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1 Introduction

This data set was presented first in Symons et al. (1983), analysed with reference to the
spatial nature of the data in Cressie and Read (1985), expanded in Cressie and Chan
(1989), and used in detail in Cressie (1991). It is for the 100 counties of North Carolina,
and includes counts of numbers of live births (also non-white live births) and numbers
of sudden infant deaths, for the 1974–1978 and 1979–1984 periods. In Cressie and
Read (1985), a listing of county neighbours based on shared boundaries (contiguity) is
given, and in Cressie and Chan (1989), and in Cressie (1991, pp. 386–389), a different
listing based on the criterion of distance between county seats, with a cutoff at 30
miles. The county seat location coordinates are given in miles in a local (unknown)
coordinate reference system. The data are also used to exemplify a range of functions
in theS-PLUS spatial statistics module user’s manual (Kaluzny et al., 1996).

2 Getting the data intoR

We will be using thespdeppackage, here version: spdep, version 0.3-10, 2005-03-08,
and themaptools package. The data from the sources refered to above is collected
in the nc.sids data set inspdep. But to map it, we also need access to data for the
county boundaries for North Carolina; this has been made available in themaptools
package in shapefile format1. These data are known to be geographical coordinates
(longitude-latitude in decimal degrees) and are assumed to use the NAD83 datum.

> library(spdep)

The shapefile format presupposes that you have three files with extensions*.shp ,
*.shx , and*.dbf , where the first contains the geometry data, the second the spatial
index, and the third the attribute data. They are required to have the same name apart
from the extension, and are read usingread.shape() . By default, this function reads
in the data in all three files, although it is only given the name of the file with the ge-
ometry. The imported object inR has classMap, and is a list with two components,
"Shapes" , which is a list of shapes, and"att.data" , which is a data frame with tab-
ular data, one row for each shape in"Shapes" . Here we will be using data previously
read from the shapefile, and stored in thenc.sids data set:

> data(nc.sids)

> plot(sidspolys, forcefill = FALSE)
> points(sidscents)

1These data are taken with permission from:http://sal.agecon.uiuc.edu/datasets/
sids.zip .
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We can examine the names of the columns of the data frame to see what it contains — in
fact some of the same columns that we will be examining below, and some others which
will be useful in cleaning the data set. We will similarly convert the geometry format
of theMapobject to that of apolylist object, which will be easier to handle. Finally,
we retreive the centroids of the county polygons to use as label points. Using the
plot() function for"polylist" objects frommaptools, we can display the polygon
boundaries and centroids, shown in Figure 1.

Figure 1: County boundaries and polygon centroids, North Carolina

It may be of interest to look at the structure of a polygon list member. This is made
up of a two-column matrix with polygon coordinates. In general, each sub-polygon
will have equal first and last coordinates to ensure closure, but this is not absolutely re-
quired. Rows in the coordinate matrix set toNArepresent breaks between sub-polygons,
and are respected by the underlyingR graphics functions. The attributes contain fur-
ther information about the polygon:pstart is a list with from and to components,
which are vectors of first and last rows in the matrix for each sub-polygon in the object
— there arenParts elements in bothfrom andto . RingDir andringDir should be
the same (but are not here,ringDir is correct, andRingDir is wrong!), and are com-
puted in two different ways to determine whether each of thenParts sub-polygons
runs clockwise or counter-clockwise. Counter-clockwise sub-polygons are “holes” in
the surrounding sub-polygon. Finally,bbox contains the bounding box of this object.
Its appearance is shown in Figure 2.

> round(t(sidspolys[[56]]), 3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] -75.783 -75.773 -75.545 -75.703 -75.741 -75.783 NA -75.891
[2,] 36.225 36.229 35.788 36.050 36.050 36.225 NA 35.631

[,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16]
[1,] -75.908 -76.021 -75.988 -75.818 -75.749 -75.729 -75.779 -75.891
[2,] 35.666 35.669 35.893 35.924 35.869 35.665 35.579 35.631

[,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24]
[1,] NA -75.491 -75.475 -75.521 -75.692 -75.749 -75.526 -75.457
[2,] NA 35.670 35.564 35.281 35.235 35.190 35.228 35.617

[,25] [,26]
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Figure 2: Plot of polygon 56 from the list of polygons.

