MAMA: a 9 in 1 R package for Meta-Analysis
MicroArray

Ivana Thnatova

October 1, 2010

Contents

I Introduction

IT Methods that combine p-values

IIT Methods that combine effect sizes

IV Similarity of Ordered Gene Lists (SOGL)
V RankProduct

VI Z-statistic - posterior mean differential expression
VII TSP-clasiffier

VIII VennMapping

IX MAP-Matches

X METRADISC

XI Results combination

of

25
28
30
34

38

Part 1
Introduction

This paper provides a user guide to R-package MAMA. The package implements
nine different methods that have been proposed in meta-analysis of microarray
and are designed to identify differentially expressed genes.

In here, we will demonstrate the features of the package with an example of
meta-analysis in cancer microarray data, the comparison of expression profiles
in MSI (microsatelite instable) and MSS (microsatelite stable) colon cancer. We
gathered three microarray data from public databases. The data are stored in
object DataColonHalf

The guide starts with package and sample data loading.

> rm(list = 1s(all = TRUE))
> options(width = 60)
> library (MAMA)

gdata: read.xls support for ’XLS’ (Excel 97-2004)
gdata: files ENABLED.

gdata: Unable to load perl libaries needed by
gdata: read.xls()
gdata: to support ’XLSX’ (Excel 2007+) files.

gdata: Run the function ’installXLSXsupport()’

gdata: to automatically download and install the perl
gdata: libaries needed to support Excel XLS and XLSX
gdata: formats.

> load(url("http://math.muni.cz/ xihnatov/DataColonHalf.RData"))
> 1s()

[1] "australia" "denmark" "japan"

The original data sets have been preprocessed and subsampled in order to reduce
the computational complexity. All data sets have been normalized and are in
loga-scale. The corresponding sample sizes tor the three datasets (denmark [1],
australia [1] and japan [2]) are 77 (39 MSI and 38 MSS), 36 (5 MSI and 31
MSS) and 41 (16 MSI and 25 MSS), respectively. In all expression profiles we
have selected the same set of 500 genes for analysis.

Each of the datasets is stored as an ExpressionSet object - a specific container
for microarray data and experimental metadata. The detailed information about
this object can be found at [3]. Gene expression data matrix can be obtained
by function exprs() and function pData() return a data frame with samples
description (class labels).

A different method is used in each of parts below and parts are written to
be independed from each other, so you can directly move to method that are
of your interest. Meta-analysis usually consist of three steps: Data preparation
(and its transformation if necessary), Detection of differentially expressed genes
and Extraction and visualization of results.

Part 11
Methods that combine p-values

Introduction

In this part we will focus on methods that combine p-values [4], [5]. These
methods are inspired by Fisher’s S-statistic published in 1925 [6]. We usually
obtain two measurements of significance of change in gene expression: value
of test-statistic and p-value. These methods combine the p-values from study-
specific analysis and combine them into one p-value in sense of sum of logs.
Methods differ in test statistic that is used to calculate the study-specific p-
value.

Usage

Data preparation

When using this implementation we have to merge all gene expression data
matrices (ezprs()) and class labels vectors (pData()[,]) to two lists.

> esets <- list(exprs(denmark), exprs(australia),

+ exprs (japan))

> classes <- list(pData(denmark)[, 1], pData(australia)l[,
+ 1], pData(japan) [, 2])

Detecting differentially expressed genes

Functions pvalcombination and pvalcombination.paired provide meta-analysis
based on combination of p-values. The former is designed for unpaired data and
the latter for paired design of microarray experiments. Because, our data sets
are unpaired, we will use pvalcombination. The function requires: a list of gene
expression data matrices (esets), a list of vectors of class labels (classes), type
of test statistics (moderated) and threshold for significance (BHth). It returns
list of indices of selected genes. Three possible values for argument moderated
are available: "t" for common t-test, "limma" for moderated t-test used in
limma package [7] and "SMVar" for moderated t-test defined in SMVar package
8]

> pvalt <- pvalcombination(esets, classes, moderated = "t",
+ BHth = 0.01)

DE IDD Loss IDR IRR
160.00 43.00 15.00 26.88 11.36

Several characteristics which have been defined in meta-analysis of microarray
(especially for methods which combine p-values or effect sizes). This character-
istics are outprinted by the function. DE denotes number of significant genes
in meta-analysis. IDD represents Integration Driven Discoveries, it means genes
which are significant in meta-analysis but not in any of the individual studies

alone. Other way round, if a gene is significant only in individual data sets
but not in meta-analysis, it is called Integration Driven Revision and Loss is a
number of such genes. IDR and IRR are percentages of Integration Driven Dis-
coveries and Integration Driven Revisions in identified differentially expressed
genes (DE).

Results

> summary (pvalt)

Length Class Mode

study1l 113 -none- numeric
study?2 8 -none- numeric
study3 59 -none— numeric
AllIndStudies 132 -none- numeric
Meta 160 -none- numeric
TestStatistic 500 -none- numeric

This object is a list with six slots. Studyl to Study3 are numeric vectors with
indices of differentially expressed genes in data sets 1 to 3. AllIndStudies is
a vector of indices of differentially expressed genes in at least one data set.
Differentially expressed genes found by meta-analysis have their indices stored
in Meta. And finally, a slot called TestStatistic is a vector with test statistics in
meta-analysis.

Part 111
Methods that combine effect sizes

Introduction
Methods that combine effect size use hierarchical model:
Yi =0 +ei, 6~ N(07U¢2)

91:,[,L+5Z,51NN(07T22)7

where p is true difference in mean expression between two classes, y; denotes
the measure effect for study i, with i = 1, .., k, 72 represents the between study
variability, 02 denotes the within study variability. The analysis is different
depending on whether a fixed-effect model (FEM) or a random-effect model
(REM) is deemed appropriate. Under a FEM, 7 = 0 is assumed, otherwise a
REM need to be fit. The estimates of the overall effect i are different depending
on which model is used.

Two papers dealing with effect size combination as method for meta analysis
of microarray have been published [4] and [9]. They differ in effect size definition
and implementation.

Method presented in [4] offers three variants of effect sizes (classical and
moderated T-test) and uses explicitly random-effect model. It is implemented

as two functions EScombination for unpaired data and EScombination.paired
for paired data.

On the other hand, in [9] the effect size is defined as Hedge’s and Olkin’s g
and both random-effect and fixed-effect are available. Package GeneMeta [10]
implements this method.

Algorithm

1. Data recoding.
2. Effect size calculation in each data set.
3. Decision between random-effect model (REM) and fixed-effect model (FEM).

4. Model application.

Usage

Because there are two different ways of implementation for using combination
of effect size method on microarray data sets, we will discuss them separately.

Implementation from metaM A package

Data preparation This method requires two lists, one containing the data
matrices (exprs()) and the other one the corresponding vectors of group labels

(pData()[.]).

> esets <- list(exprs(denmark), exprs(australia),

+ exprs(japan))

> classes <- list(pData(denmark)[, 1], pData(australia)l[,
+ 1], pData(japan)[, 2])

Detecting differentially expressed genes As we have unpaired data, we
are going to use function EScombination. This function has four arguments:
a list of gene expression data matrices (esets), a list of class labels vectors
(classes), effect size definition (moderated) and a threshold for false discovery
rate (FDR) (BHth). Three possible values for moderated are available: "t" for
common t-test, "limma" for moderated t-test used in limma package [7] and
"SMvVar" for moderated t-test defined in SMVar package [8].

> ESt <- EScombination(esets, classes, moderated = "t",
+ BHth = 0.01)

DE IDD Loss IDR IRR
109.00 28.00 51.00 25.69 38.64

Function EScombination prints several measures defined in meta-analysis of
microarray. DE denotes number of significant genes in meta-analysis. IDD rep-
resents Integration Driven Discoveries, it means genes which are significant in
meta-analysis but not in any of the individual studies alone. Other way round,
if a gene is significant only in individual data sets but not in meta-analysis, it is

called Integration Driven Revision and Loss is a number of such genes. IDR and
IRR are percentages of Integration Driven Discoveries and Integration Driven
Revisions in identified differentially expressed genes (DE).

