
Extended Model Formulas in R: Multiple Parts and

Multiple Responses

Achim Zeileis
Universität Innsbruck

Yves Croissant
Université de la Réunion

Abstract

This introduction to the R package Formula is a (slightly) modified version of Zeileis
and Croissant (2010), published in the Journal of Statistical Software.

Model formulas are the standard approach for specifying the variables in statistical
models in the S language. Although being eminently useful in an extremely wide class of
applications, they have certain limitations including being confined to single responses and
not providing convenient support for processing formulas with multiple parts. The latter is
relevant for models with two or more sets of variables, e.g., different equations for different
model parameters (such as mean and dispersion), regressors and instruments in instru-
mental variable regressions, two-part models such as hurdle models, or alternative-specific
and individual-specific variables in choice models among many others. The R package For-
mula addresses these two problems by providing a new class “Formula” (inheriting from
“formula”) that accepts an additional formula operator | separating multiple parts and
by allowing all formula operators (including the new |) on the left-hand side to support
multiple responses.

Keywords: formula processing, model frame, model matrix, R.

1. Introduction

Since publication of the seminal “white book” (Chambers and Hastie 1992) the standard
approach for fitting statistical models in the S language is to apply some model-fitting function
(such as lm() or glm()) to a “formula” description of the variables involved in the model and
typically stored in a “data.frame”. The semantics of formula processing are based on the
ideas of the Wilkinson and Rogers (1973) notation which in turn was targeted at specification
of analysis of variance models. Despite this emphasis on specification of terms in models
with linear predictors, formula notation has always been used much more generally in S, e.g.,
for specifying variables in classification and regression trees, margins in contingency tables,
or variables in graphical displays. In such applications, the precise meaning of a particular
formula depends on the function that processes it. Typically, the standard formula processing
approach would encompass extraction of the specified terms using terms(), preparation of a
preprocessed data frame using model.frame(), and computation of a “design” or “regressor”
matrix using model.matrix(). However, there are certain limitations to these standard
formula processing tools in S that can be rather inconvenient in certain applications:

1. The formula notation can just be used on the right-hand side (RHS) of a formula (to the
right of the ~) while it has its original arithmetic meaning on the left-hand side (LHS).

2 Extended Model Formulas in R

This makes it difficult to specify multiple responses, especially if these are not numeric
(e.g., factors). This feature would be useful for specifying multivariate outcomes of
mixed types in independence tests (e.g., in the coin package, Hothorn, Hornik, van de
Wiel, and Zeileis 2006, 2008) or in models with multivariate responses (e.g., supported
in the party package Zeileis, Hothorn, and Hornik 2008a).

2. There is no simple construct in standard formula notation that allows one to separate
several groups of variables from which separate model matrices can be derived. This task
occurs in many types of models, e.g., when processing separate sets of variables for mean
and dispersion (e.g., in the betareg package, Cribari-Neto and Zeileis 2010), separate
equations for location, scatter, and shape (e.g., in the gamlss package, Stasinopoulos
and Rigby 2007), regressors and instruments in instrumental variable regressions (e.g.,
in the plm package, Croissant and Millo 2008, or the AER package, Kleiber and Zeileis
2008), variables in two-part models such as hurdle models or zero-inflated regressions
(e.g., in the pscl package, Zeileis, Kleiber, and Jackman 2008b), alternative-specific
and individual-specific variables in choice models (e.g., in the mlogit package, Croissant
2010), efficiency level variables in stochastic frontier analysis (e.g., in the frontier pack-
age, Coelli and Henningsen 2010), or modeling variables and partitioning variables in
model-based recursive partitioning techniques (e.g., in the party package, Zeileis et al.
2008a).

In many of the aformentioned packages, standard “formula” objects are employed but their
processing is generalized, e.g., by using multiple formulas, multiple terms, by adding new
formula operators or even more elaborate solutions. However, in many situations it is not easy
to reuse these generalizations outside the package/function they were designed for. Therefore,
as we repeatedly needed such generalizations in our own packages and addressed this in
the past by various different solutions, it seemed natural to provide a more general unified
approach by means of our new Formula package. This has already been reused in some of our
own packages (including AER, betareg, mlogit, and plm) but can also be easily employed by
other package developers (e.g., as in the frontier package). More applications in our own and
other packages will hopefully follow.