[1,] -75.534 -75.491
[2,] 35.769 35.670
attr(,"after")
[1] NA NA NA
attr(,"plotOrder")
[1] 1 2 3
attr(,"pstart")
attr(,"pstart")$from
[1] 1 8 18

attr(,"pstart")$to
[1] 6 16 26

attr(,"bbox")
[1] -76.02121 35.18983 -75.45698 36.22926
attr(,"RingDir")
[1] 1 1 1
attr(,"nParts")
[1] 3
attr(,"ringDir")
[1] 1 1 1

> sidscents[56, ]

[1] -75.80982 35.73548

> plot(sidspolys[[56]], type = "l", asp = 1, axes = FALSE,
+ xlab = "", ylab = "")

We will now examine the data set reproduced from Cressie and collaborators, in-
cluded inspdep, and add the neighbour relationships used in Cressie and Chan (1989)
to the background map as a graph shown in Figure 3:

> plot(sidspolys, border = "grey", forcefill = FALSE)
> plot(ncCC89.nb, sidscents, add = TRUE, col = "blue")

Printing the neighbour object shows that it is a neighbour list object, with a very
sparse structure — if displayed as a matrix, only 3.94% of cells would be filled. Objects
of classnb contain a list as long as the number of counties; each component of the list
is a vector with the index numbers of the neighbours of the county in question, so that
the neighbours of the county withregion.id of "1825" can be retreived by matching
against the indices. More information can be obtained by usingsummary() on annb
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Figure 3: Overplotting shapefile boundaries with 30 mile neighbour relations as a
graph.

object. Finally, we associate a vector of names with the neighbour list, through the
row.names argument. The names should be unique, as with data frame row names.

> ncCC89.nb

Neighbour list object:
Number of regions: 100
Number of nonzero links: 394
Percentage nonzero weights: 3.94
Average number of links: 3.94
2 regions with no links:
2000 2099

> r.id <- attr(ncCC89.nb, "region.id")
> ncCC89.nb[[match("1825", r.id)]]

[1] 2 18 19

> r.id[ncCC89.nb[[match("1825", r.id)]]]

[1] 1827 1874 1880

The neighbour list object records neighbours by their order in relation to the list itself,
so the neighbours list for the county withregion.id "1825" are the second, eigh-
teenth, and nineteenth in the list. We can retreive their codes by looking them up in the
region.id attribute.

> nc.sids[card(ncCC89.nb) == 0, ]

CNTY.ID BIR74 SID74 NWBIR74 BIR79 SID79 NWBIR79 east north
Dare 2000 521 0 43 1059 1 73 482 145
Hyde 2099 338 0 134 427 0 169 446 110

x y lon lat L.id M.id
Dare 439.65 3975.36 -75.66893 35.92070 2 4
Hyde 379.42 3920.72 -76.32823 35.42260 2 4

We should also note that this neighbour criterion generates two counties with no neigh-
bours, Dare and Hyde, whose county seats were more than 30 miles from their nearest
neighbours. Thecard() function returns the cardinality of the neighbour set. We need
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to return to methods for handling no-neighbour objects later on. We will also show how
new neighbours lists may be constructed inR, and compare these with those from the
literature.

2.1 Probability mapping

Rather than review functions for measuring and modelling spatial dependence in the
spdeppackage, we will focus on probability mapping for disease rates data. Typically,
we have counts of the incidence of some disease by spatial unit, associated with counts
of populations at risk. The task is then to try to establish whether any spatial units seem
to be characterised by higher or lower counts of cases than might have been expected
in general terms (Bailey and Gatrell, 1995).

