A brief tour of R/qtl

Karl W Broman

Department of Biostatistics, Johns Hopkins University
http://www.biostat.jhsph.edu/"kbroman/qtl

19 November 2004

Overview of R/qtl

R/qtlis an extensible, interactive environment for maggjnantitative trait loci (QTLS) in experimental crossdss Imple-
mented as an add-on package for the freely available andywided statistical language/software R (see www.r-ptajeg).
The development of this software as an add-on to R allows tekadvantage of the basic mathematical and statistinat fu
tions, and powerful graphics capabilities, that are preglidith R. Further, the user will benefit by the seamless natémn of
the QTL mapping software into a general statistical analpsogram. Our goal is to make complex QTL mapping methods
widely accessible and allow users to focus on modeling rdtia computing.

A key component of computational methods for QTL mappintéshidden Markov model (HMM) technology for dealing
with missing genotype data. We have implemented the main Hijdrithms, with allowance for the presence of genotyping
errors, for backcrosses, intercrosses, and phase-knauswimy crosses.

The current version of R/qtl includes facilities for estiing genetic maps, identifying genotyping errors, and gening
single-QTL genome scans and two-QTL, two-dimensional genscans, by interval mapping (with the EM algorithm), Haley
Knott regression, and multiple imputation. All of this mag @hone in the presence of covariates (such as sex, age onéret
The fit of higher-order QTL models, with sophisticated taglies for model comparison and model search, will be incateal
soon.

R/qtl is distributed as source code for Unix or compiled cfudéNVindows or Mac OS X. R/qtl is released under the GNU
General Public License. To download the software, you myigteato the terms in that license.

Overview of R

R is an open-source implementation of the S language. Asiledon the R-project homepage (www.r-project.org):

R is ‘GNU S'—A language and environment for statistical canipg and graphics. R is similar to the award-
winning S system, which was developed at Bell Laboratoneddhn Chambers et al. It provides a wide variety
of statistical and graphical techniques (linear and naairmodelling, statistical tests, time series analyséssii
fication, clustering, ...).

R is designed as a true computer language with control-flestroctions for iteration and alternation, and it allows
users to add additional functionality by defining new fuont. For computationally intensive tasks, C, C++ and
Fortran code can be linked and called at run time.

R is freely available for Windows, Unix and Mac OS X, and maydosvnloaded from the Comprehensive R Archive
Network (CRAN; cran.r-project.org).

Learning R may require a formidable investment of time, bwili definitely be worth the effort. Numerous free docurrent
on getting started with R are available on CRAN. In additlpeaveral books are available. For example, see WN Venables
BD Ripley (2002)Modern Applied Satisticswith S, 4th edition. Springer.

Citation for R/qtl

To cite R/qgtl in publications, use

Broman KW, Wu H, Sen S, Churchill GA (2003) R/qgtl: QTL mappiimgexperimental crosses. Bioinformatics
19:889-890

Selected R/qtl functions

Sample data badorder An intercross with misplaced markers
bristle3 Data on bristle number for Drosophila chromosome 3
bristleX Data on bristle number for Drosophila X chromosome
fake.4way Simulated data for a 4-way cross
fake.bc Simulated data for a backcross
fake.f2 Simulated data for an, fntercross
hyper Backcross data on salt-induced hypertension
listeria Intercross data on Listeria monocytogenes suixiy
map10 A genetic map modeled after the mouse genome (10 chhgpac
I nput/output read.cross Read data for a QTL experiment
write.cross Write data for a QTL experiment to a file
Simulation sim.cross Simulate a QTL experiment
sim.map Generate a genetic map
Summaries geno.table Create table of genotype distributions
plot.cross Plot various features of a cross object
plot.missing Plot grid of missing genotypes
plot.info Plot the proportion of missing genotype data
summary.cross Print summary of QTL experiment
nchr, nind, nmar, nphe, totmar, nmissing
Data manipulation C.Cross Combine crosses
clean Remove intermediate calculations from a cross

drop.markers
drop.nullmarkers
fill.geno
movemarker
pull.map
replace.map
subset.cross
switch.order

