sp.predict {spBayes}R Documentation

Prediction for new points given a ggt.sp, sp.lm, or bayes.geostat.exact object

Description

The function sp.predict collects a posterior predictive sample for a set of new points given a ggt.sp, sp.lm, or bayes.geostat.exact object.

Usage

  sp.predict(sp.obj, pred.coords, pred.covars,
             start=1, end, thin=1, verbose=TRUE, ...)

Arguments

sp.obj an object returned by ggt.sp, bayes.geostat.exact, or sp.lm
pred.coords an n x 2 matrix of m prediction point coordinates in R^2 (e.g., easting and northing). The first column is assumed to be easting coordinates and the second column northing coordinates.
pred.covars an n x p design matrix associated with the new points. If this is a multivariate prediction defined by m models, the multivariate design matrix can be created by passing a list of the m univariate design matrices to the mk.mv.X function.
start specifies the first sample included in the prediction calculation. This is useful for those who choose to acknowledge chain burn-in.
end specifies the last sample included in the prediction calculation. The default is to use all posterior samples in sp.obj.
thin a sample thinning factor. The default of 1 considers all samples between start and end. For example, if thin = 10 then 1 in 10 samples are considered between start and end.
verbose if TRUE calculation progress is printed to the screen; otherwise, nothing is printed to the screen.
... currently no additional arguments.

Details

Please refer to Section 3.2 in the vignette.

Value

obs.coords the matrix of the observation coordinates.
pred.coords the matrix of prediction point coordinates specified by pred.coords.
pp.samples a matrix that holds samples from the posterior predictive distribution(s). For ggt.sp, the rows of this matrix correspond to the predicted points and the columns are the posterior predictive samples. If prediction is for m response variables the pp.samples matrix has mn rows. The predictions for points are held in rows 1:m, (m+1):2m, ..., ((i-1)m+1):im, ..., ((n-1)m+1):nm, where i = 1 ... n (e.g., the samples for the first point are in rows 1:m, second point in rows (m+1):2m, etc.). For bayes.geostat.exact, the rows of this matrix correspond to the predicted points and the columns are the posterior predictive samples.

Author(s)

Andrew O. Finley finleya@msu.edu,
Sudipto Banerjee sudiptob@biostat.umn.edu.

References

Banerjee, S., Carlin, B.P., and Gelfand, A.E. (2004). Hierarchical modeling and analysis for spatial data. Chapman and Hall/CRC Press, Boca Raton, Fla.

Banerjee, S., Gelfand, A.E., Finley, A.O., and Sang, H. (In press). Gaussian predictive process models for large spatial datasets. Journal of the Royal Statistical Society Series B.

See Also

ggt.sp, bayes.geostat.exact, sp.lm

Examples

## Not run: 
##Portions of this example requires MBA package to make surfaces
library(MBA)

###########################################
##  Prediction for bayes.geostat.exact
###########################################
data(FBC07.dat)
Y <- FBC07.dat[1:150,"Y.2"]
coords <- as.matrix(FBC07.dat[1:150,c("coord.X", "coord.Y")])

n.samples <-1000
n = length(Y)
p = 1

phi <- 0.15
nu <- 0.5

beta.prior.mean <- as.matrix(rep(0, times=p))
beta.prior.precision <- matrix(0, nrow=p, ncol=p)

alpha <- 5/5

sigma.sq.prior.shape <- 2.0
sigma.sq.prior.rate <- 5.0

##############################
##Simple linear model with
##the default exponential
##spatial decay function
##############################
m.1 <- bayes.geostat.exact(Y~1, n.samples=n.samples,
                           beta.prior.mean=beta.prior.mean,
                           beta.prior.precision=beta.prior.precision,
                           coords=coords, phi=phi, alpha=alpha,
                           sigma.sq.prior.shape=sigma.sq.prior.shape,
                           sigma.sq.prior.rate=sigma.sq.prior.rate,
                           sp.effects=TRUE)