In the remainder of this paper we discuss how multiple responses and multiple parts (both on
the LHS and RHS) are enabled in the Formula package written in the R system for statistical
computing (R Development Core Team 2009) and available from the Comprehensive R Archive
Network (CRAN) at http://CRAN.R-project.org/package=Formula. Built on top of basic
“formula” objects, the “Formula” class just adds a thin additional layer which is based on a
single additional operator, namely |, that can be used to separate different parts (or groups)
of variables. Formula essentially just handles the different formula parts and leverages the
existing methods for“formula”objects for all remaining operations.1 In Section 2 we show two
small motivating examples that convey the main ideas implemented in the package and how
easily they can be employed. The details of the “Formula” class and its associated methods
are discussed in Section 3 and Section 4 illustrates the usage of Formula in developing new
model-fitting functions. A short summary in Section 5 concludes the paper.

1Throughout the paper, no terminological distinction is made between classic “formula” objects as such and
the way they are interpreted by standard processing tools (e.g., terms(), model.frame(), model.matrix()).
The reasons for this are twofold: First, it reflects their use as described in Chambers and Hastie (1992) and,
second, generalizations generally require extra effort from the user.

http://CRAN.R-project.org/package=Formula

Achim Zeileis, Yves Croissant 3

2. Motivating examples

To illustrate the basic ideas of the Formula package, we first generate a small artificial data
set (with both numeric and categorical variables) and subsequently illustrate its usage with
a multi-part and a multi-response “Formula”, respectively.

R> set.seed(1090)

R> dat <- as.data.frame(matrix(round(runif(21), digits = 2), ncol = 7))

R> colnames(dat) <- c("y1", "y2", "y3", "x1", "x2", "x3", "x4")

R> for(i in c(2, 6:7)) dat[[i]] <- factor(dat[[i]] < 0.5,

+ labels = c("a", "b"))

R> dat$y2[1] <- NA

R> dat

y1 y2 y3 x1 x2 x3 x4

1 0.82 <NA> 0.27 0.09 0.22 a b

2 0.70 a 0.17 0.26 0.46 b b

3 0.65 b 0.28 0.03 0.37 a a

2.1. Multiple parts

We start out with a simple formula log(y1) ~ x1 + x2 | I(x1^2) which has a single re-
sponse log(y1) on the LHS and two parts on the RHS, separated by |. The first part contains
x1 and x2, the second contains I(x1^2), i.e., the squared values of x1. The initial “formula”
can be transformed to a “Formula” using the constructor function Formula():

R> F1 <- Formula(log(y1) ~ x1 + x2 | I(x1^2))

R> length(F1)

[1] 1 2

The length() method indicates that there is one part on the LHS and two parts on the RHS.
The first step of processing data using a formula is typically the construction of a so-called
model frame containing only the variables required by the formula. As usual, this can be
obtained with the model.frame() method.

R> mf1 <- model.frame(F1, data = dat)

R> mf1

log(y1) x1 x2 I(x1^2)

1 -0.1984509 0.09 0.22 0.0081

2 -0.3566749 0.26 0.46 0.0676

3 -0.4307829 0.03 0.37 9e-04

As this model just has a single response (as in base “formula” objects), the extractor function
model.response() can be employed:

4 Extended Model Formulas in R

R> model.response(mf1)

1 2 3

-0.1984509 -0.3566749 -0.4307829

For constructing separate model matrices for the two parts on the RHS, the model.matrix()

can be employed and additionally specifying the argument rhs:

R> model.matrix(F1, data = mf1, rhs = 1)

(Intercept) x1 x2

1 1 0.09 0.22

2 1 0.26 0.46

3 1 0.03 0.37

attr(,"assign")

[1] 0 1 2

R> model.matrix(F1, data = mf1, rhs = 2)

(Intercept) I(x1^2)

1 1 0.0081

2 1 0.0676

3 1 0.0009

attr(,"assign")

[1] 0 1

2.2. Multiple responses

To accommodate multiple responses, all formula operators can be employed on the LHS in
“Formula” objects (whereas they would have their original arithmetic meaning in “formula”
objects). This also includes the new | operator for separating different parts. Thus, one could
specify a two-part response via y1 | y2 ~ x3 or a single part with two variables via y1 +

y2 ~ x3. We do the latter in the following illustration.

