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Abstract

This introduction to the R package sandwich is a (slightly) modified version of Zeileis
(2004a), published in the Journal of Statistical Software.

Data described by econometric models typically contains autocorrelation and/or het-
eroskedasticity of unknown form and for inference in such models it is essential to use covari-
ance matrix estimators that can consistently estimate the covariance of the model parameters.
Hence, suitable heteroskedasticity-consistent (HC) and heteroskedasticity and autocorrelation
consistent (HAC) estimators have been receiving attention in the econometric literature over
the last 20 years. To apply these estimators in practice, an implementation is needed that
preferably translates the conceptual properties of the underlying theoretical frameworks into
computational tools. In this paper, such an implementation in the package sandwich in the
R system for statistical computing is described and it is shown how the suggested functions
provide reusable components that build on readily existing functionality and how they can
be integrated easily into new inferential procedures or applications. The toolbox contained
in sandwich is extremely flexible and comprehensive, including specific functions for the most
important HC and HAC estimators from the econometric literature. Several real-world data
sets are used to illustrate how the functionality can be integrated into applications.

Keywords: covariance matrix estimators, heteroskedasticity, autocorrelation, estimating functions,
econometric computing, R.

1. Introduction

This paper combines two topics that play an important role in applied econometrics: computational
tools and robust covariance estimation.

Without the aid of statistical and econometric software modern data analysis would not be possi-
ble: hence, both practitioners and (applied) researchers rely on computational tools that should
preferably implement state-of-the-art methodology and be numerically reliable, easy to use, flexible
and extensible.

In many situations, economic data arises from time-series or cross-sectional studies which typically
exhibit some form of autocorrelation and/or heteroskedasticity. If the covariance structure were
known, it could be taken into account in a (parametric) model, but more often than not the
form of autocorrelation and heteroskedasticity is unknown. In such cases, model parameters can
typically still be estimated consistently using the usual estimating functions, but for valid inference
in such models a consistent covariance matrix estimate is essential. Over the last 20 years several
procedures for heteroskedasticity consistent (HC) and for heteroskedasticity and autocorrelation
consistent (HAC) covariance estimation have been suggested in the econometrics literature (White
1980; MacKinnon and White 1985; Newey and West 1987, 1994; Andrews 1991, among others)
and are now routinely used in econometric analyses.

Many statistical and econometric software packages implement various HC and HAC estimators
for certain inference procedures, so why is there a need for a paper about econometric computing
with HC and HAC estimators? Typically, only certain special cases of such estimators—and not
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the general framework they are taken from—are implemented in statistical and econometric soft-
ware packages and sometimes they are only available as options to certain inference functions. It
is desirable to improve on this for two reasons: First, the literature suggested conceptual frame-
works for HC and HAC estimation and it would only be natural to translate these conceptual
properties into computational tools that reflect the flexibility of the general framework. Second,
it is important, particularly for applied research, to have covariance matrices not only as options
to certain tests but as stand-alone functions which can be used as modular building blocks and
plugged into various inference procedures. This is becoming more and more relevant, because to-
day, as Cribari-Neto and Zarkos (2003) point out, applied researchers typically cannot wait until
a certain procedure becomes available in the software package of their choice but are often forced
to program new techniques themselves. Thus, just as suitable covariance estimators are routinely
plugged into formulas in theoretical work, programmers should be enabled to plug in implemen-
tations of such estimators in computational work. Hence, the aim of this paper is to present an
econometric computing approach to HC and HAC estimation that provides reusable components
that can be used as modular building blocks in implementing new inferential techniques and in
applications.
All functions described are available in the package sandwich implemented in the R system for
statistical computing (R Development Core Team 2004) which is currently not the most popular
environment for econometric computing but which is finding increasing attention among econo-
metricians (Cribari-Neto and Zarkos 1999; Racine and Hyndman 2002). Both R itself and the
sandwich package (as well as all other packages used in this paper) are available at no cost under
the terms of the general public licence (GPL) from the comprehensive R archive network (CRAN,
http://CRAN.R-project.org/). R has no built-in support for HC and HAC estimation and at
the time we started writing sandwich there was only one package that implements HC (but not
HAC) estimators (the car package Fox 2002) but which does not allow for as much flexibility as the
tools presented here. sandwich provides the functions vcovHC and vcovHAC implementing general
classes of HC and HAC estimators. The names of the functions are chosen to correspond to vcov,
R’s generic function for extracting covariance matrices from fitted model objects.
Below, we focus on the general linear regression model estimated by ordinary least squares (OLS),
which is typically fitted in R using the function lm from which the standard covariance matrix
(assuming spherical errors) can be extracted by vcov. Using the tools from sandwich, HC and
HAC covariances matrices can now be extracted from the same fitted models using vcovHC and
vcovHAC. Due to the object orientation of R, these functions are not only limited to the linear
regression model but can be easily extended to other models. The HAC estimators are already
available for generalized linear models (fitted by glm) and robust regression (fitted by rlm in
package MASS). Another important feature of R that is used repeatedly below is that functions
are first-level objects—i.e., functions can take functions as arguments and return functions—
which is particularly useful for defining certain procedures for data-driven computations such as
the definition of the structure of covariance matrices in HC estimation and weighting schemes for
HAC estimation.
The remainder of this paper is structured as follows: To fix notations, Section 2 describes the linear
regression model used and motivates the following sections. Section 3 gives brief literature reviews
and describes the conceptual frameworks for HC and HAC estimation respectively and then shows
how the conceptual properties are turned into computational tools in sandwich. Section 4 provides
some illustrations and applications of these tools before a summary is given in Section 5. More
details about the R code used are provided in an appendix.

