.b, 3)

10

6. Make some plots.

plot(out1.nocovar, out1.covar.a, out1.covar.b, lty=1,
chr=c(2,5,10), col=c("black","blue","red"))

plot(out2.nocovar, out2.covar.a, out2.covar.b, lty=1,
chr=c(2,5,10), col=c("black","blue","red"))

Internal data structure

Finally, let us briefly describe the rather complicated datastructure that R/qtl uses for QTL mapping experiments. Thiswill be
rather dull, and will require a good deal of familiarity withthe R (or S) language. The choice of data structure required some
balance between ease of programming and simplicity for the user interface. The syntax for references to certain pieces of the
internal data can become extremely complicated.

1. Get access to some sample data.

data(fake.bc)

2. First, the object has a “class,” which indicates that it corresponds to data for an experimental cross, and gives the
cross type. By having classcross , the functionsplot andsummary know to send the data toplot.cross and
summary.cross .

class(fake.bc)

3. Everycross object has two components, one containing the genotype dataand genetic maps and the other containing
the phenotype data.

names(fake.bc)

4. The phenotype data is simply a matrix (more strictly a data.frame) with rows corresponding to individuals and columns
corresponding to phenotypes.

fake.bc$pheno

5. The genotype data is a list with components correspondingto chromosomes. Each chromosome has a name and a class.
The class for a chromosome is either"A" or "X" , according to whether it is an autosome or the X chromosome.

names(fake.bc$geno)
sapply(fake.bc$geno, class)

6. Each component ofgeno contains two components,data (containing the marker genotype data) andmap (containing
the positions of the markers, in cM).

names(fake.bc$geno[[3]])
fake.bc$geno[[3]]$data[1:5,]
fake.bc$geno[[3]]$map

That’s it for the raw data.

7. When one runscalc.genoprob , sim.geno , argmax.geno or calc.errorlod , the output is the input cross
object with the derived data attached to each component (thechromosomes) of thegeno component.

names(fake.bc$geno[[3]])
fake.bc <- calc.genoprob(fake.bc, step=10, err=0.01)
names(fake.bc$geno[[3]])
fake.bc <- sim.geno(fake.bc, step=10, n.draws=8, err=0.0 1)
names(fake.bc$geno[[3]])
fake.bc <- argmax.geno(fake.bc, step=10, err=0.01)
names(fake.bc$geno[[3]])
fake.bc <- calc.errorlod(fake.bc, err=0.01)
names(fake.bc$geno[[3]])

8. Finally, when one runsest.rf , a matrix containing the pairwise recombination fractionsand LOD scores is added to
the cross object.

names(fake.bc)
fake.bc <- est.rf(fake.bc)
names(fake.bc)

11