R> F2 <- Formula(y1 + y2 ~ x3)

R> length(F2)

[1] 1 1

As usual, the model frame can be derived by

R> mf2 <- model.frame(F2, data = dat)

R> mf2

y1 y2 x3

2 0.70 a b

3 0.65 b a

Achim Zeileis, Yves Croissant 5

However, there is an important difference to the model frame mf1 derived in the previous
example. As the (non-generic) model.response() function would only be able to extract
a single response column from a model frame, multi-response model frames in Formula are
implemented to have no response at all in the model.response() sense:

R> model.response(mf2)

NULL

As model.response() cannot be extended (without overloading the base R function), Formula
provides a new generic function model.part() which can be used to extract all variables from
a model frame pertaining to specific parts. This can also be used to extract multiple responses.
Its syntax is modeled after model.matrix() taking a “Formula” as the first argument. For
further details see Section 3. Its application is straightforward and all LHS variables (in the
first and only part of the LHS) can be extracted via

R> model.part(F2, data = mf2, lhs = 1)

y1 y2

2 0.70 a

3 0.65 b

The same method also works for single response models as in the previous example:

R> model.part(F1, data = mf1, lhs = 1, drop = TRUE)

1 2 3

-0.1984509 -0.3566749 -0.4307829

3. Implementation

Below we discuss the ideas for the design of the “Formula” class and methods. As all tools are
built on top of the “formula” class and its associated methods whose most important feature
are briefly outlined as well.

3.1. Working with classic “formula” objects

Classic “formula” objects (Chambers and Hastie 1992) are constructed by using ~ to separate
LHS and RHS, typically (but not necessarily) interpreted as “dependent” and “explanatory”
variables. For describing relationships between variables on the RHS, several operators can
be used: +, -, *, /, :, %in%, ^. Thus, these do not have their original meaning in the top-level
RHS while they keep their original arithmetic meaning on higher levels of the RHS (thus,
within function calls such as I(x1^2)) and on the LHS in general. A first step in using
“formula” objects is often to compute the associated “terms” using the function terms().
Based on the formula or the associated terms and a suitable set of variables (typically either in
a data frame or in the global environment) model.frame() can build a so-called model frame

6 Extended Model Formulas in R

that contains all variables in the formula/terms. This might include processing of missing
values (NAs), carrying out variable transformations (such as logs, squares, or other functions
of one or more variables) and providing further variables like weights, offset, etc. A model
frame is simply a “data.frame” with additional attributes (including “terms”) but without
a specific class. From this preprocessed model frame several components can be extracted
using model.extract() or model.response(), model.weights(), and model.offset(), all
of which are non-generic. Last not least, model.matrix() (which is generic) can compute
“design” or “regressor” matrices based on the formula/terms and the associated model frame.

3.2. Constructing “Formula” objects

To accomplish the main objectives of the “Formula” class, the following design principles have
been used: reuse of “formula” objects, introduction of a single new operator |, and support
of all formula operators on the LHS. Thus, | loses its original meaning (logical “or”) on the
first level of formulas but can still be used with its original meaning on higher levels, e.g.,
factor(x1 > 0.5 | x3 == "a") still works as before. For assigning a new class to formulas
containing |, the constructor function Formula() is used:

R> F3 <- Formula(y1 + y2 | log(y3) ~ x1 + I(x2^2) | 0 + log(x1) | x3 / x4)

R> F3

y1 + y2 | log(y3) ~ x1 + I(x2^2) | 0 + log(x1) | x3/x4

R> length(F3)

[1] 2 3

In this example, F3 is an artificially complex formula with two parts on the LHS and three
parts on the RHS, both containing multiple terms, transformations or other formula opera-
tors. Apart from assigning the new class “Formula” (in addition to the old “formula” class),
Formula() also splits up the formula into LHS and RHS parts which are stored as list at-
tributes "lhs" and "rhs", respectively, e.g.,

R> attr(F3, "lhs")

[[1]]

y1 + y2

[[2]]

log(y3)

and analogously attr(F3, "rhs"). The user never has to compute on these attributes di-
rectly, but many methods for “Formula” objects take lhs and/or rhs arguments. These
always refer to index vectors for the two respective lists.

It would have been conceivable to generalize not only the notion of formulas but also of terms
or model frames. However, there are few generics with methods for “terms” objects and there
is no particular class for model frames at all. Hence, computing with generalized versions of

Achim Zeileis, Yves Croissant 7

these concepts would have required much more overhead for users of Formula. Hence, it was
decided not to do so and keep the package interface as simple as possible.

