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Abstract

The document answers some frequently asked questions and explains some
design decisions I have made in vegan.
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1 Scaling in redundancy analysis

This chapter discusses the scaling of scores (results) in redundancy analysis and
principal component analysis performed by function rda in the vegan library.
Principal component analysis, and hence redundancy analysis, is a variant of
singular value decomposition (svd). Functions rda and prcomp (library mva)
even use svd internally in their algorithm. In svd a centred data matrix is
decomposed into orthogonal components so that xij =

∑
k σkuikvjk, where

uik and vjk are orthonormal coefficient matrices and σk are singular values.
Orthonormality means that sum of squared columns is one and their cross-
product is zero, or

∑
i u2

ik =
∑

j v2
jk = 1, and

∑
i uikuil =

∑
j vjkvjl = 0 for

k 6= l. This is a decomposition, and the original matrix is found exactly from
the singular vectors and corresponding singular values, and first two singular
components give the best rank = 2 least squares estimate of the original matrix.

Principal component analysis is often presented (and performed in legacy
software) as an eigenanalysis of covariance matrices. Instead of data matrix, we
analyse a matrix of covariances and variances S. The result will be orthonormal
coefficient matrix U and eigenvalues Λ. The coefficients uik ares identical to
svd (except for possible sign changes), and eigenvalues λk are related to the
corresponding singular values by λk = σ2

k/(n−1). With classical definitions, the
sum of all eigenvalues equals the sum of variances of species, or

∑
k λk =

∑
j s2

j ,
and it is often said that first axes explain a certain maximized proportion of total
varinace in the data. The other orthonormal matrix V can be found indirectly
as well, so that we have the same components in both methods.
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Table 1: Alternative scalings for rda used in the functions prcomp and princomp
(package mva), and the one used in the vegan function rda and the proprietary
software Canoco scores in terms of orthonormal species (uik) and site scores
(vjk), eigenvalues (λk), number of sites (n) and species standard deviations
(sj). In rda, const = 4

√
(n− 1)

∑
λk.

Site scores u∗ik Species scores v∗jk

prcomp, princomp uik

√
n− 1

√
λk vjk

rda, scaling=1 uik

√
λk/

∑
λk × const vjk × const

rda, scaling=2 uik × const vjk

√
λk/

∑
λk × const

rda, scaling=3 uik
4
√

λk/
∑

λk × const vjk
4
√

λk/
∑

λk × const
Canoco, scaling=-1 uik

√
n
√

λk/
∑

λk vjk
√

n

Canoco, scaling=-2 uik
√

n vjk
√

n
√

λk/
∑

λk

Canoco, scaling=-3 uik
√

n 4
√

λk/
∑

λk vjk
√

n 4
√

λk/
∑

λk

Canoco, scaling=1 uik
√

n
√

λk/
∑

λk vjk
√

n/sj

Canoco, scaling=2 uik
√

n vjk
√

n
√

λk/
∑

λk/sj

Canoco, scaling=3 uik
√

n 4
√

λk/
∑

λk vjk
√

n 4
√

λk/
∑

λk/sj

The coefficients uik and vjk are of the same (unit) length for all axes k,
but singular values σk or eigenvalues λk give the information of the importance
of axes, or the ‘axis lengths.’ Instead of the orthonormal coefficients, or equal
length axes, it is customary to use eigenvalues to scale at least one of the alter-
native scores to reflect the importance of axes or describe the true configuration
of points. Table 1 shows some alternative scalings used in various software.
These alternatives apply to principal components analysis in all cases, and in
redundancy analysis, they apply to species scores and constraints or linear com-
bination scores; weighted averaging scores have somewhat wider dispersion.

In community ecology, it is common to plot both species and sites in the same
graph. If this graph is a graphical display of svd, or a graphical, low-dimensional
approximation of the data, the graph is called a biplot. The graph is a biplot if
the transformed scores satisfy xij = c

∑
k u∗ijv

∗
jk where c is a scaling constant.

