
trates inputs (X) more heavily in the first quadrant where the response is more
interesting. Predictive locations (XX) are the remaining grid locations.

> exp2d.data <- exp2d.rand()

> X <- exp2d.data$X

> Z <- exp2d.data$Z

> XX <- exp2d.data$XX

Linear CART is clearly just as inappropriate for this data as it was for the
sinusoidal data in the previous section. However, a stationary GP fits this data
just fine. After all, the process is quite well behaved. In two dimensions one has
a choice between the isotropic and separable correlation functions. Separable is
the default in the tgp package. For illustrative purposes here, I shall use the
isotropic power family.

> exp.bgp <- bgp(X = X, Z = Z, XX = XX, corr = "exp")

> plot(exp.bgp, main = "GP,")
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Figure 8: Left: posterior predictive mean using bgp on synthetic exponential data; right

image plot of posterior predictive variance with data locations X (dots) and predictive locations
XX (circles).

Progress indicators are suppressed. Figure 8 shows the resulting posterior pre-
dictive surface under the GP in terms of means (left) and variances (right) in the
default layout. The sampled locations (X) are shown as dots on the right image
plot. Predictive locations (XX) are circles. Predictive uncertainty for the sta-
tionary GP model is highest where sampling is lowest, despite that the process
is very uninteresting there.

A treed GP seems more appropriate for this data. It can separate out the
large uninteresting oart of the input space from the interesting part. The result
is speedier inference and region-specific estimates of predictive uncertainty.

> exp.btgp <- btgp(X = X, Z = Z, XX = XX, corr = "exp")
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> plot(exp.btgp, main = "treed GP,")
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> tgp.trees(exp.btgp)

NOTICE: skipped plotting tree of height 1, with lpost = 137.691

x2 <> 1.6  

0.0153 
51 obs

1

1e−04 
29 obs

2

 height=2, log(p)=195.056

Figure 9: Top-Left: posterior predictive mean using btgp on synthetic exponential data; top-

right image plot of posterior predictive variance with data locations X (dots) and predictive
locations XX (circles). Bottom: MAP trees of each height encountered in the Markov chain
with σ̂

2 and the number of observations n at the leaves.

Figure 9 shows the resulting posterior predictive surface (top) and trees (bottom).
Typical runs of the treed GP on this data find two, and if lucky three, partitions.
As might be expected, jumping to the LLM for the uninteresting, zero-response,
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part of the input space can yield even further speedups [10]. Also, Chipman et
al. recommend restarting the Markov chain a few times in order to better explore
the marginal posterior for T [4]. This can be important for higher dimensional
inputs requiring deeper trees. The tgp default is R = 1, i.e., one chain with no
restarts. Here two chains—one restart—are obtained using R = 2.

> exp.btgpllm <- btgpllm(X = X, Z = Z, XX = XX, corr = "exp",

+ R = 2)

tree[alpha,beta,nmin]=[0.25,2,10]

n=80, d=2, nn=361

BTE=(2000,7000,2), R=2, linburn=0

preds: data

linear prior: flat

s2[a0,g0]=[5,10]

s2 lambda[a0,g0]=[0.2,10]

corr prior: isotropic power

nug[a,b][0,1]=[1,1],[1,1]

nug prior fixed

gamlin=[10,0.2,0.7]

d[a,b][0,1]=[1,20],[10,10]

d prior fixed

burn in:

**GROW** @depth 0: [1,0.5], n=(58,22)

r=1000 corr=0.0163577 1.89685 : n = 51 29

r=2000 corr=0.0207345 1.80314 : n = 51 29

Obtaining samples (nn=361 predictive locations):

r=1000 corr=0.0159534 1.67157 : mh=2 n = 51 29

r=2000 corr=0.0205377 0.81554 : mh=2 n = 51 29

r=3000 corr=0.0218972 1.02797 : mh=2 n = 51 29

r=4000 corr=0.0211877 0.561356 : mh=2 n = 51 29

r=5000 corr=0.0201483 0.0918733 : mh=2 n = 51 29

Grow: 0.002695%, Prune: 0%, Change: 0.004518%,

finished repetition 1 of 2

removed 2 leaves from the tree

burn in:

**GROW** @depth 0: [0,0.5], n=(61,19)

**GROW** @depth 1: [1,0.45], n=(44,17)

r=1000 corr=0.0205517 0(0.734697) 0(1.10333) : mh=2 n = 44 17 19

r=2000 corr=0.0209547 0(1.01703) 0(1.22251) : mh=2 n = 44 17 19

Obtaining samples (nn=361 predictive locations):

r=1000 corr=0.0228327 0(0.718989) 0(0.975866) : mh=3 n = 44 17 19
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r=2000 corr=0.0233133 0(0.67959) 0.0167081 : mh=3 n = 44 17 19

r=3000 corr=0.021841 0(0.561704) 0.0322474 : mh=3 n = 44 17 19

r=4000 corr=0.0203374 0(1.06896) 0(0.0606924) : mh=3 n = 44 17 19

r=5000 corr=0.0175408 0(1.26111) 0(1.00789) : mh=3 n = 44 17 19

Grow: 0.003979%, Prune: 0%, Change: 0.006608%, Swap: 0.01258%

finished repetition 2 of 2

removed 3 leaves from the tree

> plot(exp.btgpllm, main = "treed GP LLM,")
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Figure 10: Left: posterior predictive mean using btgpllm on synthetic exponential data;
right image plot of posterior predictive variance with data locations X (dots) and predictive
locations XX (circles).

Progress indicators show where the LLM (corr=0(d)) or the GP is active. Fig-
ure 10 show how similar the resulting posterior predictive surfaces are compared
to the treed GP (without LLM).

Finally, viewing 1-d projections of tgp-class output is possible by supplying
a 1-vector proj argument to the plot.tgp. Figure 11 shows the two projections
for exp.btgpllm. In the left surface plots the open circles indicate the mean of
posterior priedictive distribution. Red lines show the 90% intervals, the norm
of which are shown on the right.

3.4 Motorcycle Accident Data

The Motorcycle Accident Dataset [21] is a classic nonstationary data set used in
recent literature [18] to demonstrate the success of nonstationary models. The
data consists of measurements of the acceleration of the head of a motorcycle
rider as a function of time in the first moments after an impact. In addition to
being nonstationary, the data has input-dependent noise which makes it useful
for illustrating how the treed GP model handles this nuance. There are at
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> plot(exp.btgpllm, main = "treed GP LLM,", proj = c(1))
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> plot(exp.btgpllm, main = "treed GP LLM,", proj = c(2))

−2 0 2 4 6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

treed GP LLM, z mean

x2

z

−2 0 2 4 6

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

treed GP LLM, z error

x2

er
ro

r

Figure 11: 1-d projections of the posterior predictive surface (left) and normed
predictive intervals (right) of the 1-d tree GP LLM analysis of the synthetic
exponential data. The top plots show projection onto the first input, and the
bottom ones show the second.

least two—perhaps three—three regions where the response exhibits different
behavior both in terms of the correlation structure and noise level.

The data is included as part of the MASS library in R.

> library(MASS)

Figure 12 shows how a stationary GP is able to capture the nonlinearity in the
response but fails to capture the input dependent noise and increased smooth-
ness (perhaps linearity) in parts of the input space.
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