3.3. Extracting “formula” and “terms” objects

As subsequent computations typically require a “formula” or a “terms” object, Formula pro-
vides suitable formula() and terms() extractors for “Formula” objects. For the former, the
idea is to be able to switch back and forth between the “Formula” and “formula” representa-
tion, e.g., formula(Formula(...)) should recover the original input formula. For the latter,
the objective is somewhat different: terms() should always return a “terms” object that can
be processed by model.frame() and similar functions. Thus, the terms must not contain
multiple responses and/or the new | operator.

The formula() method is straightforward. When no additional arguments are supplied it
recovers the original “formula”. Furthermore, there are two optional additional arguments
lhs and rhs. With these arguments subsets of formulas can be chosen, indexing the LHS and
RHS parts. The default value for both is NULL, meaning that all parts are employed.

R> formula(F3)

y1 + y2 | log(y3) ~ x1 + I(x2^2) | 0 + log(x1) | x3/x4

R> formula(F3, lhs = 2, rhs = -2)

log(y3) ~ x1 + I(x2^2) | x3/x4

R> formula(F3, lhs = c(TRUE, FALSE), rhs = 0)

y1 + y2 ~ 0

Similarly, terms() computes a “terms” object, by default using all parts in the formula, but
lhs and rhs can be used as above. To remove the | operator, all parts are collapsed using
the + operator. Furthermore, the LHS variables can only be kept on the LHS if they contain
a single term. Otherwise, to stop subsequent computations from interpreting the formula
operators as arithmetic operators, all LHS components are added on the RHS as well. Thus,
for F3 we obtain

R> terms(F3)

~y1 + y2 + log(y3) + (x1 + I(x2^2)) + (0 + log(x1)) + x3/x4

attr(,"variables")

list(y1, y2, log(y3), x1, I(x2^2), log(x1), x3, x4)

attr(,"factors")

y1 y2 log(y3) x1 I(x2^2) log(x1) x3 x3:x4

y1 1 0 0 0 0 0 0 0

y2 0 1 0 0 0 0 0 0

log(y3) 0 0 1 0 0 0 0 0

x1 0 0 0 1 0 0 0 0

8 Extended Model Formulas in R

I(x2^2) 0 0 0 0 1 0 0 0

log(x1) 0 0 0 0 0 1 0 0

x3 0 0 0 0 0 0 1 2

x4 0 0 0 0 0 0 0 1

attr(,"term.labels")

[1] "y1" "y2" "log(y3)" "x1" "I(x2^2)" "log(x1)"

[7] "x3" "x3:x4"

attr(,"order")

[1] 1 1 1 1 1 1 1 2

attr(,"intercept")

[1] 0

attr(,"response")

[1] 0

attr(,".Environment")

<environment: 0x271f0f0>

Instead of using all parts, subsets can again be selected. We illustrate this below but only
show the associated “formula” to save output space:

R> formula(terms(F3))

~y1 + y2 + log(y3) + (x1 + I(x2^2)) + (0 + log(x1)) + x3/x4

R> formula(terms(F3, lhs = 2, rhs = -2))

log(y3) ~ x1 + I(x2^2) + x3/x4

R> formula(terms(F3, lhs = c(TRUE, FALSE), rhs = 0))

~y1 + y2

3.4. Computing model frames, matrices, and responses

Given that suitable “terms” can be extracted from “Formula” objects, it is straightforward
to set up the corresponding model frame. The model.frame() method simply first calls the
terms() method and then applies the default model.frame(). Hence, all further arguments
are processed as usual, e.g.,

R> mf3 <- model.frame(F3, data = dat, subset = y1 < 0.75, weights = x1)

R> mf3

y1 y2 log(y3) x1 I(x2^2) log(x1) x3 x4 (weights)

2 0.70 a -1.771957 0.26 0.2116 -1.347074 b b 0.26

3 0.65 b -1.272966 0.03 0.1369 -3.506558 a a 0.03

All subsequent computations are then based on this preprocessed model frame (and possibly
the original “Formula”). Thus, the model matrices for each RHS part can be easily computed,
again setting the rhs argument:

Achim Zeileis, Yves Croissant 9

R> model.matrix(F3, data = mf3, rhs = 2)

log(x1)

2 -1.347074

3 -3.506558

attr(,"assign")

[1] 1

Typically, just a single RHS will be selected and hence rhs = 1 and not rhs = NULL is the
default in this method. However, multiple RHS parts are also supported. Also, there is a lhs

argument available (defaulting to NULL) which might seem unnecessary at first sight but it is
important in case the selected RHS part(s) contain(s) a “.” that needs to be resolved (see
?model.matrix.Formula for an example).