An early approach by Choynowski (1959), described by Cressie and Read (1985)
and Bailey and Gatrell (1995), assumes, given that the true rate for the spatial units is
small, that as the population at risk increases to infinity, the spatial unit case counts are
Poisson with mean value equal to the population at risk times the rate for the study area
as a whole. Choynowski’s approach folds the two tails of the measured probabilities
together, so that small values, for a chosenα, occur for spatial units with either unusu-
ally high or low rates. For this reason, the high and low counties are plotted separately
in Figure 4.

> ch <- choynowski(nc.sids$SID74, nc.sids$BIR74)

> plot(sidspolys, forcefill = FALSE)
> legend(c(-84, -81), c(33.9, 34.5), fill = grey(c(2, 5)/7),
+ legend = c("high", "low"), bty = "n", ncol = 2)
> plot(subset(sidspolys, ((ch$pmap < 0.05) & (ch$type))),
+ col = grey(5/7), add = TRUE, forcefill = FALSE)
> plot(subset(sidspolys, ((ch$pmap < 0.05) & (!ch$type))),
+ col = grey(2/7), add = TRUE, forcefill = FALSE)

Figure 4: Probability map of North Carolina counties, SIDS cases 1974–78,α = 0.05,
reproducing Cressie and Read (1985), Figure 1.

For more complicated thematic maps, it may be helpful to use ColorBrewer (http:
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//colorbrewer.org ) colour palettes. Here we will only use the grey sequential
palette, available inR in the RColorBrewer package (the colours are copied here to
avoid loading the package).

While thechoynowski() function only provides the probability map valyes re-
quired, theprobmap() function returns raw (crude) rates, expected counts (assuming
a constant rate across the study area), relative risks, and Poisson probability map values
calculated using the standard cumulative distribution functionppois() . This does not
fold the tails together, so that counties with lower observed counts than expected, based
on population size, have values in the lower tail, and those with higher observed counts
than expected have values in the upper tail, as Figure 5 shows.
> pmap <- probmap(nc.sids$SID74, nc.sids$BIR74)
> brks <- c(0, 0.001, 0.01, 0.025, 0.05, 0.95, 0.975, 0.99,
+ 0.999, 1)
> cols <- c("#FFFFFF", "#F0F0F0", "#D9D9D9", "#BDBDBD",
+ "#969696", "#737373", "#525252", "#252525", "#000000")

> plot(sidspolys, col = cols[findInterval(pmap$pmap, brks)],
+ forcefill = FALSE)
> legend(c(-84, -81), c(33.9, 34.5), fill = cols, legend = leglabs(brks),
+ bty = "n", ncol = 2)

Figure 5: Probability map of North Carolina counties, SIDS cases 1974–78, reproduc-
ing Kaluzny et al. (1996), p. 57, Figure 3.28.

Marilia Carvalho (personal communication) and Virgilio Gómez Rubio (Gómez
Rubio, Ferrándiz and López, 2003) have pointed to the unusual shape of the distribution
of the Poisson probability values (Figure 6), repeating the doubts about probability
mapping voiced by Cressie (1991, p. 392): “an extreme value. . . may be more due to its
lack of fit to the Poisson model than to its deviation from the constant rate assumption”.
There are many more high values than one would have expected, suggesting perhaps
overdispersion, that is that the ratio of the mean and variance is larger than unity.
> hist(pmap$pmap, main = "")

One ad-hoc way to assess the impact of the possible failure of our assumption that
the counts follow the Poisson distribution is to estimate the dispersion by fitting a gen-
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Figure 6: Histogram of Poisson probability values.

eral linear model of the observed counts including only the intercept (null model) and
offset by the observed population at risk (suggested by Marilia Carvalho and asso-
ciates):
> res <- glm(nc.sids$SID74 ~ offset(log(BIR74)), data = nc.sids,
+ family = "quasipoisson")
> stdres <- rstandard(res)
> brks <- c(-Inf, -2, -1.5, -1, 1, 1.5, 2, +Inf)
> cols <- c("#F7F7F7", "#D9D9D9", "#BDBDBD", "#969696",
+ "#737373", "#525252", "#252525")

