svyby {survey}R Documentation

Survey statistics on subsets

Description

Compute survey statistics on subsets of a survey defined by factors.

Usage

svyby(formula, by, design, FUN, ..., deff=FALSE,keep.var = TRUE,
keep.names = TRUE,verbose=FALSE, vartype=c("se","cv","cvpct","var"),
 drop.empty.groups=TRUE, covmat=FALSE)
## S3 method for class 'svyby':
SE(object,...)
## S3 method for class 'svyby':
deff(object,...)
## S3 method for class 'svyby':
coef(object,...)

Arguments

formula A formula specifying the variables to pass to FUN (or a matrix, data frame, or vector)
by A formula specifying factors that define subsets, or a list of factors.
design A svydesign or svrepdesign object
FUN A function taking a formula and survey design object as its first two arguments.
... Other arguments to FUN
deff Request a design effect from FUN
keep.var If FUN returns a svystat object, extract standard errors from it
keep.names Define row names based on the subsets
verbose If TRUE, print a label for each subset as it is processed.
vartype Report variability as one or more of standard error, coefficient of variation, percent coefficient of variation, or variance
drop.empty.groups If FALSE, report NA for empty groups, if TRUE drop them from the output
covmat If TRUE, compute covariances between estimates for different subsets (currently only for replicate-weight designs). Allows svycontrast to be used on output.
object An object of class "svyby"

Value

An object of class "svyby": a data frame showing the factors and the results of FUN

Note

Asking for a design effect (deff=TRUE) from a function that does not produce one will cause an error or incorrect formatting of the output. The same will occur with keep.var=TRUE if the function does not compute a standard error.

See Also

svytable and ftable.svystat for contingency tables, ftable.svyby for pretty-printing of svyby

Examples

data(api)
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)

svyby(~api99, ~stype, dclus1, svymean)
svyby(~api99, ~stype, dclus1, svyquantile, quantiles=0.5,ci=TRUE)
## without ci=TRUE svyquantile does not compute standard errors
svyby(~api99, ~stype, dclus1, svyquantile, quantiles=0.5, keep.var=FALSE)
svyby(~api99, list(school.type=apiclus1$stype), dclus1, svymean)
svyby(~api99+api00, ~stype, dclus1, svymean, deff=TRUE)
svyby(~api99+api00, ~stype+sch.wide, dclus1, svymean, keep.var=FALSE)

rclus1<-as.svrepdesign(dclus1)

svyby(~api99, ~stype, rclus1, svymean)
svyby(~api99, ~stype, rclus1, svyquantile, quantiles=0.5)
svyby(~api99, list(school.type=apiclus1$stype), rclus1, svymean, vartype="cv")
svyby(~enroll,~stype, rclus1,svytotal, deff=TRUE)
svyby(~api99+api00, ~stype+sch.wide, rclus1, svymean, keep.var=FALSE)

## comparing subgroups using covmat=TRUE
mns<-svyby(~api99, ~stype, rclus1, svymean,covmat=TRUE)
vcov(mns)
svycontrast(mns, c(E = 1, M = -1))

## extractor functions
(a<-svyby(~enroll, ~stype, rclus1, svytotal, deff=TRUE, verbose=TRUE, vartype=c("se","cv","cvpct","var")))
deff(a)
SE(a)
cv(a)
coef(a)

## ratio estimates
svyby(~api.stu, by=~stype, denominator=~enroll, design=dclus1, svyratio)

## empty groups
svyby(~api00,~comp.imp+sch.wide,design=dclus1,svymean)
svyby(~api00,~comp.imp+sch.wide,design=dclus1,svymean,drop.empty.groups=FALSE)


[Package survey version 3.6-2 Index]