divisor {elliptic}R Documentation

Number theoretic functions

Description

Various useful number theoretic functions

Usage

divisor(n,k=1)
primes(n)
factorize(n)
mobius(n)
totient(n)

Arguments

n Integer
k Integer specifying second argument to sigma function

Details

Functions primes() and factorize() cut-and-pasted from Bill Venebles's conf.design package, version 0.0-3. Function primes(n) returns a vector of all primes not exceeding n; function factorize(n) returns an integer vector of nondecreasing primes whose product is n.

The others are multiplicative functions, defined in Hardy and Wright:

Function divisor(), also written sigma_k(n), is the divisor function defined on p239. This gives the sum of the k-th powers of all the divisors of n. Setting k=0 corresponds to d(n), which gives the number of divisors of n.

mobius() is the M"{o}bius function (p234), giving zero if n has a repeated prime factor, and (-1)^q where n=p_1*p_2*...p_q otherwise.

totient() is Euler's totient function (p52), giving the number of integers smaller than n and relatively prime to it.

Note

The divisor function crops up in g2.fun() and g3.fun(). Note that this function is not called sigma() to avoid conflicts with Weierstrass's sigma function (which ought to take priority in this context).

Author(s)

Robin K. S. Hankin and Bill Venebles (primes() and factorize())

References

G. H. Hardy and E. M. Wright, 1985. An introduction to the theory of numbers (fifth edition). Oxford University Press.

Examples

mobius(1)
mobius(2)
divisor(140)
divisor(140,3)

plot(divisor(1:100,k=1),type="s",xlab="n",ylab="divisor(n,1)")

[Package elliptic version 1.0-1 Index]