TDMR-package | Tuned Data Mining in R |
dsetTest.TDMdata | Return test data of 'TDMdata' object |
dsetTrnVa.TDMdata | Return train-validation data of 'TDMdata' object |
Opts | Return the list 'opts'. |
Opts.default | Return the list 'opts'. |
Opts.tdmClass | Return the list 'opts'. |
Opts.TDMclassifier | Return the list 'opts'. |
Opts.TDMenvir | Return the list 'opts'. |
Opts.tdmRegre | Return the list 'opts'. |
Opts.TDMregressor | Return the list 'opts'. |
predict.TDMclassifier | Make a prediction using the last model. |
predict.TDMenvir | Make a prediction using the last model. |
predict.TDMregressor | Make a prediction using the last model. |
print.tdmClass | Print an overview for a 'TDMclassifier' object. |
print.TDMclassifier | Print an overview for a 'TDMclassifier' object. |
print.TDMdata | Print an overview for a 'TDMdata' object. |
print.tdmRegre | Print an overview for a 'TDMregressor' object. |
print.TDMregressor | Print an overview for a 'TDMregressor' object. |
tdmBigLoop | Tuning and unbiased evaluation in a big loop. |
tdmBindResponse | Bind a column to a data frame. |
TDMclassifier | Core classification double loop of TDMR returning a 'TDMclassifier' object. tdmClassifyLoop contains a double loop (opts$NRUN and CV-folds) and calls 'tdmClassify'. It is called by all classification R-functions main_*. It splits - if 'tset' is NULL - the data in 'dset' into training and validation data according to 'opts$TST.kind'. It returns an object of class 'TDMclassifier'. |
tdmClassify | Core classification function of TDMR. |
tdmClassifyLoop | Core classification double loop of TDMR returning a 'TDMclassifier' object. tdmClassifyLoop contains a double loop (opts$NRUN and CV-folds) and calls 'tdmClassify'. It is called by all classification R-functions main_*. It splits - if 'tset' is NULL - the data in 'dset' into training and validation data according to 'opts$TST.kind'. It returns an object of class 'TDMclassifier'. |
tdmClassifySummary | Print summary output for 'result' from 'tdmClassifiyLoop' and add 'result$y'. |
TDMdata | Read and split the task data. |
tdmDefaultsFill | Default values for list 'tdm'. |
tdmEmbedDataFrame | Embed columns in a data frame. |
TDMenvir | Construct a new environment envT of class 'TDMenvir'. |
tdmEnvTAddBstRes | Add BST and RES data frames to an existing 'envT' environment. |
tdmEnvTAddGetters | Add getter functions getBst and getRes to environment envT |
tdmEnvTGetOpts | Return list opts from the 'k'-th '.conf'-file |
tdmEnvTLoad | Load an 'envT'-type environment from file 'fileRData'. |
tdmEnvTMakeNew | Construct a new environment envT of class 'TDMenvir'. |
tdmEnvTSensi | Make a sensitivity plot based on 'envT' |
tdmEnvTSetOpts | Set list opts for the 'k'-th '.conf'-file |
tdmGraAndLogFinalize | Finalize graphics and log file |
tdmGraAndLogInitialize | Initialize graphics and log file. |
tdmGraphicCloseDev | Close all open graphic devices. |
tdmGraphicCloseWin | Close active file ("png"). |
tdmGraphicInit | Initialize graphic device. |
tdmGraphicNewWin | Initialize a new window. |
tdmGraphicToTop | Bring the acitve window to the top |
tdmMapDesApply | Apply the mapping from 'des' to 'opts'. |
tdmMapDesLoad | Load the mapping files. |
tdmModConfmat | Calculate confusion matrix, gain and RGain measure. |
tdmModCreateCVindex | Create and return a training-validation-set index vector. |
tdmModSortedRFimport | Sort the input variables decreasingly by their RF-importance. |
tdmModVote2Target | Analyze how the vote fraction corresponds to reliability of prediction. |
tdmOptsDefaultsSet | Default values for list 'opts'. |
tdmParaBootstrap | Parametric bootstrap: add 'noisy copies' to a data frame (training data). |
tdmPlotResMeta | Interactive plots of RES data frames and their metamodels. |
tdmPreAddMonomials | Add monomials of degree 2 to a data frame. |
tdmPreFindConstVar | Find constant columns. |
tdmPreGroupLevels | Group the levels of factor variable in 'dset[,colname]'. |
tdmPreLevel2Target | Relate levels of a column with a target (column). |
tdmPreNAroughfix | Replace <NA> values with suitable non <NA> values |
tdmPrePCA.apply | Apply PCA (Principal Component Analysis) to new data. |
tdmPrePCA.train | PCA (Principal Component Analysis) for numeric columns in a data frame. |
tdmPreSFA.apply | Apply SFA (Slow Feature Analysis) to new data. |
tdmPreSFA.train | SFA (Slow Feature Analysis) for numeric columns in a data frame. |
TDMR | Tuned Data Mining in R |
tdmRandomSeed | Generates pseudo-random random number seeds. |
tdmReadCmd | Template function, the default for opts$READ.CMD. |
tdmReadData | Read the data accoroding to the settings in 'opts'. |
tdmReadData2 | Read data accoroding to 'opts' settings. |
tdmRegress | Core regression function of TDMR. |
tdmRegressLoop | Core regression double loop of TDMR returning a 'TDMregressor' object. |
TDMregressor | Core regression double loop of TDMR returning a 'TDMregressor' object. |
tdmRegressSummary | Print summary output for 'result' from 'tdmRegressLoop' and add 'result$y'. |
tdmROCR.TDMclassifier | Interactive plot of ROC, lift or other charts for a 'TDMclassifier' object. |
tdmROCRbase | Single plot of ROC, lift or other chart for a 'TDMclassifier' object. |
tdmSplitTestData | Read and split the task data. |
tdmStartSpot | Function called by 'spot' to evaluate a DM task during a 'SPOT' tuning run. |
tdmTuneIt | Tuning and unbiased evaluation (single tuning). |
unbiasedRun | Perform unbiased runs with best-solution parameters. |