Remove a list of markers

Remove markers without data
Fill in holes in genotype data by imputation or Ve

Move a marker from one chromosome to another
Pull out the genetic map from a cross

Replace the genetic map of a cross

Select a subset of chromosomes and/or indisiilom a cross
Switch the order of markers on a chromosome

HMM engine argmax.geno Reconstruct underlying genotypes by thebfisdgorithm
calc.genoprob Calculate conditional genotype probadslit
sim.geno Simulate genotypes given observed marker data
QTL mapping scanone Genome scan with a single QTL model
scantwo Two-dimensional genome scan with a two-QTL model

max.scanone
max.scantwo
plot.scanone
plot.scantwo

Maximum LOD score in one-dimensional genoare sc
Maximum LOD score in two-dimensional genonas sc
Plot output for a one-dimensional genome scan
Plot output for a two-dimensional genome scan

summary.scanone Print summary of scanone output
summary.scantwo Print summary of scantwo output
effectplot Plot phenotype means of genotype groups defipddds 2 markers
plot.pxg Like effectplot, but as a dot plot of the phenotypes
Genetic mapping est.map Estimate genetic map
est.rf Estimate pairwise recombination fractions
plot.map Plot genetic map(s)
plot.rf Plot recombination fractions
ripple Assess marker order by permuting groups of adjacenkens

summary.ripple

Print summary of ripple output

Genotypingerrors

calc.errorlod
plot.errorlod

Calculate Lincoln & Lander (1992) error LOEbges
Plot grid of error LOD values

plot.geno Plot observed genotypes, flagging likely errors
top.errorlod List genotypes with highest error LOD values
Multiple QTL models makeqtl Make a qtl object for use by fitqtl
fitqtl Fit a multiple QTL model, using multiple imputation
summary.fitqtl Get summary of the result of fitqgtl
scanqtl Perform a multi-dimensional genome scan, usingiphelimputation

2

Preliminaries

Use of the R/qtl package requires considerable knowledtieed® language/environment. We hope that the examplesyiesse
here will be understandable with little prior knowledge 0dRSplus, especially because we neglect to explain the sphta.
Several books, as well as some free documents, are avaitabtsist the user in learning R; see the R project websited ci
above. We assume here that the user is running either WindioMiac OS X. system.

1. To start R, double-click its icon.

2. To exit, type:
q0

Click yes or no to save or discard your work.

3. Load the R/qgtl package:
library(qtl)

4. View the objects in your workspace:
Is()

5. The best way to get help on the functions and data sets imdRiaR/qtl) is via the html version of the help files. One
way to get access to this is to click (on the menu léadp — R language (html)(In Mac OS X,Help — R Help) If
you then click orPackages~ qtl, you can see all of the available functions and datasetsqti. Ffor example, look at
the help file for the functiomead.cross

An alternative method to view this help file is to type one & thllowing:

help(read.cross)
?read.cross

The html version of the help files are somewhat easier to raad,allow use of hotlinks between different functions.
Typing the following will make the above commands open thellversion of help.

options(htmlhelp=TRUE)

You can create a fil&:\.Rprofile" ("/.Rprofile in Mac OS X) containing any R code to be executed whenever
R is started. The commandbrary(qtl) andoptions(htmlhelp=TRUE) are good candidates for placement
in such afile.

6. All of the code in this tutorial is available as a file fromiathyou may copy and paste into R, if you prefer that to typing.
Type the following within R to get access to the file:

url.show("http://www.biostat.jhsph.edu/"kbroman/qtl /rgtltour.R")

Dataimport

A difficult first step in the use of most data analysis softwigréhe import of data. With R/qtl, one may import data in
several different formats by use of the functimad.cross . The internal data structure used by R/qtl is rather compli-
cated, and is described in the help file fead.cross . We won't discuss data import any further here, except totsay
the comma-delimited formatgsv") is recommended. If you have trouble importing data, sendraail to Karl Broman
(kbroman@jhsph.edu) perhaps attaching examples of your data files. (Such déitbevkept confidential.)

