Functions for Calculating Tolerance Intervals


[Up] [Top]

Documentation for package ‘tolerance’ version 1.1.0

Help Pages

tolerance-package Functions for Calculating Tolerance Intervals
acc.samp Acceptance Sampling
anovatol.int Tolerance Intervals for ANOVA
bintol.int Binomial Tolerance Intervals
bonftol.int Approximate 2-Sided Tolerance Intervals that Control the Tails Using Bonferroni's Inequality
cautol.int Cauchy Tolerance Intervals
d2exp The 2-Parameter Exponential Distribution
ddiffprop Difference Between Two Proportions Distribution
diffnormtol.int 1-Sided Tolerance Limits for the Distribution of the Difference Between Two Independent Normal Random Variables
DiffProp Difference Between Two Proportions Distribution
distfree.est Estimating Various Quantities for Distribution-Free Tolerance Intervals
dnhyper The Negative Hypergeometric Distribution
dpoislind Discrete Poisson-Lindley Distribution
dzipfman Zipf-Mandelbrot Distributions
exp2tol.int 2-Parameter Exponential Tolerance Intervals
exptol.int Exponential Tolerance Intervals
exttol.int Weibull (or Extreme-Value) Tolerance Intervals
F1 Appell's F1 Hypergeometric Function
fidbintol.int Fiducial-Based Tolerance Intervals for the Function of Two Binomial Proportions
fidnegbintol.int Fiducial-Based Tolerance Intervals for the Function of Two Negative Binomial Proportions
fidpoistol.int Fiducial-Based Tolerance Intervals for the Function of Two Poisson Rates
gamtol.int Gamma (or Log-Gamma) Tolerance Intervals
hypertol.int Hypergeometric Tolerance Intervals
K.factor Estimating K-factors for Tolerance Intervals Based on Normality
K.table Tables of K-factors for Tolerance Intervals Based on Normality
laptol.int Laplace Tolerance Intervals
logistol.int Logistic (or Log-Logistic) Tolerance Intervals
mvregtol.region Multivariate (Multiple) Linear Regression Tolerance Regions
mvtol.region Multivariate Normal Tolerance Regions
negbintol.int Negative Binomial Tolerance Intervals
NegHypergeometric The Negative Hypergeometric Distribution
neghypertol.int Negative Hypergeometric Tolerance Intervals
nlregtol.int Nonlinear Regression Tolerance Bounds
normtol.int Normal (or Log-Normal) Tolerance Intervals
np.order Sample Size Determination for Tolerance Limits Based on Order Statistics
npregtol.int Nonparametric Regression Tolerance Bounds
nptol.int Nonparametric Tolerance Intervals
p2exp The 2-Parameter Exponential Distribution
paretotol.int Pareto (or Power Distribution) Tolerance Intervals
pdiffprop Difference Between Two Proportions Distribution
plottol Plotting Capabilities for Tolerance Intervals
pnhyper The Negative Hypergeometric Distribution
poislind.ll Maximum Likelihood Estimation for the Discrete Poisson-Lindley Distribution
poislindtol.int Poisson-Lindley Tolerance Intervals
PoissonLindley Discrete Poisson-Lindley Distribution
poistol.int Poisson Tolerance Intervals
ppoislind Discrete Poisson-Lindley Distribution
pzipfman Zipf-Mandelbrot Distributions
q2exp The 2-Parameter Exponential Distribution
qdiffprop Difference Between Two Proportions Distribution
qnhyper The Negative Hypergeometric Distribution
qpoislind Discrete Poisson-Lindley Distribution
qzipfman Zipf-Mandelbrot Distributions
r2exp The 2-Parameter Exponential Distribution
rdiffprop Difference Between Two Proportions Distribution
regtol.int (Multiple) Linear Regression Tolerance Bounds
rnhyper The Negative Hypergeometric Distribution
rpoislind Discrete Poisson-Lindley Distribution
rzipfman Zipf-Mandelbrot Distributions
tolerance Functions for Calculating Tolerance Intervals
TwoParExponential The 2-Parameter Exponential Distribution
umatol.int Uniformly Most Accurate Upper Tolerance Limits for Certain Discrete Distributions
uniftol.int Uniform Tolerance Intervals
ZipfMandelbrot Zipf-Mandelbrot Distributions
zipftol.int Zipf-Mandelbrot Tolerance Intervals
zm.ll Maximum Likelihood Estimation for Zipf-Mandelbrot Models