##Now prediction
set.seed(1)
pred.coords <- expand.grid(seq(0,100,length=10),seq(0,100,length=10))
pred.covars <- as.matrix(rep(1,nrow(pred.coords)))

m.1.pred <- sp.predict(m.1, pred.coords=pred.coords,
                       pred.covars=pred.covars, thin=5)

par(mfrow=c(2,2))
obs.surf <-
  mba.surf(cbind(coords, Y), no.X=100, no.Y=100, extend=T)$xyz.est
image(obs.surf, xaxs = "r", yaxs = "r", main="Observed response")
points(coords, pch=19, cex=1, col="green")
contour(obs.surf, add=T)

w.hat <- rowMeans(m.1$sp.effects)
w.surf <-
  mba.surf(cbind(coords, w.hat), no.X=100, no.Y=100, extend=T)$xyz.est
image(w.surf, xaxs = "r", yaxs = "r", main="Random effects")
points(coords, pch=19, cex=1, col="green")
contour(w.surf, add=T)

y.hat <- rowMeans(m.1.pred)
y.surf <-
  mba.surf(cbind(pred.coords, y.hat), no.X=100, no.Y=100, extend=T)$xyz.est
image(y.surf, xaxs = "r", yaxs = "r", main="Predicted response")
points(pred.coords, pch=19, cex=1, col="black")
rect(0, 0, 50, 50, col=NA, border="green")
contour(y.surf, add=T)

y.var <- apply(m.1.pred, 1, var)
y.surf <-
  mba.surf(cbind(pred.coords, y.var), no.X=100, no.Y=100, extend=T)$xyz.est
image(y.surf, xaxs = "r", yaxs = "r", main="Predicted response\nvariance")
points(coords, pch=19, cex=1, col="green")
points(pred.coords, pch=19, cex=1, col="black")
rect(0, 0, 50, 50, col=NA, border="green")
contour(y.surf, add=T)
 
###########################################
##       Prediction for sp.lm
###########################################
data(rf.n200.dat)

Y <- rf.n200.dat$Y
coords <- as.matrix(rf.n200.dat[,c("x.coords","y.coords")])
w <- rf.n200.dat$w

pred.coords <- expand.grid(seq(1,10,1), seq(1,10,1))
n.pred <- nrow(pred.coords)

###############################
##Prediction with a sp.lm model
###############################
m.2 <- sp.lm(Y~1, coords=coords,
             starting=list("phi"=0.6,"sigma.sq"=1, "tau.sq"=1),
             sp.tuning=list("phi"=0.01, "sigma.sq"=0.05, "tau.sq"=0.05),
             priors=list("phi.Unif"=c(0.3, 3), "sigma.sq.IG"=c(2, 1),
               "tau.sq.IG"=c(2, 1)),
             cov.model="exponential",
             n.samples=1000, verbose=TRUE, n.report=100, sp.effects=TRUE)

pred <- sp.predict(m.2, pred.coords,
                   pred.covars=as.matrix(rep(1,n.pred)))

par(mfrow=c(1,2))
obs.surf <-
  mba.surf(cbind(coords, Y), no.X=100, no.Y=100, extend=TRUE)$xyz.est
image(obs.surf, xaxs = "r", yaxs = "r", main="Observed response")
points(coords)
contour(obs.surf, add=T)

y.hat <- rowMeans(pred$y.pred)
y.pred.surf <-
  mba.surf(cbind(pred.coords, y.hat), no.X=100, no.Y=100, extend=TRUE)$xyz.est
image(y.pred.surf, xaxs = "r", yaxs = "r", main="Predicted response")
points(coords, pch=1, cex=1)
points(pred.coords, pch=19, cex=1)
contour(y.pred.surf, add=T)
legend(1.5,2.5, legend=c("Obs.", "Pred."), pch=c(1,19),
       cex=c(1,1), bg="white")