Example 1. Hypertension

As a first example, we consider data from an experiment onrbtgmq&ion in the mouse (Sugiyama et al., Genomics 71:70-77,
2001), kindly provided by Bev Paigen and Gary Churchill.

1. First, get access to the data, see that it is in your wodesand view its help file. These data are included with thel R/q
package, and so you can get access to the data with the fudetia()

data(hyper)

Is()
?hyper

2. We will postpone discussion of the internal data striectised by R/qtl until later. For now we'll just say that theadat
hyper has “class™cross" . The functionsummary.cross prints summary information on such data. We can call
that function directly, or we may simply useimmary and the data is sent to the appropriate function accordiitg to
class.

summary(hyper)

Several other utility functions are available for gettingrsnary information on the data. Hopefully these are self-
explanatory.

nind(hyper)

nphe(hyper)

nchr(hyper)

totmar(hyper)

nmar(hyper)

3. Plot a summary of these data.

plot(hyper)
In the upper left, black pixels indicate missing genotyptadalote that one marker has no genotype data. In the upper
right, the genetic map of the markers is shown. In the lowigraehistogram of the phenotype is shown.

The Windows version of R has a slick method for recording bsapo that one may page up and down through a series
of plots. To initiate this, click (on the menu batl)story — Recording

We may plot the individual components of the above multitfiure as follows.

plot.missing(hyper)
plot.map(hyper)
hist(hyper$phenol,1], breaks=30)

4. Note the odd pattern of missing data; we may make this ngsata plot with the individuals ordered according to the
value of their phenotype.

plot.missing(hyper,reorder=TRUE)

We see that, for most markers, only individuals with extrgghenotypes were genotyped. At many markers (in regions
of interest), markers were typed only on recombinant irttlials.

5. The functiordrop.nullmarkers may be used to remove markers that have no genotype datagstich marker on
chromosome 14). A call totmar will show that there are now 173 markers (rather than 17he®twere initially).

hyper <- drop.nullmarkers(hyper)
totmar(hyper)

6. Estimate recombination fractions between all pairs ofkers, and plot them. This also calculates LOD scores for the
test of Hy: » = 1/2. The plot of the recombination fractions can be either wétbombination fractions in the upper part
and LOD scores below, or with just recombination fractiongust LOD scores. Note that red corresponds to a small
recombination fraction or a big LOD score, while blue is teearse. Gray indicates missing values.

hyper <- est.rf(hyper)

plot.rf(hyper)

plot.rf(hyper,c(1,4))

There are some very strange patterns in the recombinatgtidns, but this is due to the fact that some markers were
typed largely on recombinant individuals.

For example, on chr 6, the tenth marker shows a high reconidimiaaction with all other markers on the chromosome,
but a plot of the missing data shows that this marker was typdyglon a selected number of individuals (largely those
showing recombination events across the interval).

plot.rf(hyper,6)

plot.missing(hyper,6)

7. Re-estimate the genetic map (keeping the order of mafiked), and plot the original map against the newly estimated
one.

newmap <- est.map(hyper, error.prob=0.01, verbose=TRUE)
plot.map(hyper, newmap)

10.

11.

12.

We see some map expansion, especially on chromosomes 6¢ 1Bat is questionable whether we should replace the
map or not. Keep in mind that the previous map locations asedan a limited number of meioses. If one wished to
replace the genetic map with the estimated one, it could be ds follows:

hyper <- replace.map(hyper, newmap)

. We now turn to the identification of genotyping errors. he following, we calculate the error LOD scores of Lincoln

and Lander (1992). A LOD score is calculated for each indiglcit each marker; large scores indicate likely genotyping
errors.