> plot(sidspolys, col = cols[findInterval(stdres, brks)],
+ forcefill = FALSE)
> legend(c(-84, -81), c(33.9, 34.5), fill = cols, legend = leglabs(brks),
+ bty = "n", ncol = 2)

The dispersion is equal to 2.2784, much greater than unity; we calculate the cor-
rected probability map values by taking the standardised residuals of the model, taking
the size of the dispersion into account; the results are shown in Figure 7. Many fewer
counties appear now to have unexpectedly large or small numbers of cases. This is an
ad-hoc adjustment made becauseR provides access to a wide range of model-fitting
functions that can be used to help check our assumptions. Gómez Rubio, Ferrándiz
and López (2003) chose rather to construct a probability map under the hypothesis that
data are drawn from a Negative Binomial.

So far, none of the maps presented have made use of the spatial dependence possi-
bly present in the data. A further elementary step that can be taken is to map Empirical
Bayes estimates of the rates, which are smoothed in relation to the raw rates. The un-
derlying question here is linked to the larger variance associated with rate estimates
for counties with small populations at risk compared with counties with large popu-
lations at risk. Empirical Bayes estimates place more credence on the raw rates of
counties with large populations at risk, and modify them much less than they modify
rates for small counties. In the case of small populations at risk, more confidence is
placed in either the global rate for the study area as a whole, or for local Empirical
Bayes estimates, in rates for a larger moving window including the neighbours of the
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Figure 7: Standardised residual values from the fit of a quasi-Poisson fit of the null
model for SIDS rates 1974-78, North Carolina counties.

county being estimated. The function used for this inspdep is EBlocal() , initially
contributed by Marilia Carvalho. It parallels a similar function in GeoDa, but uses the
Bailey and Gatrell (1995) interpretation of Marshall (1991), rather than that in GeoDa
(Anselin, Syabri and Smirnov, 2002).

> res <- EBlocal(nc.sids$SID74, nc.sids$BIR74, ncCC89.nb,
+ zero.policy = TRUE)
> brks <- c(-Inf, 2, 2.5, 3, 3.5, Inf)
> cols <- c("#F7F7F7", "#CCCCCC", "#969696", "#636363",
+ "#252525")
> sub <- is.finite(res$est)

> plot(sidspolys, forcefill = FALSE)
> legend(c(-84, -81), c(33.9, 34.5), fill = cols, legend = leglabs(brks),
+ bty = "n", ncol = 2)
> plot(subset(sidspolys, sub), col = cols[findInterval(res$est[sub] *
+ 1000, brks)], add = TRUE, forcefill = FALSE)
> points(sidscents[!sub, ], pch = 8)

The results are shown in Figure 8. Like other relevant functions inspdep, EBlocal()

takes azero.policy argument to allow missing values to be passed through. In this
case, no local estimate is available for the two counties with no neighbours, marked by
stars.

3 Preliminary exploration of the data (incomplete)

One of the first steps taken by Cressie and Read (1985) is to try to bring out spatial
trends by dividing North Carolina up into 4×4 rough rectangles. Just to see how this
works, let us map these rough rectangles before proceeding further (see Figure 9). We
need to recall that thenc.sids data frame is not in the same order as the polygons.

> both <- factor(paste(nc.sids$L.id, nc.sids$M.id, sep = ":"))
> cols <- sample(rainbow(length(table(unclass(both)))))
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Figure 8: Local Empirical Bayes estimates for SIDS rates per 1000 using the 30 mile
county seat neighbours list.

> plot(sidspolys, col = cols[both[order(nc.sids$CNTY.ID)]],
+ forcefill = FALSE)
> legend(c(-84, -81), c(33.5, 34.6), legend = levels(both),
+ fill = cols, bty = "n", cex = 0.9, y.intersp = 0.9,
+ ncol = 2)

(document to be extended in next release — terminates here to at least show how
maptoolsandspdepcan be used together).
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Figure 9: Rough rectangles used by Cressie and Read (1985) to bring out spatial trends.
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