
CHAPTER 1 
 

INTRODUCTION 
 
 

1.1  Introduction to the Circular Random Field and 

Circular Random Variables 

 
This dissertation addresses related and practical aspects of the circular random 

field (CRF) including extracting the spatial correlation, modeling the spatial correlation, 

estimation, simulation, and plotting. 

A random field (RF) is a stochastic process operating over a space of dimension 

1≥ .  A CRF is defined as a RF containing circular random variables (CRVs) at multiple 

observation locations which are spatially correlated.  With Θ the CRV and x the location, 

in 2-dimensional space, the CRF is the set ( ){ }2R, ∈Θ xx .  Circular-spatial correlation is 

defined here as the mean cosine of the angle between random components of directions 

(nonrandom component removed) vs. distance between observation locations.  Spatial 

correlation increases as distance between observation locations decreases.  Hence, 

random components of direction tend to be more similar as distance between 

observation locations decreases. 

A CRV takes random directions with the total probability of all possible directions 

distributed on the circular support (unit circle, [ )π2,0 , or [ )ππ ,− ).  The starting point of 

the support is the same direction as the ending point.  A CRV or direction is expressed 

as either a scalar in units of radians or degrees (º), or as a unit vector (Chapter 4).  Since 

trigonometric functions require angles in radian units, the input for functions of direction 

will be expressed in radian units with values in [ )π2,0  until Chapter 5, where a new 

method requires values in the equivalent support of [ )ππ +− ,  radians.  Maps and 

compasses will use º units, which may be obtained from radian units by multiplying by 



 

 

2 

180º/π .  On a circle, the 0s of the [ )π2,0  radians, the [ )ππ +− ,  radians, and the 

[ )360,0 º scales are aligned.  0 radians, 0º, and the east direction will be aligned to 3 

o’clock.  90º, 2/π  radians, and the north direction will be aligned to 12 o’clock.  π  

radians, 180º, and the west direction will be aligned to 9 o’clock.  These scales of 

direction or angle are shown in Figure 1-1.  Figure 1-1 is a typical plot of the probability 

density function (PDF) of the triangular CRV (density increases linearly toward the 

maximum density at 0). 

Other types of directional random variables include the spherical, axial, and 

vectorial random variables.  A spherical random variable takes random locations on a 

unit sphere.  An axial random variable takes random axis orientations in a plane where 

there is no reason to distinguish a direction from its opposite.    A vectorial random 

variable has both random direction and random magnitude.  Hence, random fields may 

also be defined for axial, vectorial, and spherical random variables. 

 

Figure 1-1.  Circular PDF of the Triangular Circular Probability Distribution.  The density 

( )θf  is often plotted on the outside of a unit circle. 
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Applications of circular random variables and circular random fields include: 

� Astronomy  - Planet orbit inclination 

� Biology - Creature migration and navigation by sun, wind, magnetic fields, etc 

� Chronotherapeutics - Response to a treatment relative to the time of treatment 

� Geography - Compass directions 

� Geology - Crystal and fault orientation 

� Geophysics - Magnetic field direction 

� Meteorology - Wind direction 

� Oceanography - Ocean currents  

� Periodic phenomena - Births/month, deaths/month, eggs produced/month, coats 

sold/month, accidents per hour, accidents per month, sunspots/year, biorhythms 

� Paleomagnetism – Direction of magnetism locked into lava  

� Physics – Dihedral (having or formed by two planes) angles in molecules 

� Rounding errors – Integer atomic weights  

� Structural Geology - Fracture pattern in a region 

This dissertation will treat the cardioid, triangular, uniform, von Mises, and 

wrapped Cauchy circular distributions in alphabetical order in all sections: 

• The cardioid distribution models the direction marbles roll off when dropped on a 

plane inclined to the horizontal. A 0º inclination of the plane produces the circular 

uniform PDF. 

• The triangular distribution has a PDF that increases linearly toward mean direction. 

