misc {elliptic}R Documentation

Manipulate real or imaginary components of an object

Description

Manipulate real or imaginary components of an object

Usage

Im(x) <- value
Re(x) <- value

Arguments

x Complex-valued object
value Real-valued object

Author(s)

Robin K. S. Hankin

References

J. Kotus and M. Urb'{a}nski 2003. “Hausdorff dimension and Hausdorff measures of Julia sets of elliptic functions”. Bulletin of the London Mathematical Society, volume 35, pp269-275

K. Briggs 1995. “A torus map based on Jacobi's sn()”. Computers and Graphics, volume 19, number 3, pp451-453

S. D. Panteliou and A. D. Dimarogonas and I. N .Katz 1996. “Direct and inverse interpolation for Jacobian elliptic functions, zeta function of Jacobi and complete elliptic integrals of the second kind”. Computers and Mathematics with Applications, volume 32, number 8, pp51-57.

E. L. Wachspress 2000. “Evaluating Elliptic functions and their inverses”. Computers and Mathematics with Applications, volume 29, pp131-136.

D. G. Vyridis and S. D. Panteliou and I. N. Katz 1999. “An inverse convergence approach for arguments of Jacobian elliptic functions”. Computers and Mathematics with Applications, volume 37, pp21-26.

S. Paszkowski 1997. “Fast convergent quasipower series for some elementary and special functions”. Computers and Mathematics with Applications, volume 33, number 1/2, pp181-191.

M. Abramowitz and I. A. Stegun 1965. “Handbook of mathematical functions, ams-55”, New York: Dover

K. Chandrasekharan 1985. “Elliptic functions”, Springer-Verlag

E. T. Whittaker and G. N. Watson 1952. “A course of modern analysis”, fourth edition, Cambridge University Press.

Examples

x <- 1:10
Im(x) <- 1

x <- 1:5
Im(x) <- 1/x


[Package elliptic version 1.0-1 Index]