
> moto.bgp <- bgp(X = mcycle[, 1], Z = mcycle[, 2],

+ m0r1 = TRUE)

Since the responses in this data have a wide range, it helps to translate and
rescale them so that they have a mean of zero and a range of one. The m0r1

argument to b* and tgp functions automates this procedure. Progress indicators
are surpressed.

> plot(moto.bgp, main = "GP,", layout = "surf")
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Figure 12: Posterior predictive distribution using bgp on the motorcycle accident data: mean
and 90% credible interval

A Bayesian Linear CART model is able to capture the input dependent noise
but fails to capture the waviness of the “whiplash”—center— segment of th the
response.

> moto.btlm <- btlm(X = mcycle[, 1], Z = mcycle[, 2],

+ m0r1 = TRUE)

Figure 13 shows the resulting piecewise linear predictive surface and MAP par-
tition (T̂ ).

A treed GP model seems appropriate because it can model input dependent
smoothness and noise. A treed GP LLM is probably most appropriate since the
left-hand part of the input space is likely linear. One might further hypothesize
that the right-hand region is also linear, perhaps with the same mean as the
left-hand region, only with higher noise. The b* and tgp functions can force
an i.i.d. hierarchical linear model by setting bprior=b0. Moreover, instead of
rescaling the responses with m0r1, one might try encoding a mixture prior for
the nugget in order to explicitly model region-specific noise. This requires direct
usage of tgp.
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> plot(moto.btlm, main = "Bayesian CART,", layout = "surf")
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Figure 13: Posterior predictive distribution using btlm on the motorcycle accident data:
mean and 90% credible interval

> p <- tgp.default.params(2)

> p$bprior <- "b0"

> p$nug.p <- c(1, 0.1, 10, 0.1)

> moto.tgp <- tgp(X = mcycle[, 1], Z = mcycle[, 2],

+ params = p, BTE = c(2000, 22000, 2))

The resulting posterior predictive surface is shown in the top half of Figure 14.
The bottom half of the figure shows the norm (difference) in predictive quantiles,
clearly illustrating the treed GP’s ability to capture input-specific noise in the
posterior predictive distribution.

3.5 Friedman data

This Friedman data set is the first one of a suite that was used to illustrate
MARS (Multivariate Adaptive Regression Splines) [9]. There are 10 covariates
in the data (x = {x1, x2, . . . , x10}). The function that describes the responses
(Z), observed with standard Normal noise, has mean

E(Z|x) = µ = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5, (16)

but depends only on {x1, . . . , x5}, thus combining nonlinear, linear, and irrele-
vant effects. Comparisons are made on this data to results provided for several
other models in recent literature. Chipman et al. [4] used this data to compare
their linear CART algorithm to four other methods of varying parameterization:
linear regression, greedy tree, MARS, and neural networks. The statistic they
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> plot(moto.tgp, main = "custom treed GP LLM,", layout = "surf")
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> plot(moto.tgp, main = "custom treed GP LLM,", layout = "as")
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Figure 14: top Posterior predictive distribution using a custom parameterized tgp call on the
motorcycle accident data: mean and 90% credible interval; bottom Quantile-norm (90%-5%)
showing input-dependent noise.

use for comparison is root mean-square error (RMSE)

MSE =
∑

n

i=1
(µi − ẑi)

2/n RMSE =
√

MSE

where ẑi is the model-predicted response for input xi. The x’s are randomly
distributed on the unit interval.
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