2. The linear regression model

To fix notations, we consider the linear regression model

yi = x>i β + ui (i = 1, . . . , n), (1)

with dependent variable yi, k-dimensional regressor xi with coefficient vector β and error term ui.

http://CRAN.R-project.org/
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In the usual matrix notation comprising all n observations this can be formulated as y = Xβ + u.
In the general linear model, it is typically assumed that the errors have zero mean and variance
VAR[u] = Ω. Under suitable regularity conditions (see e.g., Greene 1993; White 2000), the co-
efficients β can be consistently estimated by OLS giving the well-known OLS estimator β̂ with
corresponding OLS residuals ûi:

β̂ =
(
X>X

)−1
X>y (2)

û = (In − H) u = (In − X
(
X>X

)−1
X>) u (3)

where In is the n-dimensional identity matrix and H is usually called hat matrix. The estimates
β̂ are unbiased and asymptotically normal (White 2000). Their covariance matrix Ψ is usually
denoted in one of the two following ways:

Ψ = VAR[β̂] =
(
X>X

)−1
X>ΩX

(
X>X

)−1
(4)

=
(

1
n

X>X

)−1 1
n

Φ
(

1
n

X>X

)−1

(5)

where Φ = n−1X>ΩX is essentially the covariance matrix of the scores or estimating functions
Vi(β) = xi(yi − x>i β). The estimating functions evaluated at the parameter estimates V̂i = Vi(β̂)
have then sum zero.
For inference in the linear regression model, it is essential to have a consistent estimator for
Ψ. What kind of estimator should be used for Ψ depends on the assumptions about Ω: In the
classical linear model independent and homoskedastic errors with variance σ2 are assumed yielding
Ω = σ2In and Ψ = σ2(X>X)−1 which can be consistently estimated by plugging in the usual OLS
estimator σ̂2 = (n − k)−1

∑n
i=1 û2

i . But if the independence and/or homoskedasticity assumption
is violated, inference based on this estimator Ψ̂const = σ̂(X>X)−1 will be biased. HC and HAC
estimators tackle this problem by plugging an estimate Ω̂ or Φ̂ into (4) or (5) respectively which are
consistent in the presence of heteroskedasticity and autocorrelation respectively. Such estimators
and their implementation are described in the following section.

3. Estimating the covariance matrix Ψ

3.1. Dealing with heteroskedasticity

If it is assumed that the errors ui are independent but potentially heteroskedastic—a situation
which typically arises with cross-sectional data—their covariance matrix Ω is diagonal but has
nonconstant diagonal elements. Therefore, various HC estimators Ψ̂HC have been suggested which
are constructed by plugging an estimate of type Ω̂ = diag(ω1, . . . , ωn) into Equation (4). These
estimators differ in their choice of the ωi, an overview of the most important cases is given in the
following:

const : ωi = σ̂2

HC0 : ωi = û2
i

HC1 : ωi =
n

n − k
û2

i

HC2 : ωi =
û2

i

1 − hi

HC3 : ωi =
û2

i

(1 − hi)2

HC4 : ωi =
û2

i

(1 − hi)δi
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where hi = Hii are the diagonal elements of the hat matrix, h̄ is their mean and δi = min{4, hi/h̄}.
The first equation above yields the standard estimator Ψ̂const for homoskedastic errors. All others
produce different kinds of HC estimators. The estimator HC0 was suggested in the econometrics
literature by White (1980) and is justified by asymptotic arguments. The estimators HC1, HC2 and
HC3 were suggested by MacKinnon and White (1985) to improve the performance in small samples.
A more extensive study of small sample behaviour was carried out by Long and Ervin (2000) which
arrive at the conclusion that HC3 provides the best performance in small samples as it gives less
weight to influential observations. Recently, Cribari-Neto (2004) suggested the estimator HC4 to
further improve small sample performance, especially in the presence of influential observations.
All of these HC estimators Ψ̂HC have in common that they are determined by ω = (ω1, . . . , ωn)>

which in turn can be computed based on the residuals û, the diagonal of the hat matrix h and the
degrees of freedom n−k. To translate these conceptual properties of this class of HC estimators into
a computational tool, a function is required which takes a fitted regression model and the diagonal
elements ω as inputs and returns the corresponding Ψ̂HC. In sandwich, this is implemented in the
function vcovHC which takes the following arguments:

vcovHC(lmobj, omega = NULL, type = "HC3", ...)

