mcsamp {arm} | R Documentation |
The quick function for MCMC sampling for lmer and glmer objects and convert to Bugs objects for easy display.
## Default S3 method: mcsamp(object, n.chains=3, n.iter=1000, n.burnin=floor(n.iter/2), n.thin=max(1, floor(n.chains * (n.iter - n.burnin)/1000)), saveb=TRUE, deviance=TRUE, make.bugs.object=TRUE) ## S4 method for signature 'lmer': mcsamp (object, ...) ## S4 method for signature 'glmer': mcsamp (object, ...)
object |
mer objects from lme4 |
n.chains |
number of MCMC chains |
n.iter |
number of iteration for each MCMC chain |
n.burnin |
number of burnin for each MCMC chain,
Default is n.iter/2 , that is, discarding the
first half of the simulations. |
n.thin |
keep every kth draw from each MCMC chain. Must be a positive integer.
Default is max(1, floor(n.chains * (n.iter-n.burnin) /
1000)) which will only thin if there are at least 2000
simulations. |
saveb |
if 'TRUE', causes the values of the random effects in each sample to be saved. |
deviance |
compute deviance for mer objects. Only works
for lmer object |
make.bugs.object |
tranform the output into bugs object, default is TRUE |
... |
further arguments passed to or from other methods. |
This function generates a sample from the posterior
distribution of the parameters of a fitted model using Markov
Chain Monte Carlo methods. It automatically simulates multiple
sequences and allows convergence to be monitored. The function relies on
mcmcsamp
in lme4
.
An object of (S3) class '"bugs"' suitable for use with the functions in the "R2WinBUGS" package.
Andrew Gelman gelman@stat.columbia.edu; Yu-Sung Su ys463@columbia.edu
Andrew Gelman and Jennifer Hill, Data Analysis Using Regression and Multilevel/Hierarchical Models, Cambridge University Press, 2006.
Douglas Bates and Deepayan Sarkar, lme4: Linear mixed-effects models using S4 classes.
# Here's a simple example of a model of the form, y = a + bx + error, # with 10 observations in each of 10 groups, and with both the intercept # and the slope varying by group. First we set up the model and data. # group <- rep(1:10, rep(10,10)) group2 <- rep(1:10, 10) mu.a <- 0 sigma.a <- 2 mu.b <- 3 sigma.b <- 4 rho <- 0.56 Sigma.ab <- array (c(sigma.a^2, rho*sigma.a*sigma.b, rho*sigma.a*sigma.b, sigma.b^2), c(2,2)) sigma.y <- 1 ab <- mvrnorm (10, c(mu.a,mu.b), Sigma.ab) a <- ab[,1] b <- ab[,2] d <- rnorm(10) x <- rnorm (100) y1 <- rnorm (100, a[group] + b*x, sigma.y) y2 <- rbinom(100, 1, prob=invlogit(a[group] + b*x)) y3 <- rnorm (100, a[group] + b[group]*x + d[group2], sigma.y) y4 <- rbinom(100, 1, prob=invlogit(a[group] + b*x + d[group2])) # # Then fit and display a simple varying-intercept model: M1 <- lmer (y1 ~ x + (1|group)) display (M1) M1.sim <- mcsamp (M1) print (M1.sim) plot (M1.sim) # # Then the full varying-intercept, varying-slope model: # M2 <- lmer (y1 ~ x + (1 + x |group)) display (M2) M2.sim <- mcsamp (M2) print (M2.sim) plot (M2.sim) # # Then the full varying-intercept, logit model: # M3 <- lmer (y2 ~ x + (1|group), family=binomial(link="logit")) display (M3) M3.sim <- mcsamp (M3) print (M3.sim) plot (M3.sim) # # Then the full varying-intercept, varying-slope logit model: # M4 <- lmer (y2 ~ x + (1|group) + (0+x |group), family=binomial(link="logit")) display (M4) M4.sim <- mcsamp (M4) print (M4.sim) plot (M4.sim) # # Then non-nested varying-intercept, varying-slop model: # M5 <- lmer (y3 ~ x + (1 + x |group) + (1|group2)) display(M5) M5.sim <- mcsamp (M5) print (M5.sim) plot (M5.sim)