The core of R/qtl is a set of functions which make use of thelidMarkov model (HMM) technology to calculate
QTL genotype probabilities, to simulate from the joint ggme distribution and to calculate the most likely sequesfce
underlying genotypes (all conditional on the observed miadata). This is done in a quite general way, with possible
allowance for the presence of genotyping errors. Of cowreemust assume no crossover interference. The function
calc.genoprob performs the first of these; the values are used in the caioolaf the error LOD scores.

hyper <- calc.genoprob(hyper, error.prob=0.01)
hyper <- calc.errorlod(hyper, error.prob=0.01)

We may now make various plots and receive other summaryrirdon regarding which genotypes are likely in error.

plot.errorlod(hyper)
top.errorlod(hyper)
plot.errorlod(hyper, chr=c(4,11,16))

. The functionplot.geno may be used to inspect the observed genotypes for a chronegsdth likely genotyping

errors flagged. Of course, it’s difficult to look at too mangiiduals at once. Note that white = AA and black = AB (for
a backcross).

plot.geno(hyper, chr=16, ind=71:90, min.sep=4)
We don'’t have any utilities for fixing any apparent errorsydtuld be best to go back to the raw data.

The functionplot.info plots a measure of the proportion of missing genotype in&ion in the genotype data.
The missing information is calculated in two ways: as engrap via the variance of the conditional genotypes, given
the observed marker data. (See the help file, uSipigt.info .) The function makes use of the results from
calc.genoprob , and so we first calculate the genotype probabilities at 2 teldss

hyper <- calc.genoprob(hyper, step=2, err=0.01)
plot.info(hyper)

plot.info(hyper, chr=c(1,4,15))

plot.info(hyper, chr=c(1,4,15), method="entropy")
plot.info(hyper, chr=c(1,4,15), method="variance")

We now, finally, getto QTL mapping. The QTL genotype ptuliges must first be calculated, usieglc.genoprob
but we did that above. We use the funct&ganone to perform a single-QTL genome scan with a normal model. We
may use maximum likelihood via the EM algorithm or use Hakett regression (Haley and Knott 1992).

out.em <- scanone(hyper)
out.hk <- scanone(hyper, method="hk")

We may also use the multiple imputation method of Sen and&@lfill¢2001). This requires that we first usen.geno
to simulate from the joint genotype distribution, given tteserved marker data.

hyper <- sim.geno(hyper, step=2, n.draws=16)
out.imp <- scanone(hyper, method="imp")

The output of scanone has cldssanone" ; the functionsummary.scanone displays the maximum LOD score on
each chromosome for which the LOD exceeds a specified thesho

summary(out.em)

summary(out.em, 3)
summary(out.hk, 3)
summary(out.imp, 3)

13. The functiormax.scanone returns just the highest peak from outpusctnone .

14.

15.

16.

17.

18.

19.

20.

21.

max(out.em)
max(out.hk)
max(out.imp)

We may also plot the resultplot.scanone can plot up to three genome scans at once, provided that trggren
appropriately. Alternatively, one may use the argunasiut.

plot(out.em, chr=c(1,4,15))

plot(out.hk, out.imp, out.em, chr=c(1,4,15), col=c("red ""blue","black"), Ity=1)
plot(out.em, chr=c(1,4,15))

plot(out.hk, chr=c(1,4,15), col="blue", add=TRUE)

plot(out.imp, chr=c(1,4,15), col="red", add=TRUE)

The functiorscanone may also be used to perform a permutation test to get a gemades-OD significance threshold.
This can take a long time, so we’'ll just do ten permutations.

operm.hk <- scanone(hyper, method="hk", n.perm=10)
guantile(operm.hk, 0.95)

We should mention at this point that the functgave.image may be used to save your workspace to disk. If R
crashes, you will wish you had used this.

save.image()

The functiorscantwo performs a two-dimensional genome scan with a two-QTL mdel@l every pair of positions, it
calculates a joint LOD score and a LOD score for a test of apist This can be quite time consuming, and so you may
wish to do the calculations on a coarser grid.

hyper.coarse <- calc.genoprob(hyper, step=10, error.pro b=0.01)
out2.hk <- scantwo(hyper.coarse, method="hk")