• The uniform distribution models an honest roulette wheel and provides the null model 

to test the alternatives of unimodal (a single cluster of directions in the data) and 

multimodal distributions (two or more clusters in the data ). 
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• The von Mises distribution is practically interchangeable with the wrapped normal 

circular probability distribution.  The “wrapped normal” distribution is obtained by 

“wrapping” the tails of the normal PDF around a unit circle in opposite directions.   

The probability density at an angle increases with each revolution of the tails by the 

densities of the PDF that overlap the angle.  Originally, the von Mises distribution 

modeled experimental errors arising from determination of atomic weights.  Other 

applications of the von Mises distribution now include the direction of the sum of unit 

vectors representing observations of direction or periodic phenomena.  The wrapped 

normal distribution dominates geology and models Brownian motion on the circle.  

However, inference is easier with the von Mises distribution. 

• The wrapped Cauchy distribution is obtained by “wrapping the tails” of the Cauchy 

distribution on a circle in opposing directions.  The Cauchy distribution is used to 

indirectly simulate the von Mises distribution. 

In this dissertation, an observation is a measurement of direction or a realization 

of a circular random variable, expressed as a unit vector or as an angle, with an angle 

from 0 to 360º, from 0 to 2π, or from - π to π (see Figure 1-1 for details).  The main 

circular statistics are based on computing with direction in unit vector format.  A sample 

consisting of observations of direction  as unit vectors is summarized as the resultant 

vector.  The vector resultant is the sum of the unit vectors representing directions.  Unit 

vectors are summed by attaching the tail of one vector to the head of another.  The main 

circular statistics include the resultant vector mean direction and the resultant vector 

mean length. 

The resultant vector mean direction, 
n

θ , which is the direction of the resultant 

vector, is the measure of central direction.  Why is it necessary to use vectors to 
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determine the average direction?  Figure 1-2 shows that the average or central 

direction of 15º and 345º is not the arithmetic mean = 180º as on a linear scale. 

In Figure 1-2, the sum of these directions is the vector 

 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( )( )0,15cos2

15sin,15cos15sin,15cos

345sin,345cos15sin,15cos

°

=°−°+°°

=°°+°°

 

 which has a direction of 0º.  Hence, the average direction is 0º.  The extensive use of 

trigonometry distinguishes circular statistics from the statistics of linear random 

variables. 

The other main circular statistic is the resultant vector mean length 
n

R .  With n 

the number of observations of direction, the resultant vector mean length 
n

R  of n 

observations of direction is 1/n times the vector resultant length 
n

R .  It is a measure of 

concentration about the mean direction, where the sense of concentration is the 

opposite the sense of variability (a measure of spread).  When variability increases, 

concentration decreases and vice versa.  If all n observations have the same direction, 

the variability is zero, the resultant vector length nR
n

=  (the unit vector observations of 

direction added tail to head are aligned and n long), and the resultant vector mean 

length 11 ==
nnn

RR , which is the theoretical maximum.  When direction takes random 

values, the variability is greater than 0, nR
n

< , and 1
1

<=
nn

R
n

R .  If n is even, and the 

angles between all pairs of adjacent observations of direction are equal, the variability 

(spread) is the theoretical maximum, the horizontal and vertical components of the unit 

vectors cancel, 0=
n

R , 0
1

==
nn

R
n

R , and the resultant vector mean direction 
n

θ  is 

undefined. 
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Figure 1-2.  The Arithmetic Mean of 180º Does Not Point in the Central Direction 

of 0º. 
 
 
The parameter of the circular distribution corresponding to the resultant vector 

mean length of the sample is the population resultant vector mean length ρ .  The 

effects of ρ  on the sample observations of direction and the sample mean resultant 

vector (sample resultant vector scaled by 1/n) are illustrated in Figure 1-3.  The sample 

observations are indicated by tan arrows and the sample mean resultant vectors by 

black arrows.  Circles with unit radius are over plotted in black to indicate a distance of 1.  

Going left-to-right in Figure 1-3, the population resultant vector mean length ρ increases, 

concentration about the mean direction increases, and the length of the mean resultant 

vector of the sample tends to increase.  In the right hand plot with ρ =0.99, the length of 

the sample mean resultant vector gets close to 1, but is not exactly 1 as can be seen in 

the zoom view on the right. 