> summary (ESt)

Length Class Mode

studyl 113 -none- numeric
study?2 8 -none- numeric
study3 59 -none- numeric
Al1TIndStudies 132 -none- numeric
Meta 109 -none- numeric
TestStatistic 500 -none- numeric

This object is a list with six slots. Study! to Study3 are indices of differentially
expressed genes in data sets 1 to 3. AlllndStudies is a vector of indices of
differentially expressed genes in at least one data set. Differentially expressed
genes found by meta-analysis have their indices stored in Meta. And finally, a
slot called TestStatistic is a vector with test statistics ("combined effect size”)
in meta-analysis.

Implemenetation from GeneMeta package

Data preparation Before calculating effect sizes we have to create vectors
with class labels in form of 1’s and 0’s. 1 is supposed to be for diseased samples
and 0 for normal samples. In data sets used as example in this document 1
refers to MSI samples and 0 to MSS.

> phl <- pData(denmark)[, 1]
> levels(phl) <- c(1, 0)
> pData(denmark) [, 1]

[1] MSI MSI MSI MSI MSI MSI MSI MSI MSI MSI MSI
[12] MSI MSI MSI MSI MSI MSI MSI MSI MSI MSI MSI
[23] MSI MSI MSI MSI MSI MSI MSI MSI MSI MSI MSI
[34] MSI MSI MSI MSI MSI MSI MSS MSS MSS MSS MSS
[45] MSS MSS MSS MSS MSS MSS MSS MSS MSS MSS MSS
[66] MSS MSS MSS MSS MSS MSS MSS MSS MSS MSS MSS
[67] MSS MSS MSS MSS MSS MSS MSS MSS MSS MSS MSS
Levels: MSI MSS

> phi

(1] 1111111111111 111111111111111
[291 11 11111111100000000000000000
[65717 000000000000000000000

Levels: 1 0

> ph2 <- pData(australia)[, 1]
> levels(ph2) <- c(1, 0)

> ph3 <- pData(japan)[, 2]

> levels(ph3) <- c(1, 0)

phi, ph2 and ph3 are numeric vectors containing class labels for data sets den—
mark, australia and japan. These vectors are needed as arguments for func-
tions which provide effect size and its variability estimates.

Detecting differentially expressed genes Functions getdF, dstar and
sigmad estimate effect size and its variability for a individual data set, therefore
we have to use them three-times. For denmark data set

d.den <- getdF(denmark, phl)

d.adj.den <- dstar(d.den, length(phl))

var.d.adj.den <- sigmad(d.adj.den, sum(phl ==
0), sum(phl == 1))

head(d.adj.den)

vV + Vv VvV

[1] 0.4835090 -0.1882238 -0.2740332 -0.4466879 -0.9850491
[6] -1.1694108

> head(var.d.adj.den)

[1] 0.05347487 0.05218687 0.05244444 0.05325247 0.05825761
[6] 0.06083683

and for other two data sets

d.aus <- getdF(australia, ph2)

d.adj.aus <- dstar(d.aus, length(ph2))

var.d.adj.aus <- sigmad(d.adj.aus, sum(ph2 ==
0), sum(ph2 == 1))

d.jap <- getdF(japan, ph3)

d.adj.jap <- dstar(d.jap, length(ph3))

var.d.adj.jap <- sigmad(d.adj.jap, sum(ph3 ==
0), sum(ph3 == 1))

+ VVV+VVYV

Function getdF has two arguments: the data set (a ExpressionSet object or a
matrix) and class labels (a factor or numeric vector with 1 and 0) and computes
estimates of standardized mean difference, found in Hedge and Olkin’s [11].
Function dstar corrects the estimates for sample size bias, therefore its second
argument is sample size of the data set. Function sigmad calculates the estimate
of variance of unbiased effect size. For calculation, the user has to provide effect
size estimates and sample size of each class.

Now, we are going to use Chochran’s @) statistic [12] to test between-study
variability, so we can decide whether we should be considering random-effect
(REM) or fixed-effect model(FEM) for the data.

Function f .Q provides a straightforward calculation of Cochran’s @) statistic.
If the null hypothesis that the between-study variance is equal to zero (data are
well modeled by a fixed effects design) then the estimated Q values will have
approximately a chi-squared distribution with degrees of freedom equal to the
number of studies minus one. We are going to look at mean and histogram of
Q) statistics. Later we will compare quantiles of) to quantiles of chi-square
distribution.

mymns <- cbind(d.adj.den, d.adj.aus, d.adj.jap)

myvars <- cbind(var.d.adj.den, var.d.adj.aus,
var.d.adj. jap)

my.Q <- f.Q(mymns, myvars)

mean (my. ()

vV VvV + VvV

[1] 2.576469

> hist(my.Q, breaks = 50, col = "red")

Histogram of my.Q

Frequency

15

my.Q

> num.studies <- 3
> plotQvsChi(my.Q, num.studies)

QQ Plot

5 10 15

0

Quantiles of Sample

0 2 4 6 8 12

Quantiles of Chi > square

According to Q-Q plot the hypothesis seems to be valid and fixed-effect model
(FEM) should be used. However, we are going to use random-effect model
(REM) too, so we can see if there is any difference in estimates of combined
effect size.

The computation is simpler for FEM than for REM. Functions mu. tau2 and
var.tau2 estimate combined effect size (mu.tau2) and variance (var.tau2).
Each effect size is a weighted average of the effects for the individual data sets
divided by its standard error. The weights are the reciprocal of the estimated
variances.

muFEM = mu.tau2(mymns, myvars)
SdFEM = var.tau2(myvars)

ZFEM = muFEM/sqrt (sdFEM)
qqnorm(ZFEM, pch = "x")
qqline (ZFEM, col = "red")

vV V.V VvV

Normal Q-Q Plot

Sample Quantiles

Theoretical Quantiles

Plotting the quantiles of the effects we can see that the presumption of
approximate Normality seems to be appropriate.

In REM we have to account between-study variability (72). Function tau2.DL
provides DerSimonian’s and Laird’s [13] estimates of 72 from Cochran’s Q. It
has two addional arguments: number of studies (num.studies) and weights
(my.weights=1/myvars). We add between-study variability to estimated vari-
ance (myvars) and calculate the combined effect size like in FEM.

num.studies <- 3

my.tau2.DL <- tau2.DL(my.Q, num.studies, my.weights = 1/myvars)
myvarsDL <- myvars + my.tau2.DL

muREM <- mu.tau2(mymns, myvarsDL)

varREM <- var.tau2(myvarsDL)

ZREM <- muREM/sqrt (varREM)

V V.V Vv \VvyVv

muFEM or muREM are numeric vectors with estimated combined (overall) effect
size for a gene in FEM or REM. The estimated standard error of overall effect
size for each gene is stored in numeric vectors: varFEM or varREM. We will test
significance of overall effect size by Z-score (ZFEM or ZREM) defined as mean
divided by standard error.

We can easily compare FEM estimates and REM estimates

> plot (muFEM, muREM, pch = "x")
> abline(0, 1, col = "red")

10

N p—
*
*
*
— —
**
* *
*
E © 5 * ’
[ad *
S %
E *
S5 e
- _| *
| *
*
<|\| | *
*
I I I I I
-2 -1 0 1 2
muFEM

We do not see much difference here. Actually, for most of the genes the 72 is
estimated as zero.

> hist.tau <- hist(my.tau2.DL, col = "red", breaks = 100,
+ main = "Histogram of tau")

11

Histogram of tau

Frequency
100 150 200 250
l l l

50

[I I I I |
0.0 0.2 0.4 0.6 0.8 1.0

my.tau2.DL

Results The procedure described in details above is also implemented in func-
tion zScores. The arguments of this function are a list of expression sets (esets)
and a list of classes (classes). Argument useREM chooses between REM and
FEM.

> esets <- list(denmark, australia, japan)
> classes <- list(phl, ph2, ph3)
> theScores <- zScores(esets, classes, useREM = FALSE)
> round(theScores([1:2,], 3)
z3co_Ex_1 zSco_Ex_2 zSco_Ex_3 z3co MUvals
217562_at 2.091 -0.542 0.881 1.865 0.326
203766_s_at -0.824 -0.085 0.855 -0.196 -0.034
MUsds Qvals df Qpvalues Chisq Effect_Ex_1
217562_at 0.175 1.964 2 0.375 0.062 0.484
203766_s_at 0.174 1.379 2 0.502 0.845 -0.188
Effect_Ex_2 Effect_Ex_3 EffectVar_Ex_1
217562_at -0.262 0.283 0.053
203766_s_at -0.041 0.275 0.052
EffectVar_Ex_2 EffectVar_Ex_3
217562_at 0.233 0.103
203766_s_at 0.232 0.103

We get a matrix (theScores) with the following columns:

o FEffect_Ex_ are the unbiased estimates of the effect (d.adj.)