The LHS parts can be extracted using the method for the new model.part() generic, em-
ploying a syntax similar to model.matrix():

R> model.part(F3, data = mf3, lhs = 1)

y1 y2

2 0.70 a

3 0.65 b

R> model.part(F3, data = mf3, lhs = 2)

log(y3)

2 -1.771957

3 -1.272966

As argued above, introduction of a new generic is necessary for supporting multi-response
formulas because model.response() is non-generic. For model frames derived from single-
response formulas, model.response() can be used as usual. The remaining extractors work
as usual:

R> model.weights(mf3)

[1] 0.26 0.03

3.5. Further methods

To conclude the suite of methods available for the new “Formula” class, Formula provides
an update() method and a new as.Formula() generic with suitable methods. The former
updates the formula part by part, adding new parts if necessary:

R> update(F1, . ~ . - x1 | . + x1)

log(y1) ~ x2 | I(x1^2) + x1

10 Extended Model Formulas in R

R> update(F1, . + y2 | y3 ~ .)

log(y1) + y2 | y3 ~ x1 + x2 | I(x1^2)

The as.Formula() method coerces to“Formula”, possibly also processing multiple arguments:

R> as.Formula(y1 ~ x1, y2 ~ x2, ~ x3)

y1 | y2 ~ x1 | x2 | x3

4. Usage in model fitting functions

A typical application of Formula is to provide the workhorse for formula processing in model-
fitting functions that require specification of multiple parts or multiple responses. To provide a
very brief and simple example, we show how such a function can be set up. For illustration, we
compute the coefficients in an instrumental variables regression using two-stage least squares.

The ivcoef() function below takes the usual arguments formula, data, subset, and
na.action (and further arguments weights and offset could be included in the same way).
The formula should be a two-part formula like y ~ x1 + x2 | z1 + z2 + z3. There is a
single response on the LHS, one RHS part with the regressors and a second RHS part with
the instruments. The function ivcoef() uses the typical workflow of model-fitting functions
and processes its arguments in the following four steps: (1) process the call, (2) set up the
model frame (using the “Formula” method), (3) extract response and regressors from the
model frame, (4) estimate the model (by calling lm.fit() twice to compute the two-stage
least squares coefficients).

R> ivcoef <- function(formula, data, subset, na.action, ...)

+ {

+ mf <- match.call(expand.dots = FALSE)

+ m <- match(c("formula", "data", "subset", "na.action"), names(mf), 0)

+ mf <- mf[c(1, m)]

+

+ f <- Formula(formula)

+ mf[[1]] <- as.name("model.frame")

+ mf$formula <- f

+ mf <- eval(mf, parent.frame())

+

+ y <- model.response(mf)

+ x <- model.matrix(f, data = mf, rhs = 1)

+ z <- model.matrix(f, data = mf, rhs = 2)

+

+ xz <- as.matrix(lm.fit(z, x)$fitted.values)

+ lm.fit(xz, y)$coefficients

+ }

The resulting function can then be applied easily (albeit not very meaningfully) to the dat

data frame:

Achim Zeileis, Yves Croissant 11

R> ivcoef(log(y1) ~ x1 | x2, data = dat)

(Intercept) x1

-0.169027 -1.260073

The same coefficients can be derived along with all the usual inference using the ivreg()

function from the AER package (Kleiber and Zeileis 2008), which also uses the Formula
tools in its latest release. Apart from providing inference and many other details, ivreg()
also supports weights, offsets etc. Finally, for backward compatibility, the function also
allows separate formulas for regressors and instruments (i.e., formula = y ~ x1 + x2 and
instruments = ~ z1 + z2 + z3) which can be easily incorporated using the Formula tools,
e.g., replacing f <- Formula(formula) by

+ f <- if(!is.null(instruments)) as.Formula(formula, instruments)

+ else as.Formula(formula)

+ stopifnot(isTRUE(all.equal(length(f), c(1, 2))))

In summary, the usage of Formula should reduce the overhead for the developers of model-
fitting functions in R with multiple responses and/or multiple parts and make the resulting
programs more intelligible. Further R packages employing the “Formula” approach can be
obtained from CRAN, including betareg, frontier, mlogit, and plm.

