capLargeValues |
Convert large/infinite numeric values in a data.frame or task. |
cindex |
Performance measures. |
ClassifTask |
Create a classification, regression, survival, cluster, or cost-sensitive classification task. |
ClusterTask |
Create a classification, regression, survival, cluster, or cost-sensitive classification task. |
configureMlr |
Configures the behavior of the package. |
costiris.task |
Iris cost-sensitive classification task |
CostSensClassifModel |
Wraps a classification learner for use in cost-sensitive learning. |
CostSensClassifWrapper |
Wraps a classification learner for use in cost-sensitive learning. |
CostSensRegrModel |
Wraps a regression learner for use in cost-sensitive learning. |
CostSensRegrWrapper |
Wraps a regression learner for use in cost-sensitive learning. |
CostSensTask |
Create a classification, regression, survival, cluster, or cost-sensitive classification task. |
CostSensWeightedPairsModel |
Wraps a classifier for cost-sensitive learning to produce a weighted pairs model. |
CostSensWeightedPairsWrapper |
Wraps a classifier for cost-sensitive learning to produce a weighted pairs model. |
createDummyFeatures |
Generate dummy variables for factor features. |
crossover |
crossover |
crossval |
Fit models according to a resampling strategy. |
imputations |
Built in imputation methods The built-ins are: • 'imputeConstant(const)' for imputation using a constant value, • 'imputeMedian()' for imputation using the median, • 'imputeMode()' for imputation using the mode, • 'imputeMin(multiplier)' for imputing constant values shifted below the minimum using 'min(x) - multiplier * diff(range(x))', • 'imputeMin(multiplier)' for imputing constant values shifted above the maximum using 'max(x) + multiplier * diff(range(x))', • 'imputeNormal(mean, sd)' for imputation using normally distributed random values. Mean and standard deviation will be calculated from the data if not provided. • 'imputeHist(breaks, use.mids)' for imputation using random values with probabilities calculated using 'table' or 'hist'. • 'imputeLearner(learner, preimpute)' for imputations using the response of a classification or regression learner. |
impute |
Impute and re-impute data |
imputeConstant |
Built in imputation methods The built-ins are: • 'imputeConstant(const)' for imputation using a constant value, • 'imputeMedian()' for imputation using the median, • 'imputeMode()' for imputation using the mode, • 'imputeMin(multiplier)' for imputing constant values shifted below the minimum using 'min(x) - multiplier * diff(range(x))', • 'imputeMin(multiplier)' for imputing constant values shifted above the maximum using 'max(x) + multiplier * diff(range(x))', • 'imputeNormal(mean, sd)' for imputation using normally distributed random values. Mean and standard deviation will be calculated from the data if not provided. • 'imputeHist(breaks, use.mids)' for imputation using random values with probabilities calculated using 'table' or 'hist'. • 'imputeLearner(learner, preimpute)' for imputations using the response of a classification or regression learner. |
imputeHist |
Built in imputation methods The built-ins are: • 'imputeConstant(const)' for imputation using a constant value, • 'imputeMedian()' for imputation using the median, • 'imputeMode()' for imputation using the mode, • 'imputeMin(multiplier)' for imputing constant values shifted below the minimum using 'min(x) - multiplier * diff(range(x))', • 'imputeMin(multiplier)' for imputing constant values shifted above the maximum using 'max(x) + multiplier * diff(range(x))', • 'imputeNormal(mean, sd)' for imputation using normally distributed random values. Mean and standard deviation will be calculated from the data if not provided. • 'imputeHist(breaks, use.mids)' for imputation using random values with probabilities calculated using 'table' or 'hist'. • 'imputeLearner(learner, preimpute)' for imputations using the response of a classification or regression learner. |
imputeLearner |
Built in imputation methods The built-ins are: • 'imputeConstant(const)' for imputation using a constant value, • 'imputeMedian()' for imputation using the median, • 'imputeMode()' for imputation using the mode, • 'imputeMin(multiplier)' for imputing constant values shifted below the minimum using 'min(x) - multiplier * diff(range(x))', • 'imputeMin(multiplier)' for imputing constant values shifted above the maximum using 'max(x) + multiplier * diff(range(x))', • 'imputeNormal(mean, sd)' for imputation using normally distributed random values. Mean and standard deviation will be calculated from the data if not provided. • 'imputeHist(breaks, use.mids)' for imputation using random values with probabilities calculated using 'table' or 'hist'. • 'imputeLearner(learner, preimpute)' for imputations using the response of a classification or regression learner. |