12

o EffectVar_FEz_ are the estimated variances of the unbiased effects (var.d.adj.

)

e 25co_Fx_are the unbiased estimates of the effects divided by their standard
deviation

e Quals are the Q statistics (my.Q) and df is the number of combined ex-
periments minus one

e MUwvals and MUsds are equal to muFEM and sdFEM (the overall mean
effect size and its standard deviation)

e 2Sco are the z scores (ZFEM)

e (Qpualues is for each gene the probability that a chi-square distribution
with df degree of freedom has a higher value than its @ statistic

e Chisq is the probability that a chi-square distribution with 1 degree of
freedom has a higher value than 25co2

Function zScoresFDR implements SAM [?] type analysis to estimate the false
discovery rate (FDR).

> ScoresFDR <- zScoreFDR(esets, classes, useREM = FALSE,
+ nperm = 50, CombineExp = 1:3)
> names (ScoresFDR)

[1] "pOS" "Ileg" "two.sided"
> round(ScoresFDR$pos[1:2, 1, 3)

zSco_Ex_1 FDR_Ex_1 zSco_Ex_2 FDR_Ex_2 zSco_Ex_3

217562_at 2.091 0.084 -0.542 1.083 0.881

203766_s_at -0.824 1.219 -0.085 1.020 0.855
FDR_Ex_3 zSco FDR MUvals MUsds Qvals df

217562_at 0.585 1.865 0.102 0.326 0.175 1.964 2

203766_s_at 0.586 -0.196 1.052 -0.034 0.174 1.379 2
Qpvalues Chisq

217562_at 0.375 0.062

203766_s_at 0.502 0.845

Function plotES provides several visualizations of the results. Specifying which=1
will plot so called IDRplot. This plot shows the fraction of the genes that have
a higher effect size than the threshold for the combined Z-score , but not for
any of the data set specific Z-scores. Genes with combined Z-score > 0 and < 0
are plotted separately. Selection which=2 will plot the number of genes and the
corresponding FDR for the two sided situation. If the user is more interested
in the number of genes that are below a given threshold for the FDR, he de-
cides for which=3. It shows for each study (indicated by different colors) and
various thresholds for the FDR (x axis) the number of genes that are below this
threshold in the given study but above in all other studies are shown (y axis).
If numeric vector is used that all figure specified in the vectors are plot.

Argument legend.names is a character vector with names of the date set
used in legends and colors is a vector of colors to be used for plotting.

13

plotES(theScores, ScoresFDR, num.studies = 3,

c("Combined set",

"Denmark",

"Australia", "Japan"), colors = c("red",
"blue", "green", "yellow"), which = 1:3)

>
+ legend.names =
+
+

two sided FDR

IDR

1.0
!

08

FDR

0.2

0.0

ey

e

i

/* Combined set
 Denmark

Australia
Japan

Number of genes

AT
R

W/

0 100 200 300 400 500 0.02 0.04 006 008 0.10

z threshold Number of genes FDR threshold

Part IV
Similarity of Ordered Gene Lists
(SOGL)

Introduction

Similarity of Ordered Gene Lists is another method for meta-analysis of mi-
croarray. It is call as "comparison of comparisons” by its authors [?].

Briefly, it assigns a similarity score to a comparison of two ranked (ordered)
gene lists. The score is based on the number of overlapping genes in the top
ranks. It computes the size of overlap for each rank. The final score is a weighted
sum of these values, with more weight put on the top ranks.

Algorithm

1. Required data sets - two data sets with same set of genes (or genes which
can be mapped to each other) are required.

2. Ranking of genes - The genes are then ranked based on gene-wise test on
difference of class mean. There is only one assumption about test result: a
large positive test score corresponds to up-regulation and a large negative
value to down-regulation.

3. Computing the overlap - for each rank (from 1 to number of genes) we
count the number of genes that appear in both ordered lists up to that

14

position. It is denoted as O,,(G 4, Gp), where G4 and Gp refer to ordered
gene lists.

4. Preliminary similarity score - First we compute a total overlap A, at
position n given as O,(Ga,Gp) + On(f(Ga), f(Gg)), where f() means
flipped list (down-regulated genes on top). Later we add weights (w, =
e~ *™)to it and we sum it up to preliminary score. Parameter « is needed
to tune the weights: a smaller a puts more weight on genes Further down
the list. Implementation can choose an appropriate « itself.

5. Final similarity score - it takes two possibilities into account. The possi-
bilities are: the class labels of the two data sets match or do not match.

The algorithm above is valid for meta-analysis in which expression data are also
available. However, we can analyze only two ordered gene list without expression
data. It has two peculiarities: we can not use same approach for calculating the
significance of overlap and we can not be sure if genes are ranked from the most
up-regulated to the most down-regulated. Please see [14] for more details.

Usage

Data preparation

We will use only first two datasets (denmark and australia) and they need to be
processed by function dataS0GL, so they can be merged into one "ExpressionSet”
object with function prepareData. Function dataSOGL requires a ExpressionSet
object (data), a column number for pData to be used as class labels (group),
a name for class labels (groupname) and microarray platform for annotation
(annotation). Function prepareData has three aguments: esetl, eset2 and
mapping. esetl and eset?2 are lists consisting of: a data set as a ExpressionSet
object (data), name of the data set (name), name of the class labels (var),
numeric vector of class labels used in data set (out) and a indicator whether
paired data are present (paired). mapping is a two column data frame with
probe IDs of esetl and eset2. The kth row of mapping provides the label of
the kth gene in each single study. If all studies were done on the same chip, no
mapping is needed.

> denmarkSOGL <- dataSOGL(data = denmark, group = 1,

+ groupname = "satelite", annotation = "hgul33plus2")

> australiaSOGL <- dataSOGL(data = australia, group = 1,

+ groupname = "satelite", annotation = "hgul33plus2")

> A <- prepareData(esetl = list(data = denmarkSOGL,

+ name = "colon_cancerl", var = "groupname",

+ out = c(1, 2), paired = FALSE), eset2 = list(data = australiaSOGL,
+ name = "colon_cancer2", var = "groupname",

+

out = c(1, 2), paired = FALSE), mapping = NULL)

Detecting differentially expressed genes

Function OrderedList aims for the comparison of comparisons: given two com-
bined expression studies the function produces a gene ranking for each study

15

and quantifies the overlap by computing the weighted similarity scores. The
final list of overlapping genes consists of those probes that contribute a certain
percentage to the overall similarity score. We can choose three different statis-
tics for gene ranking: t-test with equal variances, log ratio (log fold change) or
Z-score (chosen explicitly, t-test with regularized variances). We apply function
OrderedList with default values to our combined data set.

> x.z <- OrderedList (A, empirical = TRUE)

Simulating score distributions...

Random: —-==—===—==———————— e e please wait...
Observed: —-———

Computing empirical confidence intervals...
Top: —-——=———————————
Bottom: ---------------- - - - - - - - - - - - -\ —\——«——(—(—\—(——

> X.z

Similarity of Ordered Gene Lists

Comparison : colon_cancerl”colon_cancer?2
Number of genes : 500
Test statistic Tz

Number of subsamples: 1000

beta = 1 -> corresponding labels could be matched in different studies
Optimal regularization parameter: alpha = 0.02878231

Lists are more alike in direct order

Weighted overlap score: 1137.552

Significance of similarity: p-value = 0.000999001

Number of genes contributing 95 7 to similarity score: 231

Results

The result is an object of class OrderedList for which print and plot function
exist. Output from print function can be seen above and plot function is used
below. The sorted list of overlapping genes is stored in $intersect.

> x.z$intersect[1:12]

[1] "1552281_at" "1552365_at" "1552485_at"
[4] "1552621_at" "1552680_a_at" "1553033_at"
[7] "1553986_at" "1554394_at" "1554508_at"
[10] "1554999_at" "1555086_at" "15560565_at"

Calling OrderedList with the empirical option set to true, causes OrderedList
to compute empirical bounds for expected overlaps. By default, this is switched
off and underestimated bounds deduced from a hypergeometric distribution are
used.