 

 
  01.0=ρ       50.0=ρ           99.0=ρ        99.0=ρ , zoom 

Figure 1-3.  The Effect of the Population Resultant Vector Mean Length ρ on the Sample 
Mean Resultant Vector (Black) of a Sample (Tan) from the von Mises Circular 

Distribution.  As ρ goes toward 1, concentration about the mean direction increases and 
the length of the mean resultant vector goes toward 1. 
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1.2  A Motivational Example 

 
 

Figure 1-4 shows traditional arrow plots of ocean wind data as circular-spatial 

data (top), which is the focus of the dissertation, and vector-spatial data (bottom).  The 

data are plotted as tan colored arrows and the means as black arrows.  The data were 

freely extracted from the Comprehensive Ocean Atmosphere Data Set (Chapter 2, 

Subsection 2.2.1) at http://iridl.ldeo.columbia.edu/SOURCES/.COADS/.mean/ for 1980 

to 1990, December to March, and for the area of latitude -3° N to +3° N and longitude -

93° E to -87° E.  Note that -3° N means 3° south of the equator, and -93° E means 93° 

west of the Greenwich prime meridian.  The data contain 1934 observations of month, 

year, longitude, latitude, and east and north components of wind velocity.  In the vector-

spatial plot, the mean resultant vectors were computed from the average horizontal and 

vertical velocity components by location.  The circular-spatial data were obtained from 

the vector-spatial data by scaling the vector observations to unit length loosing the 

magnitude information.  In the circular-spatial plot, the mean resultant vectors of the 

circular-spatial data were computed by location, and scaled to unit length.  The 

difference between differently computed means is 9.96° at -87° E and +3° N.  Average 

wind direction is changing smoothly in the south-north direction, rotating clockwise as 

latitude increases and evidencing a global trend. 

 
1.3  Problem Description 

 
The problems addressed in this dissertation include: 

• How may circular-spatial data be efficiently interpolated based on spatial 

correlation?  Jammalamadaka and SenGupta summarized many expressions of 

nonspatial circular correlation (2001, Chapter 8).   How could spatial correlation be 

extracted from circular-spatial data and modeled to be useful for the interpolation
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Figure 1-4.  Circular and Vector Spatial Data and Their Means for the Direction the 
Ocean Wind Blows Toward.  Data from 1980 to 1990,  December to March, in the Area 
of Latitude -3° N to +3° N and Longitude -93° E to -87° E.  At each sampling location, the 
raw data are indicated by tan arrows and the means by black arrows. 
 
 

 

Circular-spatial 
data and mean 
directions as 
unit vectors 

Vector-spatial 
data and mean 
resultant vectors 
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 of direction between observation locations? 

• How can a CRF be simulated based on input specifications of a circular 

probability distribution and spatial properties such as the distance at which CRVs 

are no longer correlated, and what are the properties of the simulated CRF? 

• The intelligibility of arrow plots (Figure 1-4) decreases as data density and 

random variation increase.  Intelligibility is also affected by missing values.  How 

can circular-spatial data, interpolations of circular-spatial data, or simulations of a 

CRF be plotted as a heat map that is not color discontinuous at any direction, 

e.g., where the color encoding direction at 0º and 360º are the same?  How can 

these data be plotted with high data density such that both large scale and small 

scale directional structure can be easily recognized? 

 
1.4  Literature Review 

 
1.4.1  Brief History of Circular Statistics 

Circular statistics, the statistics of direction, is a relatively new statistical domain 

as indicated by some history extracted from Fisher (1993, chap. 1).  Circular-spatial 

statistics is very new.  In 1767, John Mitchell, FRS (Fellow of the Royal Society), tested 

the hypothesis that the distribution of angular separations of stars is uniform.  He 

determined that the number of close stars were too many to support this hypothesis.  In 

1802, John Playfair noted that directional data should be analyzed differently from linear 

data, recommending that average direction be the direction of the resultant vector.  In 