imputeMax |
Built in imputation methods The built-ins are: • 'imputeConstant(const)' for imputation using a constant value, • 'imputeMedian()' for imputation using the median, • 'imputeMode()' for imputation using the mode, • 'imputeMin(multiplier)' for imputing constant values shifted below the minimum using 'min(x) - multiplier * diff(range(x))', • 'imputeMin(multiplier)' for imputing constant values shifted above the maximum using 'max(x) + multiplier * diff(range(x))', • 'imputeNormal(mean, sd)' for imputation using normally distributed random values. Mean and standard deviation will be calculated from the data if not provided. • 'imputeHist(breaks, use.mids)' for imputation using random values with probabilities calculated using 'table' or 'hist'. • 'imputeLearner(learner, preimpute)' for imputations using the response of a classification or regression learner. |
imputeMean |
Built in imputation methods The built-ins are: • 'imputeConstant(const)' for imputation using a constant value, • 'imputeMedian()' for imputation using the median, • 'imputeMode()' for imputation using the mode, • 'imputeMin(multiplier)' for imputing constant values shifted below the minimum using 'min(x) - multiplier * diff(range(x))', • 'imputeMin(multiplier)' for imputing constant values shifted above the maximum using 'max(x) + multiplier * diff(range(x))', • 'imputeNormal(mean, sd)' for imputation using normally distributed random values. Mean and standard deviation will be calculated from the data if not provided. • 'imputeHist(breaks, use.mids)' for imputation using random values with probabilities calculated using 'table' or 'hist'. • 'imputeLearner(learner, preimpute)' for imputations using the response of a classification or regression learner. |
imputeMedian |
Built in imputation methods The built-ins are: • 'imputeConstant(const)' for imputation using a constant value, • 'imputeMedian()' for imputation using the median, • 'imputeMode()' for imputation using the mode, • 'imputeMin(multiplier)' for imputing constant values shifted below the minimum using 'min(x) - multiplier * diff(range(x))', • 'imputeMin(multiplier)' for imputing constant values shifted above the maximum using 'max(x) + multiplier * diff(range(x))', • 'imputeNormal(mean, sd)' for imputation using normally distributed random values. Mean and standard deviation will be calculated from the data if not provided. • 'imputeHist(breaks, use.mids)' for imputation using random values with probabilities calculated using 'table' or 'hist'. • 'imputeLearner(learner, preimpute)' for imputations using the response of a classification or regression learner. |
imputeMin |
Built in imputation methods The built-ins are: • 'imputeConstant(const)' for imputation using a constant value, • 'imputeMedian()' for imputation using the median, • 'imputeMode()' for imputation using the mode, • 'imputeMin(multiplier)' for imputing constant values shifted below the minimum using 'min(x) - multiplier * diff(range(x))', • 'imputeMin(multiplier)' for imputing constant values shifted above the maximum using 'max(x) + multiplier * diff(range(x))', • 'imputeNormal(mean, sd)' for imputation using normally distributed random values. Mean and standard deviation will be calculated from the data if not provided. • 'imputeHist(breaks, use.mids)' for imputation using random values with probabilities calculated using 'table' or 'hist'. • 'imputeLearner(learner, preimpute)' for imputations using the response of a classification or regression learner. |
imputeMode |
Built in imputation methods The built-ins are: • 'imputeConstant(const)' for imputation using a constant value, • 'imputeMedian()' for imputation using the median, • 'imputeMode()' for imputation using the mode, • 'imputeMin(multiplier)' for imputing constant values shifted below the minimum using 'min(x) - multiplier * diff(range(x))', • 'imputeMin(multiplier)' for imputing constant values shifted above the maximum using 'max(x) + multiplier * diff(range(x))', • 'imputeNormal(mean, sd)' for imputation using normally distributed random values. Mean and standard deviation will be calculated from the data if not provided. • 'imputeHist(breaks, use.mids)' for imputation using random values with probabilities calculated using 'table' or 'hist'. • 'imputeLearner(learner, preimpute)' for imputations using the response of a classification or regression learner. |