> plot(x.z, "pauc")

16

Comparison: colon_cancerl~colon_cancer2

Oopt

0.10000

PAUC score
0.09998
l

0.09996
|

I I I I I
0.04 0.06 0.08 0.10

This is a plot of pAUC scores based on « selection. The separability between
the two distributions of observed and random similarity score is measured by
pAUC score. « is chosen where the pAUC score is maximal. It is marked by a
vertical line.

> plot(x.z, "scores")

17

Comparison: colon_cancerl~colon_cancer2

observed
3 | directiopi\direct
< —— resampled p-value: §.001
—— random ©0.029
<
o
QS
> o
‘D
c
[¢]
a}
(oY}
o
QS
o
o
=]
8 _ _
S MM_WMMMMFJ_MW—WM

200 400 600 800 1000 1200

Similarity score

The red curve correspondence to kernel density estimate of simulated observed
scores and the black curve to kernel density of simulated random scores. The
actually observed similarity score is denoted by the vertical red line. The bottom
rugs mark the simulated values.

> plot(x.z, "overlap")

18

Comparison: colon_cancerl~colon_cancer2

— Upregulated: / Upregulated:
o 1in colon_cancerl) 2 in colon_cancerl
Q 1 1lincolon_cancer2 ! 2 in colon_cancer2
g | :
& |
— O \
2 &7 :
S |
© 7 :
N
o o |
o - |
- 1
B , —— observe
X expected
e !
T T T T T T T T T T
1 80 240 320 160 1
top ranks bottom ranks

This plot displays the numbers of overlapping genes in the two gene lists. It
is drawn as step function over the respective ranks. Top ranks correspond to
up-regulated and bottom ranks to down-regulated genes. The expected overlap
and confidence intervals are shown too. They are derived empirically form
the subsampling or deduced from a hypergeometric distribution, it depends on
parameter empirical.

Notes

We can also compare directly two ordered gene lis via functions: CompareLists
and getOverlap. Please see [14] for details.

Part V
RankProduct

Introduction

RankProduct is a non-parametric statistic that detects up-regulated and down-
regulated genes under one condition against another condition. In our sample
data set we look for difference in expression between MSI and MSS colon cancer.

It focuses on genes which are consistently highly ranked in a number of lists,
for example genes that are regularly found among top up-regulated genes in
many microarray studies. It assumes that under the null hypothesis that the

19

order of all items is random then the probability of finding a certain item among
the top r of n items in a list is p = r/n. Rank product is defined by multiplying
these probabilities RP = [], 7'7’, where r; is the rank of the item in the i-th
list and n; is the total number of the items on i-th list. The smaller the RP
value the smaller the probability that the observation of the item at the top of
the lists is due to chance. It is equivalent to calculating the geometric mean
rank. A list of up- or down-regulated genes are selected based on the estimated
percentage of false positive prediction (pfp), it is known as false discovery rate
(FDR), too.

Algorithm

Algorithm of the method has five steps:
1. Fold-change ratio is calculated in each data set.

2. Ranks are assigned (1 for the highest value) according to fold-change ratio.
rg; is rank of gene g in comparison %, where ¢ is from 1 to K, where K is
sum of products of number of slides in groups.

1/K

3. RankProduct for a gene (RFP,) is calculated as [[; 7]

4. [permutations of expression values at each microarray slide is performed
and all previous steps repeated. We obtain RP;”

5. Step 4 is repeated L times to estimate the distribution of RP;I). This
distribution is used to calculate p-value and pfp for each gene.

Usage

Data preparation

In order to run a rank product meta-analysis, users need to call function RPad-
vance. They both require three arguments: data, cl and origin. The first
required argument, data, is the matrix (or data frame) containing the gene ex-
pression data that should be analyzed. Each of its rows corresponds to a gene,
and each column corresponds to a sample. Second and third argument, c1 and
origin, are vectors of length ncol (data) containing the class labels of the sam-
ples or the origin labels of the samples. Function mergedata returns a list with
three slots corresponding to arguments described above. class.col argument
is a numeric vector indicating which columns of pData should be used as class
labels. First number refers to first data set etc.

> rankdata <- mergedata(denmark, australia, japan,
+ class.col = c(1, 1, 2))
> rankdata$cl

11111111111111111111111
281 1 1111111111122222222222
[65] 22222222222222222222222
621 1 2222222222222222222222

[109] 222221
[136] 2222222222222222222

> rankdata$origin

[AJ111111111111111111111111111
[28 1111111111111 11111111111111
[65] 1111111111111 11111111112222
[621 222222222222222222222222222
[109] 222223333333333333333333333
[136] 3333333333333333333

In cl all 1’s refer to MSI samples and all 2’s to MSS samples. Similarly in
origin, 1 belongs to samples from first data set (denmark), 2 from second data
set (australia) and 3 from japan study. You can choose different numbers for
labels, but same numbers are always treated like same samples from same class
or with same origin.

Detecting differentially expressed genes

In this section, we show how the rank product method can be applied to detect
differentially expressed gene in our data sets in sence of meta-analysis. It means
we will get two separate lists (up- and down-regulated genes separately) not
two such lists for each data set. For each gene, one pfp (percentage of false
prediction) is computed and used to select significant genes. We can run meta-
analysis by

> RP.out <- RPadvance(rankdata$dat, rankdata$cl,

+ rankdata$origin, num.perm = 50, logged = TRUE,
+ na.rm = FALSE, gene.names = rownames (exprs (denmark)),
+ plot = FALSE)

The data is from 3 different origins
Rank Product analysis for two-class case
Warning: Expected classlabels are O and 1. cl will thus be set to O and 1.

Starting 50 permutations...
Computing pfp...

The data are log-transformed, therefore we set logged=TRUE. The number of
permutations is default set to 100, you can change it to higher number, if you
wish more precise estimates of the pfp. The argument plot=FALSE will prevent
the graphical display of the estimated pfp vs. number of identified genes. We
will use function plotRP for a such display.

Results
> plotRP(RP.out, cutoff = 0.01)

21

Identification of Up-regulated genes under class 2

n
r

e
o I I I I I

0 100 200 300 400 500

estimated PFP
I

number of identified genes

Identification of down-regulated genes under class 2

3 g -

o | -F!""
< 2 — [[[[

0 100 200 300 400 500

estimated PFP
I

number of identified genes

The function plotRP graphicaly displays the estimated pfp vs. number of iden-
tified genes using the output from RPadvance. If cutoff (the maximum accepted
pfp) is specified, identified genes are marked in red.

> RankRes <- topGene(RP.out, cutoff = 0.01)

Tablel: Genes called significant under classl < class2
Table2: Genes called significant under classl > class2
> head (round (RankRes$Tablel, 3))

gene.index RP/Rsum FC: (classl/class2) pfp

228030_at 254 15.955 0.234 0

228915_at 462 26.810 0.407 0

206239_s_at 77 28.268 0.344 0

243669_s_at 237 30.786 0.465 0

213880_at 258 40.144 0.520 0

213385_at 213 43.146 0.456 0
P.value

228030_at 0

228915_at 0

206239_s_at 0

243669_s_at 0

213880_at 0

213385_at 0

> head (round (RankRes$Table2, 3))

22

gene.index RP/Rsum FC:(classl/class2) pfp P.value

205242_at 257 31.645 3.092 0 0
37145_at 154 34.843 2.678 0 0
209301 _at 164 37.957 2.276 0 0
206442_at 280 42.928 2.927 0 0
206391 _at 168 49.136 1.836 O 0
204818_at 277 50.370 2.216 0 0

The function topGene is used to output a table of the identified genes from the
output object from function RPadvance. Table contains genes according to other
arguments. It is obligatory to specify either the cutoff (the desired significance
of the identification) or num.gene (the number of top genes identified), otherwise
a error message will be printed and the function will be stopped. If cutoff is
selected, user needs to choose between pfp (percentage of false prediction) or
pval (p-value). pfp is the default setting, which is selected when no selection
is made.

Two tables are output, listing identified up- (Tablel: class 1 < class 2) and
down- (Table2: classl > class 2) regulated genes. There are 5 columns in the
table

1. gene.index is the gene index in the original data set
2. RP/Rsum is the computed rank product for each gene

3. FC:(class1/class2) is the computed fold change of the average expression
levels under two conditions, which would be converted to the original scale
using input logbase (default value is 2) if logged=TRUE is specified

4. pfp is the estimated pfp value for each gene in the list if that gene serves
as the cutoff point

5. P.value is the associated P-values for each gene

Notes

By combining data sets from different origins together, the test gets increased
power, which leads to more identified genes. For more information see also [15].