In functions princomp, prcomp and rda, c = 1 or the plotting scores are the
straight biplot scores so that the singular values (or eigenvalues) are expressed
for sites, and species are left unscaled. For Canoco c = n−1

√
n− 1

√∑
λk

with positive Canoco scaling values. All these c are constants for a matrix, so
these are all biplots with different internal scaling of species and site scores with
respect to each other. For Canoco with negative scaling values, no constant c
can be found, but the correction is dependent on species standard deviations sj ,
so this alternative does not define a biplot.

There is no natural way of scaling species and site scores to each other, but all
functions and programs above selected different strategies. The eigenvalues in
redundancy and principal components analysis are scale dependent and change
when the the data are multiplied by a constant. If we have percent cover data,
the eigenvalues are typically very high, and the scores scaled by eigenvalues
will have much wider dispersion than the orthonormal set. If we express the
percentages as proportions, or divide the matrix by 100, the eigenvalues will
be reduced by factor 1002, and the scores scaled by eigenvalues will have much
narrower dispersion than the orthonormal set. For graphical biplots we should
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be able to fix the relation and make it invariant for scale changes. The solution
adoption in the R standard function biplot.princomp is to scale site and species
scores independently, and typically very differently, but plot each with separate
scales so that both sets fill the graph area. The solution in Canoco and rda is
to use proportional eigenvalues λk/

∑
λk instead of original eigenvalues. These

proportions are invariant with scale changes, and typically they have a nice
range for plotting two data sets in the same graph.

In this chapter, I used always centred data matrices. In principle svd could
be done with original, non-centred data, but there is no option for this in rda,
because I think that non-centred analysis is dubious and I do not want to encour-
age its use (if you think you need it, you are certainly so good in programming
that you can change that one line in rda.default). I do think that the argu-
ments for non-centred analysis are often twisted, and the method is not very
good for its intended purpose, but there are better methods for finding fuzzy
classes. Normal, centred analysis moves the origin to the average of all species,
and the dimensions describe differences from this average. Non-centred analysis
leaves the origin in the empty site with no species, and the first axis usually runs
from the empty site to the average site. Second and third non-centred compo-
nents are often very similar to first and second (etc.) centred components, and
the best way to use non-centred analysis is to discard the first component and
use only the rest. This is better done with directly centred analysis.

2 Why to use weighted averages scores instead
of linear combinations in constrained ordina-
tion

Constrained ordination methods such as Constrained Correspondence Analysis
(CCA) and Redundancy Analysis (RDA) produce two kind of site scores [3, 4]:

� LC or Linear Combination Scores which are linear combinations of con-
straining variables.

� WA or Weighted Averages Scores which are such weighted averages of
species scores that are as similar to LC scores as possible.

Many computer programs for constrained ordinations give only or primarily LC
scores, following Mike Palmer’s recommendation [3]. However, functions cca
and rda in the vegan package use primarily WA scores. This chapter explains
the reasons for this choice.

Briefly, the main reasons are that

� LC scores are linear combinations, so they give us only the (scaled) envi-
ronmental variables. This means that they are independent of vegetation
and cannot be found from the species composition. Moreover, identical
combinations of environmental variables give identical LC scores irrespec-
tive of vegetation.

� Bruce McCune has demonstrated that noisy environmental variables re-
sult in deteriorated LC scores whereas WA scores tolerate some errors
in environmental variables [2]. All environmental measurements contain
some errors, and therefore it is safer to use WA scores.
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This articles studies mainly the first point. The users of vegan have a choice of
either LC or WA (default) scores, but after reading this article, I believe that
most of them do not want to use LC scores, because they are not what they
were looking for in ordination.

2.1 LC Scores are Linear Combinations

Let us perform a simple CCA analysis using only two environmental variables
so that we can see the constrained solution completely in two dimensions:

> library(vegan)

> data(varespec)

> data(varechem)

> orig <- cca(varespec ~ Al + K, varechem)

Function cca in vegan uses WA scores as default. So we must specifically ask
for LC scores (Fig. 1).