The first argument lmobj is an object as returned by lm, R’s standard function for fitting linear re-
gression models. The argument omega can either be the vector ω or a function for data-driven com-
putation of ω based on the residuals û, the diagonal of the hat matrix h and the residual degrees of
freedom n−k. Thus, it has to be of the form omega(residuals, diaghat, df): e.g., for comput-
ing HC3 omega is set to function(residuals, diaghat, df) residuals^2/(1 - diaghat)^2.
As a convenience option, a type argument can be set to "const", "HC0" (or equivalently "HC"),
"HC1", "HC2", "HC3" (the default) or "HC4" and then vcovHC uses the corresponding omega func-
tion. As soon as omega is specified by the user, type is ignored.
In summary, by specfying ω—either as a vector or as a function—vcovHC can compute arbitrary
HC covariance matrix estimates from the class of estimators outlined above. In Section 4, it will
be illustrated how this function can be used as a building block when doing inference in linear
regression models.

3.2. Dealing with autocorrelation

If the error terms ui are not independent, Ω is not diagonal and without further specification of
a parametic model for the type of dependence it is typically burdensome to estimate Ω directly.
However, if the form of heteroskedasticity and autocorrelation is unknown, a solution to this
problem is to estimate Φ instead which is essentially the covariance matrix of the estimating
functions1. This is what HAC estimators do: Ψ̂HAC is computed by plugging an estimate Φ̂ into
Equation (5) with

Φ̂ =
1
n

n∑
i,j=1

w|i−j| V̂iV̂
>
j (6)

where w = (w0, . . . , wn−1)> is a vector of weights. An additional finite sample adjustment can be
applied by multiplication with n/(n− k). For many data structures, it is a reasonable assumption
that the autocorrelations should decrease with increasing lag ` = |i−j|—otherwise β can typically
not be estimated consistently by OLS—so that it is rather intuitive that the weights w` should
also decrease. Starting from White and Domowitz (1984) and Newey and West (1987), different
choices for the vector of weights w have been suggested in the econometrics literature which
have been placed by Andrews (1991) in a more general framework of choosing the weights by
kernel functions with automatic bandwidth selection. Andrews and Monahan (1992) show that

1Due to the use of estimating functions, this approach is not only feasible in linear models estimated by OLS, but
also in nonlinear models using other estimating functions such as maximum likelihood (ML), generalized methods
of moments (GMM) or Quasi-ML.



Achim Zeileis 5

the bias of the estimators can be reduced by prewhitening the estimating functions V̂i using a
vector autoregression (VAR) of order p and applying the estimator in Equation (6) to the VAR(p)
residuals subsequently. Lumley and Heagerty (1999) suggest an adaptive weighting scheme where
the weights are chosen based on the estimated autocorrelations of the residuals û.
All the estimators mentioned above are of the form (6), i.e., a weighted sum of lagged prod-
ucts of the estimating functions corresponding to a fitted regression model. Therefore, a natural
implementation for this class of HAC estimators is the following:

vcovHAC(lmobj, weights,
prewhite = FALSE, adjust = TRUE, sandwich = TRUE,
order.by, ar.method, data)

The most important arguments are again the fitted linear model2 lmobj—from which the esti-
mating functions V̂i can easily be extracted using the generic function estfun(lmobj)—and the
argument weights which specifys w. The latter can be either the vector w directly or a function
to compute it from lmobj.3 The argument prewhite specifies wether prewhitening should be used
or not4 and adjust determines wether a finite sample correction by multiplication with n/(n− k)
should be made or not. By setting sandwich it can be controlled wether the full sandwich estima-
tor Ψ̂HAC or only the “meat” Φ̂/n of the sandwich should be returned. The remaining arguments
are a bit more technical: order.by specifies by which variable the data should be ordered (the
default is that they are already ordered, as is natural with time series data), which ar.method
should be used for fitting the VAR(p) model (the default is OLS) and data provides a data frame
from which order.by can be taken (the default is the environment from which vcovHAC is called).5

As already pointed out above, all that is required for specifying an estimator Ψ̂HAC is the appro-
priate vector of weights (or a function for data-driven computation of the weights). For the most
important estimators from the literature mentioned above there are functions for computing the
corresponding weights readily available in sandwich. They are all of the form weights(lmobj,
order.by, prewhite, ar.method, data), i.e., functions that compute the weights depending on
the fitted model object lmobj and the arguments order.by, prewhite, data which are only needed
for ordering and prewhitening. The function weightsAndrews implements the class of weights of
Andrews (1991) and weightsLumley implements the class of weights of Lumley and Heagerty
(1999). Both functions have convenience interfaces: kernHAC calls vcovHAC with weightsAndrews
(and different defaults for some parameters) and weave calls vcovHAC with weightsLumley. Fi-
nally, a third convenience interface to vcovHAC is available for computing the estimator(s) of Newey
and West (1987, 1994).