Part VI
Z-statistic - posterior mean
differential expression

Introduction

The main idea of this method is that one can use data from one study to con-
struct a prior distribution of differential expression and thus utilize the posterior
mean differential expression, weighted by variances, whose distribution is stan-
dard normal distribution due to classic Bayesian probability calculation.

23

It is based on assumption that gene expression is normally distributed with
mean pg and SD 03 and that we can estimate 03 by pooling together all genes
with similar levels of mean intensity. The difference in gene expression is tested
by

D X - X
Zziz 12 22 NN(O71),
Vi

where X; and X5 denotes mean gene expression values in classes, o7 and o3
denotes the estimated SD in classes and n; and ny denotes the number of samples
in classes.

Usage

Data preparation

Because the same number of samples in each class and study is used in primary
publication of the method [16], we will first look at number of samples in our
data.

> table(pData(denmark)[, 1])

MSI MSS
39 38

> table(pData(australia)[, 1])

MSI MSS
5 31

> table(pData(japan) [, 2])

MSI MSS
16 25

The smallest value in the tables above is 5, therefore we will randomly choose 5
samples in each class and data set. Function dataZ performs such data reduc-
tion. It has four required arguments: a data set as ExpressionSet object (data),
number of column of pData slot with class labels (group), number of samples to
be selected (nsamp) and name for class labels (varname). We need to merge the
data sets into one mergeExprSet object created by function mergeExprs from
R package MergeMajid.

denmarkZ <- dataZ(data = denmark, group = 1, nsamp = 5,
varname = "satelite")

australiaZ <- dataZ(australia, 1, 5, "satelite")

japanZ <- dataZ(japan, 2, 5, "satelite")

library(MergeMaid)

merged <- mergeExprs(denmarkZ, australiaZ, japanZ)

V V.V Vv + VvV

Now, we can proceed to detecting differentially expressed genes.

24

Detecting differentially expressed genes
We apply this method by

> z.stat <- Zscore(merged)

Pheno data is assumed to be in the first column of phenoData slot
0 marked as O

1 marked as 1

Contrast will be 1 - 0

Results

> head(round(z.stat, 3))

Zscore Pvalue
1552281 _at 4.609 0.000

1552365_at -7.066 0.000
15652485_at -3.123 0.002
16562502_s_at -1.798 0.072
1552546_a_at -0.088 0.930
15562553_a_at -1.512 0.131

Only values of Z-statistic (Zscore) and their p-values (Pvalue) are provided by
function Zscore.

Notes and discussion

This implementation expects either same microarray platform or same scale of
expression values (like after POE transformation [17]) in all data sets.

Part VII
TSP-clasiffier

Introduction

This method has been originally described in [18]. A top scoring pair (TSP)
is a pair of genes whose relative ranks can be used to classify arrays according
to a binary phenotype. A top scoring pair classifier has three advantages over
standard classifiers:

1. the classifier is based on the relative ranks of genes and is more robust to
normalization and preprocessing,

2. the classifier is based on a pair of genes and is likely to be more inter-
pretable than a more complicated classifier,

3. a classifier based on a small number of genes lends itself diagnostic tests
based on PCR that are both more rapid and cheaper than classifiers based
on a large number of genes.

25

Usage

In this section we will demonstrate the use of the functions made for meta-
analysis of example data sets. We will show how to calculate top scoring pair,
how to calculate p-values for significance and how to plot TSP objects.

Data preparation

We are going to use function mergedata again. Please see Data preparation
section of RankProduct part for details.

> tspdata <- mergedata(denmark, australia, japan,
+ class.col = c(1, 1, 2))

Detecting differentially expressed genes

Function tspcalc calculates top scoring gene pair. It has two arguments: dat
and grp. dat can be either an m genes by n samples matrix of expression data
or an ExpressionSet object. There are also two posibilities for grp: A group
indicator in character or numeric form or an integer indicating the column of
pData() to use as the group indicator. We use gene expression data matrix and
vector of numeric class labels.

> tsp <- tspcalc(dat = tspdata$dat, grp = tspdata$cl)

We can compute the significance of a top scoring pair, too. It calculates "how
strong a top scoring pair is”.

The function tspsig performs a permutation test with the null hypothesis
that no TSP exists in the data set. It permutes the group labels B times and
calculates a null TSP score for each time. The p-value is then the total number
of null TSP scores that exceed the observed TSP score plus 1 divided by B + 1.
A progress bar indicates the time left in the calculation. You have to again
specify the data expression matrix, class labels and additionally the number
of permutations. You can also set the seed for permutations to make results
reproducible.

> out <- tspsig(tspdata$dat, tspdata$cl, B = 50)
[2% [20% [40% | 60% | 80% [100%
Progress: [I1LLITLLIITEEETEEEETEEEEEEEETEEr T EErrer e

Results

Function tspcalc returns a tsp object.
> tsp

tsp object with: 1 TSPs
Pair: TSP Score Tie-Breaker
TSP 1 : 0.75 NA

26

Indices

243 415

In the output above each row refers to one top scoring pair. TSP Score is TSP
score as defined in [18], essentially it is the empirical average of sensitivity and
specificity for the pair. Tie-Breaker denotes the tie-breaking score described
in [19]. Briefly, each expression value is ranked within its array, then a rank
difference score is calculated for each pair of genes. Finally, Indices gives the
rows of the gene expression matrix that define a top scoring pair.

> tspplot (tsp)

Number of TSPs: 1
TSP 1

Groups: 1 = Red | 2 = Blue; Score: 0.748

pression

Gene: 203008 x_at Ex

I I I I I
5 6 7 8 9

Gene: 203566_s_at Expression

The tspplot accepts a tsp object and returns a TSP plot. The figure plots the
expression for the first gene in the TSP pair versus the expression for the second
gene in the TSP pair across arrays. The user defined groups are plotted in the
colors red and blue. The score for the pair is shown across the top of each plot.
If there is more than one TSP, hitting return will cycle from one TSP to the
next.

> summary (out)

Length Class Mode

P 1 -none- numeric
nullscores 50 -none- numeric
> out$p

[1] 0.01960784

27

> out$nullscores

[1] 0.3248227 0.3446809 0.3177305 0.3159574 0.3645390
[6] 0.3017730 0.3475177 0.3503546 0.3060284 0.3234043
[11] 0.2783688 0.3609929 0.3265957 0.3095745 0.3152482
[16] 0.3386525 0.3081560 0.3138298 0.3336879 0.3202128
[21] 0.3351064 0.3113475 0.3010638 0.3035461 0.2872340
[26] 0.3000000 0.3248227 0.3166667 0.4156028 0.2897163
[31] 0.3851064 0.3521277 0.3078014 0.3687943 0.3113475
[36] 0.3049645 0.3563830 0.3095745 0.3124113 0.3010638
[41] 0.2957447 0.2769504 0.3347518 0.3120567 0.3290780
[46] 0.3340426 0.3900709 0.2893617 0.3659574 0.3173759

p and nullscores are two the most interesting elements of output from tspsig
function. The former is the significance of TSP and the latter contains top
scores observed in permutations.

Part VIII
VennMapping

Introduction

VennMapping [20] is a method based on Venn diagrams and contingency tables.
It looks for number of common genes in pairs of gene lists, statistical significance
of observed match and returns also names of the common genes.

Algorithm

Algorithm of this method consists of three steps:
1. Calculation of fold-change in each data set.
2. Selection of significant (interesting) genes.

3. Comparison of gene lists pairs.

Usage

Data preparation

Function fold.change calculates mean fold-change in one data set. It has two
arguments: data set (e.g. denmark) and column number of pData slot with class
labels to be used. It assumes data are on logs scale.

> fc.d <- fold.change(denmark, 1)
> fc.a <- fold.change(australia, 1)
> fc.j <- fold.change (japan, 2)

> FC <- cbind(fc.d, fc.a, fc.j)

28

Function gene. select selects significant/interesting genes from mean fold-change
matrix with rows referring to genes and columns to data sets. The user has to
specify (apart from mean fold-change matrix) a cutoff for selection. The cut-
off is on logs scale, too. We chose 1 for genes with at least 2-fold change in
expression.