5. Summary

The Formula package provides tools for processing multi-response and multi-part formulas in
the R system for statistical computing. The new class “Formula” inherits from the existing
“formula” class, only adds a single new formula operator |, and enables the usage of formula
operators on the left-hand side of formulas. The methods provided for “Formula” objects are
as similar as possible to the classic methods, facilitating their usage in model-fitting functions
that require support for multiple responses and/or multiple parts of variables.

References

Chambers JM, Hastie TJ (eds.) (1992). Statistical Models in S. Chapman & Hall, London.

Coelli T, Henningsen A (2010). frontier: Stochastic Frontier Analysis. R package ver-
sion 0.996-6, URL http://CRAN.R-project.org/package=frontier.

Cribari-Neto F, Zeileis A (2010). “Beta Regression in R.” Journal of Statistical Software,
34(2), 1–24. URL http://www.jstatsoft.org/v34/i02/.

Croissant Y (2010). mlogit: Multinomial Logit Model. R package version 0.1-5, URL http:

//CRAN.R-project.org/package=mlogit.

Croissant Y, Millo G (2008). “Panel Data Econometrics in R: The plm Package.” Journal of
Statistical Software, 27(2), 1–43. URL http://www.jstatsoft.org/v27/i02/.

http://CRAN.R-project.org/package=frontier
http://www.jstatsoft.org/v34/i02/
http://CRAN.R-project.org/package=mlogit
http://CRAN.R-project.org/package=mlogit
http://www.jstatsoft.org/v27/i02/

12 Extended Model Formulas in R

Hothorn T, Hornik K, van de Wiel MA, Zeileis A (2006). “A Lego System for Conditional
Inference.” The American Statistician, 60(3), 257–263.

Hothorn T, Hornik K, van de Wiel MA, Zeileis A (2008). “Implementing a Class of Per-
mutation Tests: The coin Package.” Journal of Statistical Software, 28(8), 1–23. URL
http://www.jstatsoft.org/v28/i08/.

Kleiber C, Zeileis A (2008). Applied Econometrics with R. Springer-Verlag, New York.

R Development Core Team (2009). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org/.

Stasinopoulos DM, Rigby RA (2007). “Generalized Additive Models for Location Scale and
Shape (GAMLSS) in R.” Journal of Statistical Software, 23(7), 1–46. URL http://www.

jstatsoft.org/v23/i07/.

Wilkinson GN, Rogers CE (1973). “Symbolic Description of Factorial Models for Analysis of
Variance.” Applied Statistics, 22, 392–399.

Zeileis A, Croissant Y (2010). “Extended Model Formulas in R: Multiple Parts and Multiple
Responses.” Journal of Statistical Software, 34(1), 1–13. URL http://www.jstatsoft.

org/v34/i01/.

Zeileis A, Hothorn T, Hornik K (2008a). “Model-Based Recursive Partitioning.” Journal of
Computational and Graphical Statistics, 17(2), 492–514.

Zeileis A, Kleiber C, Jackman S (2008b). “Regression Models for Count Data in R.” Journal
of Statistical Software, 27(8), 1–25. URL http://www.jstatsoft.org/v27/i08/.

Affiliation:

Achim Zeileis
Department of Statistics
Universität Innsbruck
Universitätsstr. 15
6020 Innsbruck, Austria
E-mail: Achim.Zeileis@R-project.org
URL: http://statmath.wu.ac.at/~zeileis/

Yves Croissant
Université de la Réunion
Faculté de Droit et d’Economie
15, avenue René Cassin
BP7151
97715 Saint-Denis Messag Cedex 9, France
E-mail: Yves.Croissant@univ-reunion.fr

http://www.jstatsoft.org/v28/i08/
http://www.R-project.org/
http://www.R-project.org/
http://www.jstatsoft.org/v23/i07/
http://www.jstatsoft.org/v23/i07/
http://www.jstatsoft.org/v34/i01/
http://www.jstatsoft.org/v34/i01/
http://www.jstatsoft.org/v27/i08/
mailto:Achim.Zeileis@R-project.org
http://statmath.wu.ac.at/~zeileis/
mailto:Yves.Croissant@univ-reunion.fr

	Introduction
	Motivating examples
	Multiple parts
	Multiple responses

	Implementation
	Working with classic ``formula'' objects
	Constructing ``Formula'' objects
	Extracting ``formula'' and ``terms'' objects
	Computing model frames, matrices, and responses
	Further methods

	Usage in model fitting functions
	Summary