One can also usmethod="em" or method="imp" , but they are too computationally intensive to consideeher

The output ocantwo has clas$scantwo" ;there are functions for obtaining summaries and plotspafse.

summary(out2.hk, ¢(8,3,3))
summary(out2.hk, ¢(0,4,1000))
summary(out2.hk, ¢(0,1000,4))

The summary function requires LOD thresholds on the joinDLsBore, the epistasis LOD score, and on the conditional
LOD score for a single QTL. For each pair of chromosomes, dlbad pair with the maximum joint LOD is printed if
the joint LOD exceeds its threshold and either the epista3I3 score exceeds its threshold or both loci have conditiona
LOD scores that exceed their threshold.

plot(out2.hk)

plot(out2.hk,chr=c(1,4))

In the plot of the results adcantwo , the epistasis LOD scores appear in the upper-left triatigéelower-right triangle
contains a LOD score comparing a 2-QTL versus the best 1-Qddeatthough the contents of the lower-right may be
changed with the argumelower . The color scale on the right indicates separate scalebdagfistasis and joint LOD
scores (on the left and right, respectively).

The functionrmax.scantwo returns the two-locus position with the maximum joint LODosg, and that with the
maximum epistatic LOD score.

max(out2.hk)

One may also uskantwo to perform permutation tests in order to obtain genome-Wwi@d® significance thresholds.
These may take days to complete, so we won'ttry it.

Finally, we consider the fit of multiple-QTL models. Gamtly, only the use of multiple imputation has been imple-
mented. We first create a QTL object using the functimkeqtl , with five QTLs at specified, fixed positions.

chr <- ¢(1, 1, 4, 6, 15)
pos <- ¢(50, 76, 30, 70, 20)
gtl <- makeqtl(hyper, chr, pos)

Finally, we use the functiofitqtl to fit a model with five QTLs, and allowing the QTLs on chromos®® and 15 to

interact.
my.formula <- y " Q1 + Q2 + Q3 + Q4 + Q5 + Q4:Q5
out.fitgtl <- fitgti(hyper$pheno[,1], qtl, formula=my.f ormula)

summary(out.fitgtl)

22. You may wish to clean up your workspace before we move tinetmext example.

Is()
rm(list=Is())

Example 2: Genetic mapping

R/qgtl includes some utilities for estimating genetics mapd checking marker orders. In this example, we describasbef
these utilities.

1. Get access to some sample data. This is simulated dataawth errors in marker order.

data(badorder)
summary(badorder)
plot(badorder)

2. Estimate recombination fractions between all pairs afkess, and plot them.

badorder <- est.rf(badorder)
plot.rf(badorder)

It appears that markers on chromosomes 2 and 3 have beeheslitc

Also note that, if we look more closely at the recombinati@tfions for chromosome 1, there seem to be some errors in
marker order.

plot.rf(badorder, chr=1)

3. Re-estimate the genetic map.
newmap <- est.map(badorder, verbose=TRUE)
plot.map(badorder, newmap)

This really shows the problems on chromosomes 2 and 3.

4. Fix the problems on chromosomes 2 and 3. First, we look mlosely at the recombination fractions for these chro-
mosoems

plot.ri(badorder, chr=2:3)

We need to move the sixth marker on chromosome 2 to chromo8graad the fifth marker on chromosome 3 to
chromosome 2. We need to figure out which markers these are.

badorder$geno[[2]]$map[6]
badorder$geno[[3]]$map][5]

Now we can use the functianovemarker to move the markers. It seems like they should be exactlycheit.

badorder <- movemarker(badorder, "D2M937", 3, 48)
badorder <- movemarker(badorder, "D3M160", 2, 28.8)

We need to re-estimate the recombination fractions aftetiimganarkers around.

badorder <- est.rf(badorder)
plot.rf(badorder, chr=2:3)

5. We can check the marker order on chromosome 1. The fundipte will consider all permutations of a sliding
window of adjacent markers. A quick-and-dirty approaclisdunt the number of obligate crossovers for each possible
order, to find the order with the minimum number of crossovAmnore refined, but also more computationally intensive,
approach is to re-estimate the genetic map for each ordeulaing LOD scores (log likelihood ratios) relative to the
initial order. (This may be done with allowance for the preseof genotyping errors.) The default approach is the
quick-and-dirty method.

