backpropagation | Backpropagation learning function |
crossEntropyError | Cross entropy error function |
darch | Fit a deep neural network |
darch.DataSet | Fit a deep neural network |
darch.default | Fit a deep neural network |
darch.formula | Fit a deep neural network |
darchBench | Benchmarking wrapper for 'darch' |
darchModelInfo | Creates a custom caret model for 'darch'. |
darchTest | Test classification network. |
exponentialLinearUnit | Exponential linear unit (ELU) function with unit derivatives. |
generateWeightsGlorotNormal | Glorot normal weight initialization |
generateWeightsGlorotUniform | Glorot uniform weight initialization |
generateWeightsHeNormal | He normal weight initialization |
generateWeightsHeUniform | He uniform weight initialization |
generateWeightsNormal | Generates a weight matrix using rnorm. |
generateWeightsUniform | Generates a weight matrix using runif |
linearUnit | Linear unit function with unit derivatives. |
maxoutUnit | Maxout / LWTA unit function |
maxoutWeightUpdate | Updates the weight on maxout layers |
minimizeAutoencoder | Conjugate gradient for a autoencoder network |
minimizeClassifier | Conjugate gradient for a classification network |
mseError | Mean squared error function |
plot.DArch | Plot 'DArch' statistics or structure. |
predict.DArch | Forward-propagate data. |
print.DArch | Print 'DArch' details. |
provideMNIST | Provides MNIST data set in the given folder. |
rectifiedLinearUnit | Rectified linear unit function with unit derivatives. |
rmseError | Root-mean-square error function |
rpropagation | Resilient backpropagation training for deep architectures. |
sigmoidUnit | Sigmoid unit function with unit derivatives. |
softmaxUnit | Softmax unit function with unit derivatives. |
softplusUnit | Softplus unit function with unit derivatives. |
tanhUnit | Continuous Tan-Sigmoid unit function. |
weightDecayWeightUpdate | Updates the weight using weight decay. |