• Newey and West (1987) suggested to use linearly decaying weights

w` = 1 − `

L + 1
(7)

where L is the maximum lag, all other weights are zero. This is implemented in the function
NeweyWest(lmobj, lag = NULL, ...) where lag specifies L and ... are (here, and in
the following) further arguments passed to other functions, detailed information is always
available in the reference manual. If lag is set to NULL (the default) the non-parametric
bandwidth selection procedure of Newey and West (1994) is used. This is also available in a
stand-alone function bwNeweyWest, see also below.

2Note, that not only HAC estimators for fitted linear models can be computed with vcovHAC. If there is an estfun

method for extracting the estimating functions from the fitted model supplied, the estimate Φ̂ can be computed for
arbitrary fitted models. To compute the full sandwich Ψ̂HAC, the summary method has to have a slot cov.unscaled
in addition.

3If weights is a vector with less than n elements, the remaining weights are assumed to be zero.
4The order p is set to as.integer(prewhite), hence both prewhite = 1 and prewhite = TRUE lead to a VAR(1)

model, but also prewhite = 2 is possible.
5More detailed technical documentation of these and other arguments of the functions described are available

in the reference manual included in sandwich.
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Figure 1: Kernel functions for kernel-based HAC estimation

• Andrews (1991) placed this and other estimators in a more general class of kernel-based HAC
estimators with weights of the form w` = K(`/B) where K(·) is a kernel function and B
the bandwidth parameter used. The kernel functions considered are the truncated, Bartlett,
Parzen, Tukey-Hanning and quadratic spectral kernel which are depicted in Figure 1. The
Bartlett kernel leads to the weights used by Newey and West (1987) in Equation (7) when
the bandwidth B is set to L+1. The kernel recommended by Andrews (1991) and probably
most used in the literature is the quadratic spectral kernel which leads to the following
weights:

w` =
3
z2

(
sin(z)

z
− cos(z)

)
, (8)

where z = 6π/5 · `/B. The definitions for the remaining kernels can be found in An-
drews (1991). All kernel weights mentioned above are available in weightsAndrews(lmobj,
kernel, bw, ...) where kernel specifies one of the kernels via a character string ("Truncated",
"Bartlett", "Parzen", "Tukey-Hanning" or "Quadratic Spectral") and bw the band-
width either as a scalar or as a function. The automatic bandwidth selection described
in Andrews (1991) via AR(1) or ARMA(1,1) approximations is implemented in a func-
tion bwAndrews which is set as the default in weightsAndrews. For the Bartlett, Parzen
and quadratic spectral kernels, Newey and West (1994) suggested a different nonparametric
bandwidth selection procedure, which is implemented in bwNeweyWest and which can also
be passed to weightsAndrews. As the flexibility of this conceptual framework of estima-
tors leads to a lot of knobs and switches in the computational tools, a convenience function
kernHAC for kernel-based HAC estimation has been added to sandwich that calls vcovHAC
based on weightsAndrews and bwAndrews with defaults as motivated by Andrews (1991)
and Andrews and Monahan (1992): by default, it computes a quadratic spectral kernel HAC
estimator with VAR(1) prewhitening and automatic bandwidth selection based on an AR(1)
approximation. But of course, all the options described above can also be changed by the
user when calling kernHAC.

• Lumley and Heagerty (1999) suggested a different approach for specifying the weights in (6)
based on some estimate %̂` of the autocorrelation of the residuals ûi at lag 0 = 1, . . . , n − 1.
They suggest either to use truncated weights w` = I{n %̂2

` > C} (where I(·) is the indicator
function) or smoothed weights w` = min{1, C n %̂2

`}, where for both a suitable constant C
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has to be specified. Lumley and Heagerty (1999) suggest using a default of C = 4 and
C = 1 for the truncated and smoothed weights respectively. Note, that the truncated
weights are equivalent to the truncated kernel from the framework of Andrews (1991) but
using a different method for computing the truncation lag. To ensure that the weights |w`|
are decreasing, the autocorrelations have to be decreasing for increasing lag ` which can be
achieved by using isotonic regression methods. In sandwich, these two weighting schemes
are implemented in a function weightsLumley with a convenience interface weave (which
stands for weighted empirical adaptive variance estimators) which again sets up the weights
and then calls vcovHAC. Its most important arguments are weave(lmobj, method, C, ...)
where method can be either "truncate" or "smooth" and C is by default 4 or 1 respectively.