The following checks the marker order on chromosome 1, penggroups of six contiguous markers.

ripl <- ripple(badorder, chr=1, window=6)
summary(ripl)

In the summary output, markers 9-11 clearly need to be flipJéttre also seems to be a problem with the order of
markers 4-6.

. The following performs the likelihood analysis, permgtgroups of three adjacent markers, assuming a genotyping e
rate of 1%. It's considerably slower, but more trustworthy.

rip2 <- ripple(badorder, chr=1, window=3, err=0.01, metho d="likelihood")
summary(rip2)

Note that positive LOD scores indicate that the alternadeionas a higher likelihood than the original.

. We can switch the order of markers 9-11 with the functiatitch.order (which works only for a single chromo-
some) and then re-assess the order. Note that the second ripd o corresponds to the improved order.

badorder.rev <- switch.order(badorder, 1, rip1[2,])
riplr <- ripple(badorder.rev, chr=1, window=6)
summary(riplr)

It looks like the marker pairs (5,6) and (1,2) should eachriverited. We usswitch.order again, and then check
marker order using the likelihood method.

badorder.rev <- switch.order(badorder.rev, 1, riplr[2,])

rip2r <- ripple(badorder.rev, chr=1, window=3, err=0.01)

summary(rip2r)

It's probably best to start out using the quick-and-dirtytihhogl, with a large window size, to find the marker order with

the minimum number of obligate crossovers, and then refiisottder using the slower, but more trustworthy, likelihood
method.

. We can look again at the recombination fractions for thimmosome.

badorder.rev <- est.rf(badorder.rev)
plot.rf(badorder.rev, 1)

Example 3: Listeria susceptibility

In order to demonstrate further uses of the funcioanone , we consider some data on susceptibility_tsteria monocyto-
genesin mice (Boyartchuk et al., Nature Genetics 27:259-260,1200hese data were kindly provided by Victor Boyartchuk
and Bill Dietrich.

1. Get access to the data and view some summaries.

data(listeria)
summary(listeria)
plot(listeria)
plot.missing(listeria)

Note that in the missing data plot, gray pixels are partialigsing genotypes (e.g., a genotype may be known to be either
AA or AB, but not which).

The phenotype here is the survival time of a mouse (in hootl\ing infection withListeria monocytogenes. Individ-
uals with a survival time of 264 hours are those that recal/&mm the infection.
. We'll take the log phenotype and add it to the phenotypa.dat

y <- log(listeria$pheno[,1])
listeria$pheno <- cbind(listeria$pheno, logSurv=y)
plot(listeria)

. Estimate pairwise recombination fractions.

listeria <- est.rf(listeria)
plot.rf(listeria)
plot.rf(listeria,c(5,13))

4. Re-estimate the genetic map.

newmap <- est.map(listeria)
plot.map(listeria, newmap)

5. Investigate genotyping errors.

listeria <- calc.genoprob(listeria,error.prob=0.01)

listeria <- calc.errorlod(listeria,error.prob=0.01) pl ot.errorlod(listeria)
top.errorlod(listeria)

plot.errorlod(listeria,c(5,13))

plot.geno(listeria, chr=13, ind=61:70, min.sep=2)

Note that in the plot given bplot.geno , for an intercross, white = AA, gray = AB, black = BB, green = AAAB,
and orange = AB or BB.

6. Now on to the QTL mapping. Recall that the phenotype tistidbn shows a clear departure from the standard assump-
tions for interval mapping; 30% of the mice survived londwart 264 hours, and were considered recovered from the
infection.

