
> plot(lin.blm, main = "Linear Model,", layout = "surf")

> abline(1, 2, lty = 3, col = "blue")
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Figure 3: Posterior predictive distribution using blm on synthetic linear data: mean and
90% credible interval. The actual generating lines are shown as blue-dotted.

If, say, you were unsure about the dubious “linearness” of this data, you
might try a GP LLM (using btgpllm) and let a more flexible model speak as to
the linearity of the process.

> lin.gpllm <- bgpllm(X = X, XX = XX, Z = Z)

tree[alpha,beta,nmin]=[0,0,10]

n=50, d=1, nn=99

BTE=(1000,4000,2), R=1, linburn=0

preds: data

linear prior: flat

s2[a0,g0]=[5,10]

s2 lambda[a0,g0]=[0.2,10]

corr prior: separable power

nug[a,b][0,1]=[1,1],[1,1]

nug prior fixed

gamlin=[10,0.2,0.7]

d[a,b][0]=[1,20],[10,20]

d prior fixed

burn in:

r=1000 corr=[0] : n = 50

Obtaining samples (nn=99 predictive locations):

r=1000 corr=[0] : mh=1 n = 50

r=2000 corr=[0] : mh=1 n = 50
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r=3000 corr=[0] : mh=1 n = 50

finished repetition 1 of 1

removed 0 leaves from the tree

> plot(lin.gpllm, main = "GP LLM,", layout = "surf")

> abline(1, 2, lty = 4, col = "blue")
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Figure 4: Posterior predictive distribution using bgpllm on synthetic linear data: mean and
90% credible interval. The actual generating lines are shown as blue-dotted.

Whenever the progress indicators show corr[0] the process is under the LLM
in that round, and the GP otherwise. A plot of the resulting surface is shown in
Figure 4 for comparison. Since the data is linear, the resulting predictive surfaces
should look strikingly similar to one another. On occasion, the GP LLM may
find some bendy-ness in the surface. This happens rarely with samples as large
as N = 50, but is quite a bit more common for N < 20.

3.2 1-d Synthetic Sine Data

Consider 1-dimensional simulated data which is partly a mixture of sines and
cosines, and partly linear.

z(x) =

{

sin
(

πx

5

)

+ 1

5
cos

(

4πx

5

)

x < 10
x/10 − 1 otherwise

(14)

The R code below obtains N = 100 evenly spaced samples from this data
in the domain [0, 20], with noise added to keep things interesting. Some evenly
spaced predictive locations XX are also created.

> X <- seq(0, 20, length = 100)

> XX <- seq(0, 20, length = 99)
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> Z <- (sin(pi * X/5) + 0.2 * cos(4 * pi * X/5)) *

+ (X <= 9.6)

> lin <- X > 9.6

> Z[lin] <- -1 + X[lin]/10

> Z <- Z + rnorm(length(Z), sd = 0.1)

By design, the data is clearly nonstationary. Perhaps not knowing this, good
first model choice for this data might be a GP.

> sin.bgp <- bgp(X = X, Z = Z, XX = XX)

> plot(sin.bgp, main = "GP,", layout = "surf")
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Figure 5: Posterior predictive distribution using bgp on synthetic sinusoidal data: mean and
90% credible interval

Progress indicators have been suppressed. Figure 5 shows the resulting posterior
predictive surface under the GP. Notice how the (stationary) GP gets the wig-
gliness of the sinusoidal region, but fails to capture the smoothness of the linear
region. This is becuase the data comes from a process that is nonstationary.

So one might consider a Bayesian CART model instead.

> sin.btlm <- btlm(X = X, Z = Z, XX = XX)

tree[alpha,beta,nmin]=[0.25,2,10]

n=100, d=1, nn=99

BTE=(2000,7000,2), R=1, linburn=0

preds: data

linear prior: flat

s2[a0,g0]=[5,10]

s2 lambda[a0,g0]=[0.2,10]
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corr prior: separable power

nug[a,b][0,1]=[1,1],[1,1]

nug prior fixed

gamlin=[-1,0.2,0.7]

d[a,b][0]=[1,20],[10,20]

d prior fixed

burn in:

**GROW** @depth 0: [0,0.212121], n=(22,78)

**GROW** @depth 1: [0,0.636364], n=(37,36)

**GROW** @depth 2: [0,0.151515], n=(16,12)

**GROW** @depth 2: [0,0.414141], n=(14,19)

r=1000 corr=[0] [0] [0] [0] [0] : n = 12 16 17 13 42

**PRUNE** @depth 3: [0,0.565657]

r=2000 corr=[0] [0] [0] [0] : n = 13 16 17 54

Obtaining samples (nn=99 predictive locations):

r=1000 corr=[0] [0] [0] [0] : mh=4 n = 16 12 19 53

r=2000 corr=[0] [0] [0] [0] : mh=4 n = 17 11 18 54

r=3000 corr=[0] [0] [0] [0] : mh=4 n = 16 13 18 53

r=4000 corr=[0] [0] [0] [0] : mh=4 n = 17 11 19 53

r=5000 corr=[0] [0] [0] [0] : mh=4 n = 16 12 18 54

Grow: 0.01201%, Prune: 0.002801%, Change: 0.3849%, Swap: 0.8571%

finished repetition 1 of 1

removed 4 leaves from the tree

MCMC progress indicators printed to stdout indicate successful grow and prune

operations as they happen, and region sizes n every 1,000 rounds.
Figure 6 shows the resulting posterior predictive surface (top) and trees (bot-

tom). The MAP partition (T̂ ) is also drawn onto the surface plot (top) in the
form of vertical lines. The CART model captures the smoothness of the linear
region just fine, but comes up short in the sinusoidal region—doing the best it
can with piecewise linear models.

The ideal model for this data is the Bayesian treed GP becuase it can be
both smooth and wiggly.

> sin.btgp <- btgp(X = X, Z = Z, XX = XX)

Progress indicators have been suppressed. Figure 7 shows the resulting posterior
predictive surface (top) and trees (bottom).

Finally, speedups can be obtained if the GP is allowed to jump to the LLM
[10], since half of the response surface is very smooth, or linear. This is not
shown here since the results are very similar to those above, replacing btgp

with btgpllm. The example in the next subsection offers a comparison for 2-d
data.
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> plot(sin.btlm, main = "Linear CART,", layout = "surf")

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Linear CART, z mean and error

x1

z

> tgp.trees(sin.btlm)

x1 <> 5.45455

x1 <> 3.23232
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1
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2
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4

 height=3, log(p)=52.2012
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Figure 6: Top: Posterior predictive distribution using btlm on synthetic sinusoidal data:

mean and 90% credible interval, and MAP partition (T̂ ); Bottom MAP trees for each height
encountered in the Markov chain showing σ̂

2 and the number of observation n, at each leaf.

3.3 Synthetic 2-d Exponential Data

The next example involves a two-dimensional input space in [−2, 6] × [−2, 6].
The true response is given by

z(x) = x1 exp(−x2

1
− x2

2
). (15)
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