Figure 1 LC scores in CCA of the original data.
> plot(orig, dis = c("lc", "bp"))

−2 −1 0 1 2

−
2

−
1

0
1

2

CCA1

C
C

A
2

18

15

24
27

23
19

22

16

28

13

14

20

25 7

5

6

3

4

2

9

12

10
11

21

Al

K −
1

0

What would happen to linear combinations of LC scores if we shuffle the
ordering of sites in species data? Function sample() below shuffles the indices.

> i <- sample(nrow(varespec))

> shuff <- cca(varespec[i, ] ~ Al + K, varechem)
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Figure 2 LC scores of shuffled species data.
> plot(shuff, dis = c("lc", "bp"))
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It seems that site scores are fairly similar, but oriented differently (Fig. 2). We
can use Procrustes rotation to see how similar the site scores indeed are (Fig.
3). There is a small difference, but this will disappear if we use Redundancy
Analysis (RDA) instead of CCA (Fig. 4). Here we use a new shuffling as well.

> tmp1 <- rda(varespec ~ Al + K, varechem)

> i <- sample(nrow(varespec))

> tmp2 <- rda(varespec[i, ] ~ Al + K, varechem)

LC scores indeed are linear combinations of constraints (environmental vari-
ables) and independent of species data: You can shuffle your species data, or
change the data completely, but the LC scores will be unchanged in RDA. In
CCA the LC scores are weighted linear combinations with site totals of species
data as weights. Shuffling species data in CCA changes the weights, and this
can cause changes in LC scores. The magnitude of changes depends on the
variability of site totals.

The original data and shuffled data differ in their goodness of fit1.

> orig

1Or probably differ: The randomization is done while generating this article, and different
versions may have different randomizations.
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Figure 3 Procrustes rotation of LC scores from CCA of original and shuffled
data.
> plot(procrustes(scores(orig, dis = "lc"), scores(shuff, dis = "lc")))
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Call:
cca(formula = varespec ~ Al + K, data = varechem)

Inertia Rank
Total 2.083
Constrained 0.476 2
Unconstrained 1.607 21
Inertia is mean squared contingency coefficient

Eigenvalues for constrained axes:
CCA1 CCA2

0.3608 0.1152

Eigenvalues for unconstrained axes:
CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8

0.37476 0.24036 0.19696 0.17818 0.15209 0.11840 0.08364 0.07567
(Showed only 8 of all 21 unconstrained eigenvalues)

> shuff
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Figure 4 Procrustes rotation of LC scores in RDA of the original and shuffled
data.
> plot(procrustes(scores(tmp1, dis = "lc"), scores(tmp2, dis = "lc")))
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Call:
cca(formula = varespec[i, ] ~ Al + K, data = varechem)

Inertia Rank
Total 2.0832
Constrained 0.1599 2
Unconstrained 1.9233 21
Inertia is mean squared contingency coefficient

Eigenvalues for constrained axes:
CCA1 CCA2

0.10985 0.05004

Eigenvalues for unconstrained axes:
CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8

0.45658 0.34599 0.23398 0.19544 0.15216 0.12121 0.11010 0.07754
(Showed only 8 of all 21 unconstrained eigenvalues)

Similarly their WA scores will be (probably) very different (Fig. 5).
The example used only two environmental variables so that we can easily plot

all constrained axes. With a larger number of environmental variables the full
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Figure 5 Procrustes rotation of WA scores of CCA with the original and shuffled
data.
> plot(procrustes(orig, shuff))
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configuration remains similarly unchanged, but its orientation may change, so
that two-dimensional projections look different. In the full space, the differences
should remain within numerical precision:

> tmp1 <- rda(varespec ~ ., varechem)

> tmp2 <- rda(varespec[i, ] ~ ., varechem)

> tmp1

Call:
rda(formula = varespec ~ N + P + K + Ca + Mg + S + Al + Fe + Mn + Zn + Mo + Baresoil + Humdepth + pH, data = varechem)