imputeNormal |
Built in imputation methods The built-ins are: • 'imputeConstant(const)' for imputation using a constant value, • 'imputeMedian()' for imputation using the median, • 'imputeMode()' for imputation using the mode, • 'imputeMin(multiplier)' for imputing constant values shifted below the minimum using 'min(x) - multiplier * diff(range(x))', • 'imputeMin(multiplier)' for imputing constant values shifted above the maximum using 'max(x) + multiplier * diff(range(x))', • 'imputeNormal(mean, sd)' for imputation using normally distributed random values. Mean and standard deviation will be calculated from the data if not provided. • 'imputeHist(breaks, use.mids)' for imputation using random values with probabilities calculated using 'table' or 'hist'. • 'imputeLearner(learner, preimpute)' for imputations using the response of a classification or regression learner. |
imputeUniform |
Built in imputation methods The built-ins are: • 'imputeConstant(const)' for imputation using a constant value, • 'imputeMedian()' for imputation using the median, • 'imputeMode()' for imputation using the mode, • 'imputeMin(multiplier)' for imputing constant values shifted below the minimum using 'min(x) - multiplier * diff(range(x))', • 'imputeMin(multiplier)' for imputing constant values shifted above the maximum using 'max(x) + multiplier * diff(range(x))', • 'imputeNormal(mean, sd)' for imputation using normally distributed random values. Mean and standard deviation will be calculated from the data if not provided. • 'imputeHist(breaks, use.mids)' for imputation using random values with probabilities calculated using 'table' or 'hist'. • 'imputeLearner(learner, preimpute)' for imputations using the response of a classification or regression learner. |
iris.task |
Iris classification task |
isFailureModel |
Is the model a FailureModel? |
mae |
Performance measures. |
makeAggregation |
Specifiy your own aggregation of measures |
makeBaggingWrapper |
Fuse learner with the bagging technique. |
makeClassifTask |
Create a classification, regression, survival, cluster, or cost-sensitive classification task. |
makeClusterTask |
Create a classification, regression, survival, cluster, or cost-sensitive classification task. |
makeCostMeasure |
Creates a measure for non-standard misclassification costs. |
makeCostSensClassifWrapper |
Wraps a classification learner for use in cost-sensitive learning. |
makeCostSensRegrWrapper |
Wraps a regression learner for use in cost-sensitive learning. |
makeCostSensTask |
Create a classification, regression, survival, cluster, or cost-sensitive classification task. |
makeCostSensWeightedPairsWrapper |
Wraps a classifier for cost-sensitive learning to produce a weighted pairs model. |
makeCustomResampledMeasure |
Construct your own resampled performance measure. |
makeDownsampleWrapper |
Fuse learner with simple downsampling (subsampling). |
makeFeatSelControlExhaustive |
Create control structures for feature selection. |
makeFeatSelControlGA |
Create control structures for feature selection. |
makeFeatSelControlRandom |
Create control structures for feature selection. |
makeFeatSelControlSequential |
Create control structures for feature selection. |
makeFeatSelWrapper |
Fuse learner with feature selection. |
makeFilter |
Create a feature filter |
makeFilterWrapper |
Fuse learner with a feature filter method. |
makeFixedHoldoutInstance |
Generate a fixed holdout instance for resampling. |
makeImputeMethod |
Create a custom imputation method. |
makeImputeWrapper |
Fuse learner with an imputation method. |
makeLearner |
Create learner object. |
makeMeasure |
Construct performance measure. |
makeModelMultiplexer |
Create model multiplexer for model selection to tune over multiple possible models. |
makeModelMultiplexerParamSet |
Creates a parameter set for model multiplexer tuning. |
makeMulticlassWrapper |
Fuse learner with multiclass method. |
makeOverBaggingWrapper |
Fuse learner with the bagging technique and oversampling for imbalancy correction. |
makeOversampleWrapper |
Fuse learner with simple ove/underrsampling for imbalancy correction in binary classification. |
makePreprocWrapper |
