Tuned Data Mining in R


[Up] [Top]

Documentation for package ‘TDMR’ version 1.4

Help Pages

TDMR-package Tuned Data Mining in R
dsetTest.TDMdata Return test data of 'TDMdata' object
dsetTrnVa.TDMdata Return train-validation data of 'TDMdata' object
Opts Return the list 'opts'.
Opts.default Return the list 'opts'.
Opts.tdmClass Return the list 'opts'.
Opts.TDMclassifier Return the list 'opts'.
Opts.TDMenvir Return the list 'opts'.
Opts.tdmRegre Return the list 'opts'.
Opts.TDMregressor Return the list 'opts'.
predict.TDMclassifier Make a prediction using the last model.
predict.TDMenvir Make a prediction using the last model.
predict.TDMregressor Make a prediction using the last model.
print.tdmClass Print an overview for a 'TDMclassifier' object.
print.TDMclassifier Print an overview for a 'TDMclassifier' object.
print.TDMdata Print an overview for a 'TDMdata' object.
print.tdmRegre Print an overview for a 'TDMregressor' object.
print.TDMregressor Print an overview for a 'TDMregressor' object.
tdmBigLoop Tuning and unbiased evaluation in a big loop.
tdmBindResponse Bind a column to a data frame.
TDMclassifier Core classification double loop of TDMR returning a 'TDMclassifier' object. tdmClassifyLoop contains a double loop (opts$NRUN and CV-folds) and calls 'tdmClassify'. It is called by all classification R-functions main_*. It splits - if 'tset' is NULL - the data in 'dset' into training and validation data according to 'opts$TST.kind'. It returns an object of class 'TDMclassifier'.
tdmClassify Core classification function of TDMR.
tdmClassifyLoop Core classification double loop of TDMR returning a 'TDMclassifier' object. tdmClassifyLoop contains a double loop (opts$NRUN and CV-folds) and calls 'tdmClassify'. It is called by all classification R-functions main_*. It splits - if 'tset' is NULL - the data in 'dset' into training and validation data according to 'opts$TST.kind'. It returns an object of class 'TDMclassifier'.
tdmClassifySummary Print summary output for 'result' from 'tdmClassifiyLoop' and add 'result$y'.
TDMdata Read and split the task data.
tdmDefaultsFill Default values for list 'tdm'.
tdmEmbedDataFrame Embed columns in a data frame.
TDMenvir Construct a new environment envT of class 'TDMenvir'.
tdmEnvTAddBstRes Add BST and RES data frames to an existing 'envT' environment.
tdmEnvTAddGetters Add getter functions getBst and getRes to environment envT
tdmEnvTGetOpts Return list opts from the 'k'-th '.conf'-file
tdmEnvTLoad Load an 'envT'-type environment from file 'fileRData'.
tdmEnvTMakeNew Construct a new environment envT of class 'TDMenvir'.
tdmEnvTSensi Make a sensitivity plot based on 'envT'
tdmEnvTSetOpts Set list opts for the 'k'-th '.conf'-file
tdmGraAndLogFinalize Finalize graphics and log file
tdmGraAndLogInitialize Initialize graphics and log file.
tdmGraphicCloseDev Close all open graphic devices.
tdmGraphicCloseWin Close active file ("png").
tdmGraphicInit Initialize graphic device.
tdmGraphicNewWin Initialize a new window.
tdmGraphicToTop Bring the acitve window to the top
tdmMapDesApply Apply the mapping from 'des' to 'opts'.
tdmMapDesLoad Load the mapping files.
tdmModConfmat Calculate confusion matrix, gain and RGain measure.
tdmModCreateCVindex Create and return a training-validation-set index vector.
tdmModSortedRFimport Sort the input variables decreasingly by their RF-importance.
tdmModVote2Target Analyze how the vote fraction corresponds to reliability of prediction.
tdmOptsDefaultsSet Default values for list 'opts'.
tdmParaBootstrap Parametric bootstrap: add 'noisy copies' to a data frame (training data).
tdmPlotResMeta Interactive plots of RES data frames and their metamodels.
tdmPreAddMonomials Add monomials of degree 2 to a data frame.
tdmPreFindConstVar Find constant columns.
tdmPreGroupLevels Group the levels of factor variable in 'dset[,colname]'.
tdmPreLevel2Target Relate levels of a column with a target (column).
tdmPreNAroughfix Replace <NA> values with suitable non <NA> values
tdmPrePCA.apply Apply PCA (Principal Component Analysis) to new data.
tdmPrePCA.train PCA (Principal Component Analysis) for numeric columns in a data frame.
tdmPreSFA.apply Apply SFA (Slow Feature Analysis) to new data.
tdmPreSFA.train SFA (Slow Feature Analysis) for numeric columns in a data frame.
TDMR Tuned Data Mining in R
tdmRandomSeed Generates pseudo-random random number seeds.
tdmReadCmd Template function, the default for opts$READ.CMD.
tdmReadData Read the data accoroding to the settings in 'opts'.
tdmReadData2 Read data accoroding to 'opts' settings.
tdmRegress Core regression function of TDMR.
tdmRegressLoop Core regression double loop of TDMR returning a 'TDMregressor' object.
TDMregressor Core regression double loop of TDMR returning a 'TDMregressor' object.
tdmRegressSummary Print summary output for 'result' from 'tdmRegressLoop' and add 'result$y'.
tdmROCR.TDMclassifier Interactive plot of ROC, lift or other charts for a 'TDMclassifier' object.
tdmROCRbase Single plot of ROC, lift or other chart for a 'TDMclassifier' object.
tdmSplitTestData Read and split the task data.
tdmStartSpot Function called by 'spot' to evaluate a DM task during a 'SPOT' tuning run.
tdmTuneIt Tuning and unbiased evaluation (single tuning).
unbiasedRun Perform unbiased runs with best-solution parameters.