###############################
##Prediction with a sp.lm
##predictive process model
###############################
m.3 <- sp.lm(Y~1, coords=coords, knots=c(6,6,0),
             starting=list("phi"=0.6,"sigma.sq"=1, "tau.sq"=1),
             sp.tuning=list("phi"=0.01, "sigma.sq"=0.01, "tau.sq"=0.01),
             priors=list("phi.Unif"=c(0.3, 3), "sigma.sq.IG"=c(2, 1),
               "tau.sq.IG"=c(2, 1)),
             cov.model="exponential",
             n.samples=2000, verbose=TRUE, n.report=100, sp.effects=TRUE)

print(summary(m.3$p.samples))
plot(m.3$p.samples)

pred <- sp.predict(m.3, pred.coords,
                   pred.covars=as.matrix(rep(1,n.pred)))

par(mfrow=c(1,2))
obs.surf <-
  mba.surf(cbind(coords, Y), no.X=100, no.Y=100, extend=TRUE)$xyz.est
image(obs.surf, xaxs = "r", yaxs = "r", main="Observed response")
points(coords)
contour(obs.surf, add=T)

y.hat <- rowMeans(pred$y.pred)
y.pred.surf <-
  mba.surf(cbind(pred.coords, y.hat), no.X=100, no.Y=100, extend=TRUE)$xyz.est
image(y.pred.surf, xaxs = "r", yaxs = "r", main="Predicted response")
points(coords, pch=1, cex=1)
points(m.3$knot.coords, pch=3, cex=1)
points(pred.coords, pch=19, cex=1)
contour(y.pred.surf, add=T)
legend(1.5,2.5, legend=c("Obs.", "Knots", "Pred."),
       pch=c(1,3,19), cex=c(1,1,1), bg="white")

###########################################
##       Prediction for ggt.sp
###########################################
data(FBC07.dat)

##Divide the data into model and prediction sets
Y.1 <- FBC07.dat[1:100,"Y.1"]
Y.2 <- FBC07.dat[1:100,"Y.2"]
model.coords <- as.matrix(FBC07.dat[1:100,c("coord.X", "coord.Y")])
pred.coords <- as.matrix(FBC07.dat[151:200,c("coord.X", "coord.Y")])

#############################
##   Univariate model
#############################

##Fit some model with ggt.sp.
K.prior <- prior(dist="IG", shape=2, scale=5)
Psi.prior <- prior(dist="IG", shape=2, scale=5)
phi.prior <- prior(dist="UNIF", a=0.06, b=3)

var.update.control <-
  list("K"=list(starting=5, tuning=0.5, prior=K.prior),
       "Psi"=list(starting=5, tuning=0.5, prior=Psi.prior),
       "phi"=list(starting=0.1, tuning=0.5, prior=phi.prior)
       )

beta.control <- list(update="GIBBS", prior=prior(dist="FLAT"))

run.control <- list("n.samples"=1000)

Fit <- ggt.sp(formula=Y.2~1, run.control=run.control,
              coords=model.coords,
              var.update.control=var.update.control,
              beta.update.control=beta.control,
              cov.model="exponential")

##Now make predictions for the holdout set.
##Step 1. make the design matrix for the prediction points.
pred.covars <- as.matrix(rep(1, nrow(pred.coords)))

##Step 2. call sp.predict.
Pred <- sp.predict(Fit, pred.covars=pred.covars,
                   pred.coords=pred.coords)

##Step 3. check out the predicted random effects and
##predicted response variable.

Pred.sp.effects.surf <-
  mba.surf(cbind(pred.coords, rowMeans(Pred$pred.sp.effects)),
           no.X=100, no.Y=100, extend=TRUE)$xyz.est

Pred.Y.surf <-
  mba.surf(cbind(pred.coords, rowMeans(Pred$pred.y)),
           no.X=100, no.Y=100, extend=TRUE)$xyz.est

par(mfrow=c(1,2))
image(Pred.sp.effects.surf, xaxs="r", yaxs="r",
      main="Predicted random spatial effects")
contour(Pred.sp.effects.surf, add=TRUE)

image(Pred.Y.surf, xaxs="r", yaxs="r",
      main="Predicted Y.2")
contour(Pred.Y.surf, add=TRUE)

#############################
##   Multivariate models
#############################