To sum up, vcovHAC provides a simple yet flexible interface for general HAC estimation as defined
in Equation (6). Arbitrary weights can be supplied either as vectors or functions for data-driven
computation of the weights. As the latter might easily become rather complex, in particular due
to the automatic choice of bandwidth or lag truncation parameters, three strategies suggested in
the literature are readily available in sandwich: First, the Bartlett kernel weights suggested by
Newey and West (1987, 1994) are used in NeweyWest which by default uses the bandwidth selection
function bwNeweyWest. Second, the weighting scheme introduced by Andrews (1991) for kernel-
based HAC estimation with automatic bandwidth selection is implemented in weightsAndrews
and bwAndrews with corresponding convenience interface kernHAC. Third, the weighted empirical
adaptive variance estimation scheme suggested by Lumley and Heagerty (1999) is available in
weightsLumley with convenience interface weave.
It is illustrated in the following section how these functions can be easily used in applications.

4. Applications and illustrations

In econometric analyses, the practitioner is only seldom interested in the covariance matrix Ψ̂
(or Ω̂ or Φ̂) per se, but mainly wants to compute them to use them for inferential procedures.
Therefore, it is important that the functions vcovHC and vcovHAC described in the previous section
can be easily supplied to other procedures such that the user does not necessarily have to compute
the variances in advance.
A typical field of application for HC and HAC covariances are partial t or z tests for assessing
whether a parameter βj is significantly different from zero. Exploiting the (asymptotic) normality

of the estimates, these tests are based on the t ratio β̂j/
√

Ψ̂jj and either use the asymptotic
normal distribution or the t distribution with n − k degrees of freedom for computing p values
(White 2000). This procedure is available in the R package lmtest (Zeileis and Hothorn 2002) in
the generic function coeftest which has a default method applicable to fitted "lm" objects.

coeftest(lmobj, vcov = NULL, df = NULL, ...)

where vcov specifies the covariances either as a matrix (corresponding to the covariance matrix
estimate) or as a function computing it from lmobj (corresponding to the covariance matrix
estimator). By default, it uses the vcov method which computes Ψ̂const assuming spherical errors.
The df argument determines the degrees of freedom: if df is finite and positive, a t distribution
with df degrees of freedom is used, otherwise a normal approximation is employed. The default
is to set df to n − k.
Inference based on HC and HAC estimators is illustrated in the following using three real-world
data sets: testing coefficients in two models from Greene (1993) and a structural change problem
from Bai and Perron (2003).
To make the results exactly reproducible for the reader, the commands for the inferential proce-
dures is given along with their output within the text. A full list of commands, including those
which produce the figures in the text, are provided (without output) in the appendix along with
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the versions of R and the packages used. Before we start with the examples, the sandwich and
lmtest package have to be loaded:

> library(sandwich)

> library(lmtest)

4.1. Testing coefficients in cross-sectional data

A quadratic regression model for per capita expenditures on public schools explained by per
capita income in the United States in 1979 has been analyzed by Greene (1993) and re-analyzed
in Cribari-Neto (2004). The corresponding cross-sectional data for the 51 US states is given in
Table 14.1 in Greene (1993) and available in sandwich in the data frame PublicSchools which
can be loaded by:

> data(PublicSchools)

> ps <- na.omit(PublicSchools)

> ps$Income <- ps$Income * 1e-04

where the second line omits a missing value (NA) in Wisconsin and assigns the result to a new
data frame ps and the third line transforms the income to be in USD 10, 000. The quadratic
regression can now easily be fit using the function lm which fits linear regression models specified
by a symbolic formula via OLS.

> fm.ps <- lm(Expenditure ~ Income + I(Income^2), data = ps)

The fitted "lm" object fm.ps now contains the regression of the variable Expenditure on the
variable Income and its sqared value, both variables are taken from the data frame ps. The
question in this data set is whether the quadratic term is really needed, i.e., whether the coefficient
of I(Income^2) is significantly different from zero. The partial quasi-t tests (or z tests) for all
coefficients can be computed using the function coeftest. Greene (1993) assesses the significance
using the HC0 estimator of White (1980).

> coeftest(fm.ps, df = Inf, vcov = vcovHC(fm.ps, type = "HC0"))

z test of coefficients of "lm" object ’fm.ps’:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 832.91 460.89 1.8072 0.07073 .
Income -1834.20 1243.04 -1.4756 0.14006
I(Income^2) 1587.04 829.99 1.9121 0.05586 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The vcov argument specifies the covariance matrix as a matrix (as opposed to a function) which is
returned by vcovHC(fm.ps, type = "HC0"). As df is set to infinity (Inf) a normal approximation
is used for computing the p values which seem to suggest that the quadratic term might be weakly
significant. In his analysis, Cribari-Neto (2004) uses his HC4 estimator (among others) giving the
following result:

> coeftest(fm.ps, df = Inf, vcov = vcovHC(fm.ps, type = "HC4"))

z test of coefficients of "lm" object ’fm.ps’:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 832.91 3008.01 0.2769 0.7819
Income -1834.20 8183.19 -0.2241 0.8226
I(Income^2) 1587.04 5488.93 0.2891 0.7725
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The quadratic term is clearly non-significant. The reason for this result is depicted in Figure 2
which shows the data along with the fitted linear and quadratic model—the latter being obviously
heavily influenced by a single outlier: Alaska. Thus, the improved performance of the HC4 as
compared to the HC0 estimator is due to the correction for high leverage points.
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Figure 2: Expenditure on public schools and income with fitted models

4.2. Testing coefficients in time-series data

Greene (1993) also anayzes a time-series regression model based on robust covariance matrix
estimates: his Table 15.1 provides data on the nominal gross national product (GNP), nominal
gross private domestic investment, a price index and an interest rate which is used to formulate a
model that explains real investment by real GNP and real interest. The corresponding transformed
variables RealInv, RealGNP and RealInt are stored in the data frame Investment in sandwich
which can be loaded by:

> data(Investment)

Subsequently, the fitted linear regression model is computed by:

> fm.inv <- lm(RealInv ~ RealGNP + RealInt, data = Investment)

and the significance of the coefficients can again be assessed by partial z tests using coeftest.
Greene (1993) uses the estimator of Newey and West (1987) without prewhitening and with lag
L = 4 for this purpose which is here passed as a matrix (as opposed to a function) to coeftest.

> coeftest(fm.inv, df = Inf, vcov = NeweyWest(fm.inv, lag = 4,

+ prewhite = FALSE))

z test of coefficients of "lm" object ’fm.inv’:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -12.533601 18.958298 -0.6611 0.5085
RealGNP 0.169136 0.016751 10.0972 <2e-16 ***
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RealInt -1.001438 3.342375 -0.2996 0.7645
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

If alternatively the automatic bandwidth selection procedure of Newey and West (1994) with
prewhitening should be used, this can be passed as a function to coeftest.

> coeftest(fm.inv, df = Inf, vcov = NeweyWest)

z test of coefficients of "lm" object ’fm.inv’:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -12.533601 24.374177 -0.5142 0.6071
RealGNP 0.169136 0.023586 7.1709 7.449e-13 ***
RealInt -1.001438 3.639935 -0.2751 0.7832
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

For illustration purposes, we show how a new function implementing a particular HAC estimator
can be easily set up using the tools provided by sandwich. This is particularly helpful if the same
estimator is to be applied several times in the course of an analysis. Suppose, we want to use a
Parzen kernel with VAR(2) prewhitening, no finite sample adjustment and automatic bandwidth
selection according to Newey and West (1994). First, we set up the function parzenHAC and then
pass this function to coeftest.

> parzenHAC <- function(x, ...) kernHAC(x, kernel = "Parzen", prewhite = 2,

+ adjust = FALSE, bw = bwNeweyWest, ...)

> coeftest(fm.inv, df = Inf, vcov = parzenHAC)

z test of coefficients of "lm" object ’fm.inv’:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -12.533601 24.663944 -0.5082 0.6113
RealGNP 0.169136 0.020835 8.1181 4.737e-16 ***
RealInt -1.001438 3.947469 -0.2537 0.7997
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The three estimators leads to slightly different standard errors, but all tests agree that real GNP
has a highly significant influence while the real interest rate has not. The data along with the
fitted regression are depicted in Figure 3.

4.3. Testing and dating structural changes in the presence of
heteroskedasticity and autocorrelation

To illustrate that the functionality provided by the covariance estimators implemented in sandwich
cannot only be used in simple settings, such as partial quasi-t tests, but also for more complicated
tasks, we employ the real interest time series analyzed by Bai and Perron (2003). This series
contains changes in the mean (see Figure 4, right panel) which Bai and Perron (2003) detect us-
ing several structural change tests based on F statistics and date using a dynamic programming
algorithm. As the visualization suggests, this series exhibits both heteroskedasticity and auto-
correlation, hence Bai and Perron (2003) use a quadratic spectral kernel HAC estimator in their
analysis. Here, we use the same dating procedure but assess the significance using an OLS-based
CUSUM test (Ploberger and Krämer 1992) based on the same HAC estimator. The data are avail-
able in the package strucchange as the quarterly time series RealInt containing the US ex-post
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Figure 3: Investment equation data with fitted model

real interest rate from 1961(1) to 1986(3) and they are analyzed by a simple regression on the
mean.
Under the assumptions in the classical linear model with spherical errors, the test statistic of the
OLS-based CUSUM test is

sup
j=1,...,n

∣∣∣∣∣ 1√
n σ̂2

j∑
i=1

ûi

∣∣∣∣∣ . (9)