1858, Florence Nightingale, chief nurse in the British Army during the Crimean War, 

created the rose diagram (for example, see Figure 1-5, a rose plot of ocean wind 

direction) displaying the effect of sanitation vs. month of year, saving thousands of lives 

in military hospitals.   In 1880, Lord Rayleigh created a statistical test for the hypothesis 
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of the uniform circular distribution vs. the unimodal alternative.  In 1918, von Mises 

defined the circular normal, or von Mises distribution, which is a basis of parametric 

statistical inference for circular data.  In 1938, Reiche introduced what is now called the 

CUSUM chart, which plots cumulative vector direction and average magnitude, to 

indicate when a sufficient amount of vectorial data has been acquired.  In 1939, 

Krumbein introduced the transformation of axial to vectorial data for analysis, and back 

transformation to axial results.  The paper by Watson and Williams (1956) about 

statistical inference for the mean and variability of a sample from the von Mises 

distribution and methods for comparing two or more samples started a period of 

significant theoretical development.  Following developments of the 1960s, Mardia 

(1972) published a comprehensive account of methods for display, summarization, 

goodness of fit, and parametric/nonparametric analyses of circular data.  Batschelet 

(1981) studied methods for bio-circular data analysis.  Large sample theory was 

introduced about a decade after Mardia’s book.  Developments in circular correlation 

and regression, time series analysis, large sample and bootstrap methods, and 

nonparametric density estimation are found in Jupp and Mardia (1989).  McNeill (1993) 

extended geostatistics to circular data.  Thus, most of the theoretical developments in 

the field of circular statistics are relatively recent.  Additional past contributors are listed 

in Mardia (1972). 

The latest books on circular statistics include those written by  Fisher (1993), 

Mardia and Jupp (2000), and Jammalamadaka and SenGupta (2001).  
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Figure 1-5.  Rose Plot of the Circular Data Derived from the Data of Figure 1-4.  The 
angle of the wedge is the bin width and the area of a wedge is proportional to the bin 
count.  The heavy radial line indicates the mean of 106.3° and the short arc indicates the 
95% confidence interval of (104.8°,107.8°). 
 
 
1.4.2 Literature Review for Imaging Circular-Spatial Data 
 

Sources were examined for examples of imaged circular-spatial data including: 

• Visualization displays of computational fluid dynamics (CFD) software: 

o FLUENT (FLUENT 2008) – Software for simulation of fluid flow, heat and mass 

transfer, and related phenomena involving turbulence, reactions, and multiphase 

(liquid and gas) flow. 

o FIELDVIEW (Intelligent Light 2008) – Post-processing software for identification 

of important flow features and characteristics in simulations, and for interactive 

exploration of results. 

o Ensight (CEI 2008) – General tools for visualizing complex datasets. 

• Software for the analysis of circular data: 

o Axis (Pisces Conservation Ltd 2003) – Implements the principal graphical 

methods and statistical tests described by Fisher (1993) for the analysis of 

circular data. 
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o CircStats (Lund and Agostinelli 2007) – This R package implements the 

graphical methods and statistical tests described by Jammalamadaka and 

SenGupta (2001) for the analysis of circular data. 

o Oriana 2 (Kovach Computing 2004) – Calculates statistics, tests, and correlations 

for circular data.  Graphics include the rose diagram, linear and circular 

histograms, the arrow plot with arrow length as frequency or magnitude, stacked 

raw data plots, and circular QQ plots. 

o Surfer 8 (Scientific Software Group 2008) – Converts vector-spatial data into 

contour, surface, wireframe, vector, and shaded relief maps. 

o Vector Rose 3.0 (Zippi 2001) – Calculates circular statistics, tests, and graphics 

(including the rose diagram and the circular histogram) for circular data. 

None of these software packages provide a method of imaging circular-spatial data 

similar to the new circular dataimage of Chapter 2. 

 
1.4.3 Literature Review for Circular-Spatial Correlation 

Bivariate or multivariate data involving CRV is common.  However, the study of 

association or correlation is newer than the relatively new area of circular statistics.  