> list <- gene.select.FC(FC, 1)
> summary(list)

Length Class Mode

fc.d 33 -none- character
fc.a 27 -none- character
fc.j 35 -none- character

Object 1list is a list in which each slot contains names of selected genes in one
study. For example from the print above 33 genes have been selected in denmark
data set.

Detecting differentially expressed genes

Now, we can move on comparison of selected gene lists in pairs of data sets.
There are three functions to perform such a analysis: conting.tab, Z and
gene.list. conting.tab returns contingency table with number of common
genes. Z provides Z statistic to measure significance of observed number of
common genes and gene.list outputs table with names of common genes.
All of them have one argument same - it is a list object with names of se-
lected genes in individual data sets. For function Z one additional argument
is necessary - the number of genes involved in meta-analysis (calculated by
length (rownames (exprs(denmark)))).

> conting.tab(list)

fc.d fc.a fc.j
fc.d NA 12 16
fc.a 12 NA 7
fc.j 16 7 NA

> Z(list, n = length(rownames (exprs (denmark))))

fc.d fc.a fc.j
fc.d NA 7.920245 9.320174
fc.a 7.869850 NA 3.821593
fc.j 9.340196 3.854327 NA

> gene.list(list)

fc.d
fc.d NA
fc.a "205009_at ;206239 _s_at;37145_at;205044_at;213385_at;228030_at;205242_at;204818_at ;206
fc.j "202803_s_at;230964_at;213915_at;206239_s_at ;1556055 _at ;1552281 _at;37145_at;209301_at
fc.a
fc.d "205009_at;206239_s_at;37145_at;205044_at;213385_at;228030_at;205242_at;204818_at ;206

29

fc.a NA
fc.j "206239_s_at;209583_s_at;37145_at;228030_at;206442_at;210143_at;230793_at"
fc.j
fc.d "202803_s_at;230964_at;213915_at;206239_s_at;1556055_at ;1552281 _at;37145_at;209301_at
fc.a "206239_s_at;209583_s_at;37145_at;228030_at;206442_at;210143_at;230793_at"
fc.j NA

Part I1X
MAP-Matches

Introduction

Meta-Analysis Pattern Matches (MAP-Matches) [21] is a method that extends
VennMapping [20] and meta-profiling [22]. It is designed to analyze more dis-
tinct microarray data (search for common molecular mechanism in all types of
cancer). It assumes same gene set in all data sets.

Algorithm

Algorithm of this method has five steps:
1. Calculation of T-statistic for each two classes in each data set.

2. Building matrix of T-statistics (T-matrix) with rows referring to genes
and columns to pairs of classes and data set.

3. Selection of threshold for T-statistic.

4. Transformation of T-matrix into a binary matrix: 1 for T-statistics above
threshold, 0 for T-statistics below threshold.

5. Statistical analysis of transformed T-matrix (more details in Usage sec-
tion).

Usage

Data preparation

The analysis starts with calculation of T-statistics. Function meta.test returns
a list with two slots: matrix of test statistics (test) and matrix of p-values (p).
In each of the matrices rows correspond to genes and columns to data sets. We
need only test slot for this method. Argument class.col is a numeric vector
indicating which column of pData should be used and data.names is a character
vector with names of the data sets.

> stat.real <- meta.test(denmark, australia, Jjapan,

+ class.col = ¢(1, 1, 2), data.names = c("denmark",
+ "australia", "japan"))$test

> colnames (stat.real) <- c("Denmark", "Australia",

+ "Japan")

30

Detecting differentially expressed genes

The do not select significant genes in each study we only set threshold for T-
statistics. We decided for 98 % quantile (same in [21]).

> stat <- c(stat.real)
> quan <- T.select(stat)
> T.default <- quan["98.00%"]

Now, we transform stat.real (T-matrix) into a binary matrix. We replace
T-statistics above threshold with 1 and below with 0.

> value.dis <- apply(stat.real, MARGIN = c(1, 2),
+ function(x) ifelse(abs(x) > T.default, 1,
+ 0))

> rownames (value.dis) <- featureNames (denmark)

> head(value.dis)

Denmark Australia Japan

217562_at 0 0 0
203766_s_at 0 0 0
1554394 _at 0 0 0
212662_at 0 0 0
1555370_a_at 0 0 0
240574 _at 0 0 0

Each row value.dis is called a meta-analysis pattern. We are going to analyze
their occurrence, significance and genes they occur at. Function ratio provides
basic summarization of value.dis.

> results <- ratio(value.dis)
> summary (results)

Length Class Mode

n 3 -none- numeric
X.string 23 -none- character
p.strong 6 -none- numeric
p.soft 6 -none- numeric

In results we can find: number of genes with T-statistic sufficiently high in
each study n, patterns observed in data (X.String), probability of observing
strong match (p.strong) and probability of observing soft match (p.soft). We
say two patterns match strongly if they are equal. The rule for soft match is
weaker as only 1’s in patterns must match.

Function MAPmatrix calculates a matrix with rows corresponding to pat-
terns and four columns: unique patterns that are being observed in our data
(unige.pat), number of observed soft matches with the pattern (n.soft), number
of observed strong matches (n.strong and number of 1’s in the pattern n.sig).

> MAPmat <- MAPmatrix(value.dis)
> MAPmat

31

unique.pat n.soft n.strong n.sig

100 100 18 12 1
010 010 4 2 1
001 001 8 3 1
101 101 5 4 2
111 111 1 1 3
110 110 2 1 2

Only pattern with multiply 1’s are connected with common molecular mecha-
nism and we will focus on them in the rest of analysis.

> MAPmat2 <- MAPmat[MAPmat$n.sig > 1,]
> unique.pat <- as.character(MAPmat2[, 1])

We assume that sufficiently high number of strong matches may provides evi-
dence of common molecular mechanism. Functions MAPsigl and MAPsig2 per-
form statistical analysis to answer whether we observe significant number of
matches or not. The statistical analysis can be done in two ways (both based
on permutation testing): we either permute columns of T-matrix (in binary
form) or permute class labels in data sets and repeat the whole procedure with
same threshold for T-statistics. The former is implemented in MAPsigl and the
latter in MAPsig2. Function test.group.shuffle calculates T-statistics with
permuted class label repeatedly.

> pl <- MAPsigl(unique.pat, value.dis, iter = 1000)
1 2 3 4 5 6 7
> pl

p.soft p.strong
1 0.000 0.000
2 0.001 0.001
3 0.012 0.150

> den.shuf <- test.group.shuffle(data = denmark,
+ dataname = "Denmark")

> aus.shuf <- test.group.shuffle(data = australia,
+ dataname = "Australia")

> jap.shuf <- test.group.shuffle(data = japan, dataname = "Japan",
+ var = 2)

> dataset <- c("Denmark", "Australia", "Japan")
> p2 <- MAPsig2(dataset, value.dis, unique.pat,
+ B = 100)
> p2
permu.soft permu.strong
1 0 0.0
2 0 0.0
3 0 0.1

Both p1 and p2 have same structure: rows refer to patterns and columns to
statistical signifficance of observed soft (p.soft or permu.soft) or strong (p.strong
or permu.strong) matches.

32

Results

Finally, we will bind all necessary outputs together.

vV + Vv + VvV

resx <- cbind(MAPmat2, pl1, p2)

colnames (resx) <- c(colnames (MAPmat2),
"p.weak", "p.permu.strong", "p.permu.weak")

intx <- t(as.matrix(resx[which(resx[, 4] < 0.06),

1)

t(resx)

unique.pat

n.
n.

‘oo oo B

soft
strong

.sig
.strong
.weak
.permu.strong
.permu.weak

101 111 110
"101" |l111|l |l110|l
Il5|l Il1|| Il2|l
Il4l| Il1l| Il1l|
Il2l| Il3l| Il2l|

"0.000" "0.001" "O.012"
"0.000" "0.001" "0O.150"
IIOII IIOII IIOII
IIO‘OII IIO‘OII "O.ll’

We can plot p-values by

> plotpattern(resx, method = 1)

or

pvalue

0.05 0.10 0.15

0.00

"p.strong",

— p.strong

- - pweak
p.permu.strong

— — _p.permu.weak

1.0 15 20 25 3.0 35 40

pattern ID

> plotpattern(resx, method = 2)

33

p.strong
¢

p.weak
q
q

p.permu.strong p.permu.strong
¢
L)

0.00 0.05 0.10 0.15
Pattern

e 101 « 111 - 110

Until now, we have only found out that for some patterns there is significantly
high count of strong or soft matches being observed. Obviously we want to know
expression of which genes is changed in these patterns. Function MAP.genes
returns a list in which each slot contains list of genes involved in one pattern.
If argument files is set to TRUE a files with gene names are also saved.