Fuse learner with preprocessing. |
makeRegrTask |
Create a classification, regression, survival, cluster, or cost-sensitive classification task. |
makeResampleDesc |
Create a description object for a resampling strategy. |
makeResampleInstance |
Instantiates a resampling strategy object. |
makeRLearner |
Internal construction / wrapping of learner object. |
makeRLearnerClassif |
Internal construction / wrapping of learner object. |
makeRLearnerCluster |
Internal construction / wrapping of learner object. |
makeRLearnerRegr |
Internal construction / wrapping of learner object. |
makeRLearnerSurv |
Internal construction / wrapping of learner object. |
makeSMOTEWrapper |
Fuse learner with SMOTE oversampling for imbalancy correction in binary classification. |
makeStackedLearner |
Create a stacked learner object. |
makeSurvTask |
Create a classification, regression, survival, cluster, or cost-sensitive classification task. |
makeTuneControlCMAES |
Create control structures for tuning. |
makeTuneControlGenSA |
Create control structures for tuning. |
makeTuneControlGrid |
Create control structures for tuning. |
makeTuneControlIrace |
Create control structures for tuning. |
makeTuneControlRandom |
Create control structures for tuning. |
makeTuneMultiCritControlGrid |
Create control structures for multi-criteria tuning. |
makeTuneMultiCritControlNSGA2 |
Create control structures for multi-criteria tuning. |
makeTuneMultiCritControlRandom |
Create control structures for multi-criteria tuning. |
makeTuneWrapper |
Fuse learner with tuning. |
makeUndersampleWrapper |
Fuse learner with simple ove/underrsampling for imbalancy correction in binary classification. |
makeWeightedClassesWrapper |
Wraps a classifier for weighted fitting where each class receives a weight. |
makeWrappedModel |
Induced model of learner. |
mcc |
Performance measures. |
mcp |
Performance measures. |
meancosts |
Performance measures. |
Measure |
Construct performance measure. |
measures |
Performance measures. |
medae |
Performance measures. |
medse |
Performance measures. |
mergeSmallFactorLevels |
Merges small levels of factors into new level. |
mmce |
Performance measures. |
ModelMultiplexer |
Create model multiplexer for model selection to tune over multiple possible models. |
mse |
Performance measures. |
mtcars.task |
Motor Trend Car Road Tests clustering task |
multiclass.auc |
Performance measures. |
RegrTask |
Create a classification, regression, survival, cluster, or cost-sensitive classification task. |
reimpute |
Re-impute a data set |
removeConstantFeatures |
Remove constant features from a data set. |
removeHyperPars |
Remove hyperparameters settings of a learner. |
removeProperties |
Set, add, remove or query properties of learners |
repcv |
Fit models according to a resampling strategy. |
resample |
Fit models according to a resampling strategy. |
ResampleDesc |
Create a description object for a resampling strategy. |
ResampleInstance |
Instantiates a resampling strategy object. |
ResamplePrediction |
Prediction from resampling. |
RLearner |
Internal construction / wrapping of learner object. |
RLearnerClassif |
Internal construction / wrapping of learner object. |
RLearnerRegr |
Internal construction / wrapping of learner object. |
RLearnerSurv |
Internal construction / wrapping of learner object. |
rmse |
Performance measures. |
sae |
Performance measures. |
selectFeatures |
Feature selection by wrapper approach. |
setAggregation |
Set aggregation function of measure. |
setHyperPars |
Set the hyperparameters of a learner object. |
setHyperPars2 |
Only exported for internal use. |
setId |
Set the id of a learner object. |
setPredictType |
Set the type of predictions the learner should return. |
setProperties |
Set, add, remove or query properties of learners |
setThreshold |
Set threshold of prediction object. |
showHyperPars |
Display all possible hyperparameter settings for a learner that mlr knows. |
silhouette |
Performance measures. |
smote |
Synthetic Minority Oversampling Technique to handle class imbalancy in binary classification. |
sonar.task |
Sonar classification task |
sse |
Performance measures. |
subsample |
Fit models according to a resampling strategy. |
subsetTask |
Subset data in task. |
summarizeColumns |
Summarize columns of data.frame or task. |
summarizeLevels |
Summarizes factors of a data.frame by tabling them. |
SurvTask |
Create a classification, regression, survival, cluster, or cost-sensitive classification task. |