Further, the study of circular-spatial correlation is newest.  Jammalamadaka and 

SenGupta (2001) described several methods for computing the association and 

correlation of nonspatial CRV and circular data.  These include: 

• The population circular correlation coefficient  

( ) ( ) ( ){ }
( )( ) ( )( )νβµα

νβµα
βαρ

−−

−−
=

sinsin

sinsinE
,

VarVar
c

 with E the expectation operator, angle α , 

{ }αµ E= , angle β , { }βυ E= , and Var the variance. 

• Parametric cases of 
c

ρ involving specific circular probability distributions. 
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• The sample circular correlation coefficient, 
( ) ( )

( ) ( )∑

∑

=

=

−−

−−
=

n

i ii

n

i
ii

nc
r

1

22

1
,

sinsin

sinsin

ββαα

ββαα
 

with n the sample size, sample ( ) ( )
nn

βαβα ,,,, 11 K , and α  and β  the sample mean 

directions. 

• The nonparametric version of 
nc

r ,  with 
i

α  replaced by ( )
π

α
2

n

rank
i , and 

i
β  replaced 

by ( )
π

β
2

n

rank
i . 

 
1.4.4   Literature Review for Kriging of Circular-Spatial Data 

1.4.4.1  Terminology 

 Kriging is a body of techniques for predicting spatially correlated data.  Figure 1-

6 shows a heatmap before and after kriging.  The name of the technique is derived from 

Daniel Krige, a South African mining geologist, who originated the method.  Kriging uses 

the measurements, their distances apart, and a model of their spatial dependence based 

on the variogram or covariogram.  The covariogram is the graph of the mean covariance 

between observations a distance d apart vs. d.  The variogram is the graph of the mean 

squared difference of observations a distance d apart vs. d.  In general, the variogram is 

less sensitive to minor departures from the assumption that the process mean is 

independent of location than the covariogram.  The data are called isotropic, as opposed 

to anisotropic, when the spatial dependence is independent of the direction in which 

measurements are taken, and dependent on the distance d only. 
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Figure 1-6.  Kriging, the Estimation of Spatial Data Based on Spatial Correlation. 

 
1.4.4.2  Literature Review for Kriging 
 of Circular-Spatial Data 
 

 A significant body of literature exists for the kriging of circular and vector spatial 

data.  Quimby (1986) estimated an n-vector at a location assuming each location has a 

different mean and variance, and using the multivariate auto covariance-cross 

covariance matrix.  Young (1987) showed that kriging is applicable to 3D vectors 

describing rock fracture orientation assuming each location has the same unknown 

mean, and using a scalar variogram function of vectors.  Young’s method is evaluated 

using cross validation.  Schaeben, Boogaart, and Apel (2001) predicted the polar unit 

vector at a given location, using multivariate variograms and covariance functions, 

assuming a constant mean, and defining different types of isotropy, which lead to 

different simplifications of the general cross-covariance function and kriging procedures.  

A measure of confidence in the estimate was given.  Boogaart and Schaeben (2002a) 

extended prediction to direction, axis, or orientation by embedding a sphere/hemisphere 

in a real vector space.  Boogaart and Schaeben (2002b) predicted rotation by 

embedding the rotations in a real vector space with assumptions of isotropy. 
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McNeill (1993) introduced kriging of circular random variables via trigonometric 

based circular statistics, assuming a common circular probability distribution, isotropic 

spatial correlation, and a variogram as a function of cosines. 

 
1.4.5 Literature Review for Simulation 
 of Circular-Spatial Data 

A RF is a stochastic process operating over a space.  A Gaussian RF (GRF) is a 

RF in which the random variables follow the multivariate normal distribution with 

covariance depending on distance between locations of the random variables.  

References include Gneiting and Schlather (2004), Lantuejoul (2002), and Schlather 

(1999).  The function grf in the R package geoR (Ribeiro and Diggle 2001) generates 

simulations of GRFs for a given covariance model.  The function GaussRF in the R 

package RandomFields (Schlather 2001) generates spatial GRFs and spatial-temporal 

GRFs.  

 
1.5  Dissertation Overview 

 
Chapter 2 extends the graphical methods of spatial statistics.  It details a new 

method for circular-spatial data that produces a continuous image with high resolution 

such that directional structure can be simultaneously recognized on both local and global 

scales.  