> probs <- MAP.genes(resx, value.dis, files = FALSE)
> names (probs) <- rownames (resx)
> summary (probs)

Length Class Mode

101 5 -none- character
111 1 -none- character
110 2 -none- character

probs is a list with each slot referring to one pattern and list of gene names is
stored there. The pattern has been observed at these genes.

If there is annotation package available for microarray platform used in meta-
analysis we can create a HTML annotation of found patterns by

> library(annaffy)
> library(hgul33plus2.db)
> MAP.HTMLanno (resx, probs, "hgul33plus2.db")

34

Part X
METRADISC

Introduction

METRADISC [23] is unique among rank-based methods (like Rank Product or
TSP) because it provides an estimate of heterogeneity as one of its outputs.
Additionally the method can deal with genes which are being measured in only
some of the studies. The implementation available in MAMA package is re-
stricted to genes common in all microarray studies analyzed.

Algorithm

1. Gene Ranking - In microarray analysis we usually test samples for a large
number of genes. The results provide for each gene a test statistic and
its statistical significance (p-value). Therefore we can rank the tested
genes in each study based on direction in expression change and statistical
significance. If there are n genes being tested, the highest rank n is given to
the gene that shows the lowest p-value and it is up-regulated in diseased
samples. Then follow all other up-regulated genes ranked according to
increasing p-value. These are followed by down-regulated genes and the
lowest rank (1) is given to gene that shows the lowest p-value and is down-
regulated in diseased samples. Genes with equal p-values are assigned tied
ranks.

2. The Average Rank and Heterogeneity metrics - In this step we compute a
average rank and heterogeneity metrics. The average rank R* is defined

* Ry

as R* = Z:i%l, where R; is the rank of the gene in study ¢ and s is
total number of studies (i = 1,2, ...,s). The heterogeneity metrics Q* is
given by formula Q* = >°7_ (R; — R*)?, it is actually generalization of

Cochran’s @) statistic.

3. Monte Carlo permutation test - To obtain statistical significance for av-
erage rank and heterogeneity metrics we randomly permute the ranks of
each study and the stimulated metrics are calculated. Then we repeat the
procedure to generate null distribution for the metrics. Each variable is
then tested against the corresponding null distribution. We are interested
genuinely in four statistical significances: for high average rank, for low
average rank, for high heterogeneity and for low heterogeneity. Distinction
between high and low average rank is important as we want to keep the
direction of effect in mind. Ignoring it can lead to spurious results that
a gene is consistently significant even if it is up-regulated in one study
and down-regulated in second one. On the other hand, statistically low
heterogeneity may suggest consistent results among different studies. The
statistical significance for high average rank (R*) is defined as the percent-
age of simulated metrics that exceed or are equal to the observed (R*).
The statistical significance for low average rank (R*) is defined as the per-

35

centage of simulated metrics that are below or equal to the observed (R*).
Significance of heterogeneity is defined analogously.

Usage

Data preparation

We will start with computing test statistic and p-value for each gene and data
set. Function meta.test returns a list with two slots: data frame of test statis-
tics and data frame of p-values. In each of the matrices rows correspond to genes
and columns to data sets. Argument class.col is a numeric vector indicating
which column of pData should be used and data.names is a character vector
with names of the data sets.

> metra <- meta.test(denmark, australia, japan,

+ class.col = ¢(1, 1, 2), data.names = c("denmark",
+ "australia", "japan"))

> head(metra$test)

denmark australia japan
217562_at -2.1666481 1.0669144 -0.9286918
203766_s_at 0.8318955 0.1014991 -0.9459710
1554394 _at 1.2176000 4.0282590 1.1763280
212662_at 1.9755557 1.3046695 2.5983263
155656370_a_at 4.3678119 -0.6042763 2.7174563
240574 _at 5.1746999 1.6404196 1.8830312

Detecting differentially expressed genes

Now, we can proceed to ranking genes. Function rank.genes.adv ranks the
genes as described in Algorithm section above.

> RANK <- rank.genes.adv(metra)
> head (RANK)

denmark australia japan

217562_at 105 368 156
203766_s_at 326 257 1563
1554394 _at 348 488 380
212662_at 390 397 442
15565370_a_at 473 170 445
240574_at 484 424 419

The genes ranks can be visualized by

RANK2 <- RANK[order (RANK[, 11), 1]

colnames (RANK2) <- c("Denmark", "Australia", "Japan")

heatcol <- colorRampPalette(c("Green", "Black",
"Red")) (100)

metaheat (as.matrix (RANK2), col = heatcol)

vV + Vv VvV

36

X o =
@ T S
e § 8
& >

The next step is to compute average rank R* and heterogeneity metric Q* for
each gene.

> RQ <- compute.RQ(RANK)
> head(round (RQ, 1))

r.star gq.star

217562_at 209.7 38904.7
203766_s_at 245.3 15168.7
1554394 _at 405.3 10762.7
212662_at 409.7 1592.7
1555370_a_at 362.7 56072.7
240574_at 442.3 2616.7

And finally we use function MCtest to perform Monte Carlo permutation test.
Function requires the observed ranks (RANK), observed average rank and hetero-
geneity metric (RQ) and number of permutations (nper) as arguments. Number
of permutations depends on the required accuracy for the final p-values. 1/nper
is the accuracy for the final p-values. For example with 1000 permutations the
p-values are calculated with three decimal places.

> MC <- MCtest (RANK, RQ, nper = 1000)
100 200 300 400 500 600 700 800 900 1000

> head (MC)

37

R.high R.low Q.high Q.low
217562_at 0.666 0.337 0.457 0.543
203766_s_at 0.499 0.505 0.740 0.260
1554394 _at 0.029 0.971 0.814 0.186
212662_at 0.015 0.985 0.971 0.029
15565370_a_at 0.101 0.900 0.305 0.695
240574 _at 0.008 0.992 0.949 0.051
Results

The command below creates a character vector of genes with significant average
ranks and low heterogeneity. The selected threshold for statistical significance
is 0.01.

> METRA <- c(rownames(MC)[MC[, 1] < 0.01 & MC[,
+ 4] < 0.01], rownames(MC)[MC[, 2] < 0.01 &
+ MC[, 4] < 0.01])

> METRA[1:10]

[1] "234207_at" "225802_at" "230964_at" "236223_s_at"
[5] "201279_s_at" "231829_at" "230621_at" "239539_at"
[9] "238812_at" "228030_at"

Part XI

Results combination

In this part we are going to compare and combine outputs from all methods so
we can look and changes in gene expression in various ways.

We are going to start with lists of differentially expressed genes, because
this is the only one output common for all methods mentioned in this vignette.
We will merge all lists into one variable via function join.DEG. The function
requires a complete list of genes involved in meta-analysis so it can map indices
to gene names like for example function pvalcombination provides. Function
featureNames () returns a character vector with genes present in the Expres-
sionSet object. Because the same set of genes was measured in each data set we
can arbitrarily choose one data set.

> lists <- join.DEG(pvalt, ESt, ScoresFDR, x.z,

+ RankRes, z.stat, tsp, probs, genenames = featureNames (denmark),
+ type = c(1, 1, 3, 4, 5, 6, 7, 8), cutoff = 0.01)

> names (1lists) <- c("PvalCom", "ESCom", "ESCom2",

+ "OrderedList", "RankProduct", "Z-stat", "TSP",

+ "MAP")

> summary (lists)

Length Class Mode

PvalCom 160 -none- character
ESCom 109 -none- character
ESCom2 163 -none- character

38

OrderedList 231 -none- character

RankProduct 140 -none- character
Z-stat 150 -none- character
TSP 2 -none- character
MAP 6 -none- character

Now, we will transform this list to a binary matrix where rows refer to genes
and columns to method and 1 means that the gene was identified as a differ-
entially expressed gene in the method. Function make.matrix provides such
transformation.