One approach for these data is to use the two-part modeldsmesi by Boyartchuk et al. (2001). In this model, a
mouse with genotypg has probabilityp, of surviving the infection. If it does die, its log survivairte is assumed to
be distributed normal(,,c%). Analysis proceeds by maximum likelihood via an EM algurit Three LOD scores are
calculated. LODy, v) is for the test of the null hypothesig = p andu, = . LOD(p) is for the test of the hypothesis
pg = p but they are allowed to vary. LODY) is for the test of the hypothesig, = p but thep are allowed to vary.

The functionscanone will fit the above model when the argumembdel="2part" . One must also specify the
argumentpper , which indicates whether the spike in the phenotype is themam phenotype (as it is with this phe-
notype; takaupper=TRUE) or the minimum phenotype (takgpper=FALSE). For this model, only the EM algorithm
has been implemented so far.

listeria <- calc.genoprob(listeria, step=2)
out.2p <- scanone(listeria, pheno.col=2, model="2part", upper=TRUE)

Note that, because this model has three extra parameterapgropriate LOD threshold is higher—around 4.5 rather
than 3.5. The three different LOD curves are in columns 3-th@butput. The functioplot.scanone assumes the
LOD score is in the third column, and so we plot these extra l90@res by removing the earlier columns.

summary(out.2p)

summary(out.2p, 4.5)

plot(out.2p)

plot(out.2p, out.2p[,-3], out.2p[,-(3:4)], chr=c(1,5,1 3,15),
Ity=1, col=c("black", "red", "blue"))

Note that the locus on chromosome 1 shows effect mostly om#an time-to-death, conditional on death; the locus on
chromosome 5 shows effect mostly on the probability of siadyiand the loci on chromosomes 13 and 15 shows some
effect on each.

7. Permutation tests may be performed as before. The outifittave three columns, corresponding to the three LOD
scores.

operm.2p <- scanone(listeria, model="2part", pheno.col= 2,
upper=TRUE, n.perm=3)
apply(operm.2p, 2, quantile, 0.95)

8. Alternatively, one may perform separate analyses ofdgaulrvival time, conditional on death, and the binary plgm®
survival/death. First we set up these phenotypes.

Z <- y < x <- listeria$pheno[,2]

mx <- max(x, na.rm=TRUE)

yllis.na(x) & x==mx] <- NA

z[lis.na(x) & x<mx] <- 0

z[lis.na(x) & x==mx] <- 1

listeria$pheno <- chind(listeria$pheno, logSurv2=y, bin ary=z)
plot(listeria)

We use standard interval mapping for the log survival timediional on death; the results are slightly different from
LOD(p).

out.mu <- scanone(listeria, pheno.col=3)

plot(out.mu, out.2p[,-(3:4)], chr=c(1,5,13,15))

We can usescanone with model="binary" to analyze the binary phenotype. Again, the results are sligjt
different from LODg).

out.p <- scanone(listeria, pheno.col=4, model="binary")
plot(out.p, out.2p[,-3], chr=c(1,5,13,15))

. A further approach is to use a non-parametric form of iretlemapping. R/qgtl uses an extension of the Kruskal-Wallis

test statistic. Usscanone with model="np" . In this case, the argumemtethod is ignored; the analysis method
is much like Haley-Knott regression. If the arguméas.random=TRUE |, tied phenotypes are ranked at random. If
ties.random=FALSE |, tied phenotypes are given the average rank and a correéstamplied to the LOD score.

out.npl <- scanone(listeria, model="np", ties.random=TR UE)
out.np2 <- scanone(listeria, model="np", ties.random=FA LSE)
plot(out.np1, out.np2)
plot(out.2p, out.npl, out.np2, chr=c(1,5,13,15), Ity=1,

col=c("black", "blue", "red"))

Note that the significance threshold for the non-paramegitome scan will be quite a bit smaller than that for the
two-part model. The two approaches give basically the samselts. Randomizing ties for the non-parametric ap-
proach can give quite variable results in the case of a gnemtoer of ties, and so we would recommend the use of
ties.random=FALSE in this case.

Example4: Covariatesin QTL mapping

As a further example, we illustrate the use of covariatesTih @apping. We consider some simulated backcross data.