Chapter 3 introduces a new graphical method called the cosineogram (graph of 

cosines) and related theory for the extraction of spatial correlation from circular-spatial 

data in the form required by the circular kriging method of Chapter 4.  The empirical 

cosineogram plots the mean cosine of the angle between random components of 

direction a distance d apart vs. d.  The cosineogram is replaced with a fitted positive 

definite function to achieve optimal fit of estimated direction to the actual, but 
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unobserved and unknown direction.  Three main positive definite functions from linear 

kriging are adapted to the cosine behavior of the CRF.  Additional functions are identified 

in Appendix M. 

Chapter 4 provides a detailed linear-algebraic and trigonometric derivation of an 

estimator of direction in an isotropic CRF (correlation same in all directions).  Building on 

the work of McNeill, the derivation proceeds without assuming the variogram as a 

function of cosines and avoids the Taylor series approximation.  This is accomplished by 

minimization of the mean squared length of the error between the estimator and the 

actual, but unknown and unobserved direction.  This derivation produces a new 

expression of circular-spatial correlation as the mean cosine of the angle between 

random components of direction observed at a distance d apart.  Optimality of the 

estimator is proved.  A computationally efficient form of the estimator is derived.  

Chapter 4 also derives a first order estimator of the imprecision of the direction 

estimator, correcting the result of McNeill.  The interpolation is called “exact” in the 

sense that, although undesirable in the presence of noise, the estimate at a location 

where direction is observed equals the observed direction, and the imprecision or 

variability of the estimate goes to zero as distance to an observation location goes to 

zero. 

In Chapter 5, the ideas of GRFs are extended to CRFs.  A method is provided to 

simulate a CRF with a specified circular probability distribution from a GRF with a 

specified spatial covariance model.  Some properties of the simulated CRF are argued 

and others involving one or two nonclosed form transformations are characterized. 

Figure 1-7 summarizes circular-spatial methods of Chapters 1-5.  Chapter 6 provides a 

comprehensive example, which shows each step of Figure 1-7, and connects the 

chapters. 



 

 

17 
  

 

Figure 1-7.  Flow Chart of Methods for Circular-Spatial Data. 



 

 

18 
Additional details are given in the appendices.  Appendix A summarizes the 

mathematical notation used.  Appendix B organizes the linear algebra theory and 

subordinate proofs required by the circular kriging derivations of Chapter 4. 

Appendices C – M are relevant to the simulation of circular random fields of 

Chapter 5.  Appendices C and D continue the qualitative evaluations of CRFs of Chapter 

5, Section 5.5.  Circular CDFs are derived in Appendix E for support [ )π2,0 , verified by 

integration in Appendix F, and modified for the equivalent rotated support [ )ππ +− ,  in 

Appendix G.  Rotation of the support from [ )π2,0  to [ )ππ +− ,  is required to map 

standard normal random variables to a CRV with mean direction 0 using the method of 

Chapter 5.  Appendix H corrects a form of the wrapped Cauchy CDF, evaluates three 

forms of the CDF, and selects the form for implementation in the R package CircSpatial 

that is simple and does not have numerical issues at extreme low variability.  Appendix I 

derives the inverse CDF of the triangular circular probability distribution.  It is required to 

simulate triangular CRFs.  The inverse CDFs of the cardioid, von Mises, and wrapped 

Cauchy circular distributions are nonclosed form transformations.  Hence, Appendix M 

characterizes the spatial dependence of CRFs simulated by the method of Chapter 5. 

Appendix J documents the R software package CircSpatial, which covers all the 

chapters and details a method of interpolation of global trend models based on circular-

spatial data.  Estimated direction is obtained by adding the kriging interpolation to the 

global trend model interpolation.  Appendices K and L contain the R function code of the 

R package CircSpatial and the R command line input used to produce many of the 

figures in the dissertation.  Appendix N has graphics for CRV and circular data 

introduced in Chapter 1 including a new cylindrical display of the probability density 

function of CRV. 