If autocorrelation and heteroskedasticity are present in the data, a robust variance estimator
should be used: if xi is equal to unity, this can simply be achieved by replacing σ̂2 with Φ̂ or
nΨ̂ respectively. Here, we use the quadratic spectral kernel HAC estimator of Andrews (1991)
with VAR(1) prewhitening and automatic bandwidth selection based on an AR(1) approximation
as implemented in the function kernHAC. The p values for the OLS-based CUSUM test can be
computed from the distribution of the supremum of a Brownian bridge (see e.g., Ploberger and
Krämer 1992). This and other methods for testing, dating and monitoring structural changes
are implemented in the R package strucchange (Zeileis, Leisch, Hornik, and Kleiber 2002) which
contains the function gefp for fitting and assessing fluctuation processes including OLS-based
CUSUM processes (see Zeileis 2004b, for more details).
After loading the package and the data,

> library(strucchange)

> data(RealInt)

the command

> ocus <- gefp(RealInt ~ 1, fit = lm, vcov = kernHAC)

fits the OLS-based CUSUM process for a regression on the mean (RealInt ~ 1), using the function
lm and estimating the variance using the function kernHAC. The fitted OLS-based CUSUM process
can then be visualized together with its 5% critical value (horizontal lines) by plot(scus) which
leads to a similar plot as in the left panel of Figure 4 (see the appendix for more details). As the
process crosses its boundary, there is a significant change in the mean, while the clear peak in the
process conveys that there is at least one strong break in the early 1980s. A formal significance
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test can also be carried out by sctest(ocus) which leads to a highly significant p value of 0.0082.
Similarly, the same quadratic spectral kernel HAC estimator could also be used for computing and
visualizing the supF test of Andrews (1993), the code is provided in the appendix.
Finally, the breakpoints in this model along with their confidence intervals can be computed by:

> bp <- breakpoints(RealInt ~ 1)

> confint(bp, vcov = kernHAC)

Confidence intervals for breakpoints
of optimal 3-segment partition:

Call:
confint.breakpointsfull(object = bp, vcov = kernHAC)

Breakpoints at observation number:
2.5 % breakpoints 97.5 %

1 37 47 48
2 77 79 81

Corresponding to breakdates:
2.5 % breakpoints 97.5 %

1 1970(1) 1972(3) 1972(4)
2 1980(1) 1980(3) 1981(1)

The dating algorithm breakpoints implements the procedure described in Bai and Perron (2003)
and estimates the timing of the structural changes by OLS. Therefore, in this step no covariance
matrix estimate is required, but for computing the confidence intervals using a consistent covari-
ance matrix estimator is again essential. The confint method for computing confidence intervals
takes again a vcov argument which has to be a function (and not a matrix) because it has to be
applied to several segments of the data. By default, it computes the breakpoints for the minimum
BIC partition which gives in this case two breaks.6 The fitted three-segment model along with
the breakpoints and their confidence intervals is depicted in the right panel of Figure 4.
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Figure 4: OLS-based CUSUM test (left) and fitted model (right) for real interest data

6By choosing the number of breakpoints with sequential tests and not the BIC, Bai and Perron (2003) arrive
at a model with an additional breakpoint which has rather wide confidence intervals (see also Zeileis and Kleiber
2004)
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5. Summary

This paper briefly reviews a class of heteroskedasticity-consistent (HC) and a class of heteroskedas-
ticity and autocorrelation consistent (HAC) covariance matrix estimators suggested in the econo-
metric literature over the last 20 years and introduces unified computational tools that reflect
the flexibility and the conceptual ideas of the underlying theoretical frameworks. Based on these
general tools, a number of special cases of HC and HAC estimators is provided including the
most popular in applied econometric research. All the functions suggested are implemented in the
package sandwich in the R system for statistical computing and designed in such a way that they
build on readily available model fitting functions and provide building blocks that can be easily
integrated into other programs or applications. To achieve this flexibility, the object orientation
mechanism of R and the fact that functions are first-level objects are of prime importance.
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A. R code

The packages sandwich, lmtest and strucchange are required for the applications in this paper.
Furthermore, the packages depend on zoo. For the computations in this paper R 2.0.1 and sandwich
1.0–0, lmtest 0.9–11, strucchange 1.2–8 and zoo 0.9–1 have been used. R itself and all packages
used are available from CRAN at http://CRAN.R-project.org/.
To make the packages available for the examples the following commands are necessary:

library(sandwich)
library(lmtest)
library(strucchange)

A.1. Testing coefficients in cross-sectional data

Load public schools data, omit NA in Wisconsin and scale income:

data(PublicSchools)
ps <- na.omit(PublicSchools)
ps$Income <- ps$Income * 1e-04

Fit quadratic regression model:

fm.ps <- lm(Expenditure ~ Income + I(Income^2), data = ps)