Inertia Rank
Total 1825.7
Constrained 1459.9 14
Unconstrained 365.8 9
Inertia is variance

Eigenvalues for constrained axes:
RDA1 RDA2 RDA3 RDA4 RDA5 RDA6 RDA7 RDA8

820.1042 399.2847 102.5617 47.6317 26.8382 24.0481 19.0644 10.1670
RDA9 RDA10 RDA11 RDA12 RDA13 RDA14
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4.4288 2.2720 1.5353 0.9255 0.7155 0.3119

Eigenvalues for unconstrained axes:
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

186.192 88.464 38.188 18.402 12.839 10.552 5.519 4.521 1.092

> proc <- procrustes(scores(tmp1, dis = "lc", choi = 1:14), scores(tmp2,

+ dis = "lc", choi = 1:14))

> max(residuals(proc))

[1] 2.224834e-14

In cca the difference would be somewhat larger than now observed 2.2248e-
14 because site weights used for environmental variables are shuffled with the
species data.

2.2 Factor constraints

It seems that users often get confused when they perform constrained analysis
using only one factor (class variable) as constraint. The following example uses
the classical dune meadow data [1]:

> data(dune)

> data(dune.env)

> summary(dune.env)

A1 Moisture Management Use Manure
Min. : 2.800 1:7 BF:3 Hayfield:7 0:6
1st Qu.: 3.500 2:4 HF:5 Haypastu:8 1:3
Median : 4.200 4:2 NM:6 Pasture :5 2:4
Mean : 4.850 5:7 SF:6 3:4
3rd Qu.: 5.725 4:3
Max. :11.500

> orig <- cca(dune ~ Moisture, dune.env)

> orig

Call:
cca(formula = dune ~ Moisture, data = dune.env)

Inertia Rank
Total 2.1153
Constrained 0.6283 3
Unconstrained 1.4870 16
Inertia is mean squared contingency coefficient

Eigenvalues for constrained axes:
CCA1 CCA2 CCA3

0.4187 0.1330 0.0766

Eigenvalues for unconstrained axes:
CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8
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0.409782 0.225913 0.176062 0.123389 0.108171 0.090751 0.085878 0.060894
CA9 CA10 CA11 CA12 CA13 CA14 CA15 CA16

0.056606 0.046688 0.041926 0.020103 0.014335 0.009917 0.008505 0.008033

When the results are plotted using LC scores, sample plots fall only in four
alternative positions (Fig. 6). In the previous chapter we saw that this happens

Figure 6 LC scores of the dune meadow data using only one factor as a con-
straint.
> plot(orig, dis = "lc")
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because LC scores are the environmental variables, and they can be distinct
only if the environmental variables are distinct. However, normally the user
would like to see how well the environmental variables separate the vegetation,
or inversely, how we could use the vegetation to discriminate the environmental
conditions. For this purpose we should plot WA scores, or LC scores and WA
scores together: The LC scores show where the site should be, the WA scores
shows where the site is.

Function ordispider adds line segments to connect each WA score with the
corresponding LC (Fig. 7). This is the standard way of displaying results of
discriminant analysis, too. Moisture classes 1 and 2 seem to be overlapping,
and cannot be completely separated by their vegetation. Other classes are more
distinct, but there seems to be a clear arc effect or a “horseshoe” despite using
CCA.
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Figure 7 A “spider plot” connecting WA scores to corresponding LC scores.
The shorter the web segments, the better the ordination.
> plot(orig, display = "wa", type = "points")

> ordispider(orig, col = "red")

> text(orig, dis = "cn", col = "blue")
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2.3 Conclusion

LC scores are only the (weighted and scaled) constraints and independent of
vegetation. If you plot them, you plot only your environmental variables. WA
scores are based on vegetation data but are constrained to be as similar to the
LC scores as only possible. Therefore vegan calls LC scores as constraints and
WA scores as site scores, and uses primarily WA scores in plotting. However,
the user makes the ultimate choice, since both scores are available.
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