1.

Get access to the data.

data(fake.bc)
summary(fake.bc)
plot(fake.bc)

. Perform genome scans for the two phenotypes without iziear

fake.bc <- calc.genoprob(fake.bc, step=2.5)
outl.nocovar <- scanone(fake.bc, pheno.col=1)
out2.nocovar <- scanone(fake.bc, pheno.col=2)

. Perform genome scans with age as an additive covariate

ac <- fake.bc$pheno[,"age"]
outl.covar.a <- scanone(fake.bc, pheno.col=1, addcov=ac)
out2.covar.a <- scanone(fake.bc, pheno.col=2, addcov=ac)

. Perform genome scans with age as an additive covariateesxrab a covariate interacting with QTL genotype.

ac <- fake.bc$pheno[,c("sex","age")]

ic <- fake.bc$pheno[,"sex"]

outl.covar.b <- scanone(fake.bc, pheno.col=1, addcov=ac , intcov=ic)
out2.covar.b <- scanone(fake.bc, pheno.col=2, addcov=ac , intcov=ic)

. Get some summaries.

summary(outl.nocovar, 3)
summary(outl.covar.a, 3)
summary(outl.covar.b, 3)

summary(out2.nocovar, 3)
summary(out2.covar.a, 3)
summary(out2.covar.b, 3)

10

6.

Make some plots.

plot(outl.nocovar, outl.covar.a, outl.covar.b, lty=1,
chr=c(2,5,10), col=c("black","blue","red"))

plot(out2.nocovar, out2.covar.a, out2.covar.b, Ity=1,
chr=c(2,5,10), col=c("black","blue","red"))

Internal data structure

Finally, let us briefly describe the rather complicated ddtacture that R/gtl uses for QTL mapping experiments. Wilisoe
rather dull, and will require a good deal of familiarity withe R (or S) language. The choice of data structure requoetks
balance between ease of programming and simplicity for fee imterface. The syntax for references to certain pietteo
internal data can become extremely complicated.

1.

Get access to some sample data.
data(fake.bc)

. First, the object has a “class,” which indicates that itresponds to data for an experimental cross, and gives the

cross type. By having claggoss , the functiongplot andsummary know to send the data fplot.cross and
summary.cross

class(fake.bc)

. Everycross object has two components, one containing the genotypeatiatgenetic maps and the other containing

the phenotype data.
names(fake.bc)

. The phenotype data is simply a matrix (more strictly a di@ae) with rows corresponding to individuals and columns

corresponding to phenotypes.
fake.bc$pheno

. The genotype data is a list with components corresportdingromosomes. Each chromosome has a name and a class.

The class for a chromosome is eitliat' or"X" , according to whether it is an autosome or the X chromosome.

names(fake.bc$geno)
sapply(fake.bc$geno, class)

. Each component @feno contains two componentdata (containing the marker genotype data) anap (containing

the positions of the markers, in cM).

names(fake.bc$geno[[3]])
fake.bc$geno|[3]]$data[1:5,]
fake.bc$genol[3]]$map

That's it for the raw data.

When one runsalc.genoprob , sim.geno , argmax.geno or calc.errorlod , the output is the input cross
object with the derived data attached to each componentfitenosomes) of thgeno component.

names(fake.bc$geno[[3]])

fake.bc <- calc.genoprob(fake.bc, step=10, err=0.01)
names(fake.bc$geno[[3]])

fake.bc <- sim.geno(fake.bc, step=10, n.draws=8, err=0.0 1)
names(fake.bc$genol[3]])

fake.bc <- argmax.geno(fake.bc, step=10, err=0.01)
names(fake.bc$geno[[3]])

fake.bc <- calc.errorlod(fake.bc, err=0.01)

names(fake.bc$genol[3]])

. Finally, when one runest.rf | a matrix containing the pairwise recombination fractiansl LOD scores is added to

the cross object.

names(fake.bc)
fake.bc <- est.rf(fake.bc)
names(fake.bc)

11

