Ops.onion {onion}R Documentation

Arithmetic Ops Group Methods for Octonions

Description

Allows arithmetic operators to be used for octonion calculations, such as addition, multiplication, division, integer powers, etc.

Usage

Ops.onion(e1, e2)
OprodO(oct1, oct2)
HprodH(quat1, quat2)
R_OprodO(oct1, oct2)
R_HprodH(quat1, quat2)
AprodA(A, B, ur=getOption("use.R"))
AsumA(A, B)
Apower(A, B)
AequalsA(A, B)
AprodS(A, scalar)
Ainv(A)
Aneg(A)
Amassage(A, B)
harmonize(A, B)

Arguments

e1,e2 an object of class "onion".
A,B object of class "onion"
oct1,oct2 Octonionic vectors
quat1,quat2 Quaternionic vectors
scalar Scalar vector
ur In function AprodA(), Boolean with default FALSE meaning to use the c implementation; and TRUE meaning to use the interpreted R function. See details section.

Details

The function Ops.onion() passes “*” to function AprodA(). This function is sensitive to the value of option use.R. If this is FALSE, then arguments are passed, via Amassage(), to either R_HprodH() (for quaternions), or R_OprodO() (for octonions). If option use.R is anything other than FALSE (including being unset, which is the default), the massaged arguments are passed to R_HprodH() or R_OprodO().

The relative performance of, say, OprodO() vs R_OprodO(), will be system dependent but on my little Linux system (Fedora; 256MB) OprodO() runs more than three hundred times faster than R_OprodO(). Your mileage may vary; see examples section for using options() to set argument ur.

Value

Return an object of the appropriate (ie biggest) class as went in, qua harmonize().
The only non obvious ones are Amassage(), which is used by the other functions to massage the two arguments into being the same length, thus emulating recycling.
The other one is harmonize() that coerces scalars into quaternions and quaternions into octonions if necessary, returning a list of two octonions or two quaternions of the same length, for passing to functions like AprodA().
None of these functions are really intended for the end user: use the ops as shown in the examples section.

Note

The “A” at the function means Any onion. Thus Ainv() takes quaternionic or octonionic arguments, but OprodO() takes only octonions.

Examples

x <- octonion(Re=1  , il=1:3, k=3:1)
y <- octonion(Re=1:3,  i=1  ,il=3:1)
z <- octonion(Re=3:1,  j=1  ,jl=1:3)
x*9
x+y
x*y
x/y


[Package onion version 1.0-7 Index]