Compare standard errors:

sqrt(diag(vcov(fm.ps)))
sqrt(diag(vcovHC(fm.ps, type = "const")))
sqrt(diag(vcovHC(fm.ps, type = "HC0")))
sqrt(diag(vcovHC(fm.ps, type = "HC3")))
sqrt(diag(vcovHC(fm.ps, type = "HC4")))

Test coefficient of quadratic term:

coeftest(fm.ps, df = Inf, vcov = vcovHC(fm.ps, type = "HC0"))
coeftest(fm.ps, df = Inf, vcov = vcovHC(fm.ps, type = "HC4"))

Visualization:

plot(Expenditure ~ Income, data = ps,
xlab = "per capita income",
ylab = "per capita spending on public schools")

inc <- seq(0.5, 1.2, by = 0.001)
lines(inc, predict(fm.ps, data.frame(Income = inc)), col = 4, lty = 2)
fm.ps2 <- lm(Expenditure ~ Income, data = ps)
abline(fm.ps2, col = 4)
text(ps[2,2], ps[2,1], rownames(ps)[2], pos = 2)

A.2. Testing coefficients in time-series data

Load investment equation data:

data(Investment)

Fit regression model:

http://CRAN.R-project.org/


16 Econometric Computing with HC and HAC Covariance Matrix Estimators

fm.inv <- lm(RealInv ~ RealGNP + RealInt, data = Investment)

Test coefficients using Newey-West HAC estimator with user-defined and data-driven bandwidth
and with Parzen kernel:

coeftest(fm.inv, df = Inf, vcov = NeweyWest(fm.inv, lag = 4, prewhite = FALSE))
coeftest(fm.inv, df = Inf, vcov = NeweyWest)

parzenHAC <- function(x, ...) kernHAC(x, kernel = "Parzen", prewhite = 2,
adjust = FALSE, bw = bwNeweyWest, ...)

coeftest(fm.inv, df = Inf, vcov = parzenHAC)

Time-series visualization:

plot(Investment[, "RealInv"], type = "b", pch = 19, ylab = "Real investment")
lines(ts(fitted(fm.inv), start = 1964), col = 4)

3-dimensional visualization:

library(scatterplot3d)
s3d <- scatterplot3d(Investment[,c(5,7,6)],
type = "b", angle = 65, scale.y = 1, pch = 16)

s3d$plane3d(fm.inv, lty.box = "solid", col = 4)

A.3. Testing and dating structural changes in the presence of
heteroskedasticity and autocorrelation

Load real interest series:

data(RealInt)

OLS-based CUSUM test with quadratic spectral kernel HAC estimate:

ocus <- gefp(RealInt ~ 1, fit = lm, vcov = kernHAC)
plot(ocus, aggregate = FALSE)
sctest(ocus)

supF test with quadratic spectral kernel HAC estimate:

fs <- Fstats(RealInt ~ 1, vcov = kernHAC)
plot(fs)
sctest(fs)

Breakpoint estimation and confidence intervals with quadratic spectral kernel HAC estimate:

bp <- breakpoints(RealInt ~ 1)
confint(bp, vcov = kernHAC)
plot(bp)

Visualization:

plot(RealInt, ylab = "Real interest rate")
lines(ts(fitted(bp), start = start(RealInt), freq = 4), col = 4)
lines(confint(bp, vcov = kernHAC))
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A.4. Integrating covariance matrix estimators in other functions

If programmers want to allow for the same flexibility regarding the specification of covariance
matrices in their own functions as illustrated in coeftest, only a few simple additions have to
be made which are illustrated in the following. Say, a function foo(lmobj, vcov = NULL, ...)
wants to compute some quantity involving the standard errors associated with the "lm" object
lmobj. Then, vcov should use by default the standard vcov method for "lm" objects, otherwise
vcov is assumed to be either a function returning the covariance matrix estimate or the estimate
itself. The following piece of code is sufficient for computing the standard errors.

if(is.null(vcov)) {
se <- vcov(lmobj)

} else {
if (is.function(vcov))
se <- vcov(lmobj)

else
se <- vcov

}
se <- sqrt(diag(se))

In the first step the default method is called: note, that R can automatically distinguish between
the variable vcov (which is NULL) and the generic function vcov (from the stats package which
dispatches to the "lm" method) that is called here. Otherwise, it is just distinguished between a
function or non-function. In the final step the square root of the diagonal elements is computed
and stored in the vector se which can subsequently used for further computation in foo().


	Introduction
	The linear regression model
	Estimating the covariance matrix
	Dealing with heteroskedasticity
	Dealing with autocorrelation

	Applications and illustrations
	Testing coefficients in cross-sectional data
	Testing coefficients in time-series data
	Testing and dating structural changes in the presence of heteroskedasticity and autocorrelation

	Summary
	R code
	Testing coefficients in cross-sectional data
	Testing coefficients in time-series data
	Testing and dating structural changes in the presence of heteroskedasticity and autocorrelation
	Integrating covariance matrix estimators in other functions