##Fit some model with ggt.sp.
K.prior <- prior(dist="IWISH", df=2, S=diag(c(3, 6)))
Psi.prior <- prior(dist="IWISH", df=2, S=diag(c(7, 5)))
phi.prior <- prior(dist="UNIF", a=0.06, b=3)

K.starting <- matrix(c(2,-3, 0, 1), 2, 2)
Psi.starting <- diag(c(3, 2))

var.update.control <-
  list("K"=list(starting=K.starting, tuning=diag(c(0.1, 0.5, 0.1)),
         prior=K.prior),
       "Psi"=list(starting=Psi.starting, tuning=diag(c(0.1, 0.5, 0.1)),
         prior=Psi.prior),
       "phi"=list(starting=0.1, tuning=0.5,
         prior=list(phi.prior, phi.prior))
       )

beta.control <- list(update="GIBBS", prior=prior(dist="FLAT"))

run.control <- list("n.samples"=1000, "sp.effects"=FALSE)

Fit.mv <-
  ggt.sp(formula=list(Y.1~1, Y.2~1), run.control=run.control,
         coords=model.coords,
         var.update.control=var.update.control,
         beta.update.control=beta.control,
         cov.model="exponential")

##Now make predictions for the holdout set.
##Step 1. make the design matrix for the prediction points using
##the mk.mv.X function.
pred.covars.1 <- as.matrix(rep(1, nrow(pred.coords)))
pred.covars.2 <- as.matrix(rep(1, nrow(pred.coords)))

pred.covars.mv <- mk.mv.X(list(pred.covars.1, pred.covars.2))

##Step 2. call sp.predict.
Pred.mv <- sp.predict(Fit.mv, pred.covars=pred.covars.mv,
                      pred.coords=pred.coords)

##Step 3. check out the predicted random effects and
##predicted response variables.   Recall, these are
##organized as m consecutive rows for each point.
Pred.sp.effects.1 <-
  Pred.mv$pred.sp.effects[seq(1, nrow(Pred.mv$pred.sp.effects), 2),]

Pred.sp.effects.2 <-
  Pred.mv$pred.sp.effects[seq(2, nrow(Pred.mv$pred.sp.effects), 2),]

Pred.Y.1 <-
  Pred.mv$pred.sp.effects[seq(1, nrow(Pred.mv$pred.y), 2),]

Pred.Y.2 <-
  Pred.mv$pred.sp.effects[seq(2, nrow(Pred.mv$pred.y), 2),]

##Then map.
Pred.sp.effects.1.surf <-
  mba.surf(cbind(pred.coords, rowMeans(Pred.sp.effects.1)),
           no.X=100, no.Y=100, extend=TRUE)$xyz.est

Pred.sp.effects.2.surf <-
  mba.surf(cbind(pred.coords, rowMeans(Pred.sp.effects.2)),
           no.X=100, no.Y=100, extend=TRUE)$xyz.est

Pred.Y.1.surf <-
  mba.surf(cbind(pred.coords, rowMeans(Pred.Y.1)),
           no.X=100, no.Y=100, extend=TRUE)$xyz.est

Pred.Y.2.surf <-
  mba.surf(cbind(pred.coords, rowMeans(Pred.Y.2)),
           no.X=100, no.Y=100, extend=TRUE)$xyz.est

par(mfrow=c(2,2))
image(Pred.sp.effects.surf, xaxs="r", yaxs="r",
      main="Predicted random spatial effects Y.1")
contour(Pred.sp.effects.1.surf, add=TRUE)

image(Pred.sp.effects.surf, xaxs="r", yaxs="r",
      main="Predicted random spatial effects Y.2")
contour(Pred.sp.effects.2.surf, add=TRUE)

image(Pred.sp.effects.surf, xaxs="r", yaxs="r",
      main="Predicted Y.1")
contour(Pred.Y.1.surf, add=TRUE)

image(Pred.sp.effects.surf, xaxs="r", yaxs="r",
      main="Predicted Y.2")
contour(Pred.Y.2.surf, add=TRUE)

## End(Not run)

[Package spBayes version 0.0-7 Index]