> MAT <- make.matrix(lists)
> MAT[1:5, 1:5]

PvalCom ESCom ESCom2 OrderedList RankProduct

212662_at 1 0 1 1 0
15556370_a_at 1 0 1 0 1
240574 _at 1 1 1 1 1
203553_s_at 1 1 1 1 0
207607 _at 1 0 1 1 1

It is very popular to visualize results of microarray analysis as a heatmap. A
heatmap is a graphical representation for a numeric matrix where values are
presented as colors. Gene expression values are usually used in microarray anal-
ysis. In these pictures colors go continuously from green (for down-regulation)
through black (for no change in gene expression) to red (for up-regulation).
There are several R-packages which implement plotting heatmaps in slightly
different way. Functions metaheat and metaheat2 are modification of two of
them, so a discrete set of colors (only two in metaheat but even several in
metaheat?2) can be used with an appropriate legend.

Function metaheat has three arguments: a data matrix (MAT), a number
defining position of legend (legend=1 is legend drawn below the picture) and
vector of colors (col).

> metaheat (MAT, legend = 1, col = c("khakil", "lightsalmon3"))

39

—

o~ - = - o o
g g £ 2 g g % <
o o s} =1 B i = s
] 7] Q o <3 N
> w 7] o o
e u ° <
Il
o o
neg pos

Function metaheat2 has as many arguments as heatmap.2 form gplots package
and two more. Argument legend.names is a character vector with labels to
be used in legend. Setting discret=TRUE will indicate that legend for discrete
values should be drawn.

> metaheat2(MAT, col = c("khakil", "lightsalmon3"),
+ legend.names = c("DEG", "noDEG"), discrete = TRUE,
+ trace = "none", dendrogram = '"none")

40

O DEG @ noDEG

"l
I

-

l

TSP
MAP
deredList
Z-stat
\kProduct
ESCom
PvalCom
ESCom2

The user can perform cluster analysis on MAT to search for similarities between
methods or genes.
We can look at number of genes found by number of methods by

> dim(MAT)
[1] 286 8

According to the outsprint above, eight different methods have found 217 dif-
ferentially expressed genes.

The histogram below shows that the most of the genes have been selected in
only one method.

> n.met <- apply(MAT, 1, sum)
> hist(n.met, main = "", xlab = "Number of methods",
+ ylab = "Number of genes", xlim = c(1, 8))

41

60 80
|

Number of genes
40

20

1
|

L

1 2 3 4 5 6 7 8

Number of methods

n.met is a numeric vector of number of methods that identified the gene as
differentially expressed.

Next, we can look for example how many genes have been found as differen-
tially expressed in at least 6 methods.

> dim(MAT[n.met > 5,])
[1] 67 8

On the other hand, we can find out how many genes have been found by a
method.

> n.gen <- apply(MAT, 2, sum)
> barplot(n.gen, cex.names = 0.8, las = 2)

42

200 —

150 —

100 —

50 —

PvalCom
ESCom
ESCom2
OrderedList
RankProduct
Z-stat

TSP

MAP

Function contig.tab provides a number of genes common in two gene lists. It
can be applied to lists, too.

> TAB <- conting.tab(lists)
> TAB[1:5, 1:5]

PvalCom ESCom ESCom2 OrderedList RankProduct

PvalCom NA 109 157 139 108
ESCom 109 NA 109 102 84
ESCom?2 157 109 NA 140 111
OrderedList 139 102 140 NA 113
RankProduct 108 84 111 113 NA

Expression of one gene

In this section we are going to focus on one gene and to look at its expression
change from different points of view. The different points of view are represented
by different approaches used in the methods.

First we will join all the available results to one list and then select only
rows for one gene.

> results <- join.results(pvalt, ESt, theScores,

+ ScoresFDR$two.sided, x.z, RankRes, z.stat,

+ probs, MC, RQ, type = c(1, 1, 5, 5, 2, 3,

+ 5, 4, 5, 5), genenames = rownames (exprs (denmark)))
> gene <- metagene("203008_x_at", results)

> gene

43

[[11]

studyl study?2 study3 AllIndStudies
1.00000 1.00000 1.00000 1.00000
Meta TestStatistic
1.00000 -8.92453
[[2]]
studyl study?2 study3 AllIndStudies
1.000000 1.000000 1.000000 1.000000
Meta TestStatistic
1.000000 8.674749
[[3]1]
zSco_Ex_1 zSco_Ex_2 zSco_Ex_3 zSco
-6.44329249 -3.76525489 -4.69659562 -8.80275939
MUvals MUsds Qvals df
-1.77309287 0.20142467 0.26260012 2.00000000
Qpvalues Chisq Effect_Ex_1 Effect_Ex_2
0.87695460 0.00000000 -1.71847860 -2.02486588
Effect_Ex_3 EffectVar_Ex_1 EffectVar_Ex_2 EffectVar_Ex_3
-1.75867849 0.07113324 0.28920365 0.14021890
[[4]1]
zSco_Ex_1 FDR_Ex_1 zSco_Ex_2 FDR_Ex_2 zSco_Ex_3
-6.4432925 0.0000000 -3.7652549 0.0275000 -4.6965956
FDR_Ex_3 z3co FDR MUvals MUsds
0.0000000 -8.8027594 0.0000000 -1.7730929 0.2014247
Qvals df Qpvalues Chisq
0.2626001 2.0000000 0.8769546 0.0000000
(511
[1] TRUE
[[6]1]
gene.index RP/Rsum FC: (classl/class2)
415.0000 78.6607 0.5803
pip P.value
0.0000 0.0000
[[7]1]
Zscore Pvalue

203008_x_at 4.565183 4.990581e-06

(rel]
101 111 110
FALSE FALSE TRUE

[[9]1]

R.high R.low Q.high Q.low

0 1

1 0

44

[[10]]

r.star q.star
497 38

> save(gene, file = "gen.RData")

This output provides much of the information available on the gene through all
the described methods. It is a rather complicated structure, so we will try to
represent it graphically in comprehensible form.

> plotgene(gene, type = c(1, 1, 2, 3, 4, 5, 6, 7,
+ 8, 9), datalabels = c("denmark", "australia",
+ "japan", "combined"))

Meta

: i g d 3

Qlow | Heterogenity: 38

AllindStudies
AllindStudies

studyl
study2
study3
Meta
tudyl
study2
study3

Qhigh o | Heterogenity: 38

Rlow o | Average Rank: 497

Rhigh | e Average Rank: 497

RankProd | o RankProd.down: 78.66

zstat | . zstat: 4.57

0.0 0.2 0.4 0.6 0.8 1.0

p-value

combined FDR twosided: 0

japan _— FDR twosided: 0

australia FDR twosided: 0.028

denmark D ———— FDR twosided: 0

T T T T
-2.2 -2.0 -18 -16

Effect Size

The picture above shows in top part occurrence of gene in ... , in list of over-
lapping genes in SOGL method and in gene lists with observed MAP (Meta-
Analysis Pattern). The dark box means that the gene is present in the list.
Values from objects: pvalt, ESt, x.z and probs are used in here.

The middle part is dedicated to p-values available in meta-analysis. Specific
values of the statistics can be found on the right side of the chart. The vertical
dashed line denotes the signifficance threshold 5%. P-values from MC, RankRes
and z.stat are drawn in here.

Combination of effect size is plotted in the bottom graph. The point marks
the effect size. Horizontal lines denote the variance of effect size. Statistical
significance of the difference in gene expression (FDR adjusted) can be found
on the right side of the chart. This graph uses values from theScores and
ScoresFDR.

45

References

[1]

Jorissen, R. N., Lipton, L., Gibbs, P., Chapman, M. et al. 2008, DNA copy-
number alterations underlie gene expression differences between microsatel-
lite stable and unstable colorectal cancers, Clinical Cancer Research, Vol.
14, pp. 8061-8069

Watanabe, T., Kobunai, T., Toda, E., Yamamoto, Y. et al. 2006, Distal
colorectal cancers with microsatellite instability (MSI) display distinct gene
expression profiles that are different from prozimal MSI cancers Cancer
Research, Vol.66, no. 20, pp. 9804-9808

Falcon, S., Morgan, M. and Gentleman, R. 2007, An in-
troduction to Biocinductor’s FExpressionSet class, available at:
http://www.bioconductor.org/packages/2.2/bioc/vignettes/Biobase/inst
/doc/ExpressionSetIntroduction.pdf

Marot, G., Foulley, J.L., Mayer, C.D.,Jaffrézic, F. 2009, Moderated ef-
fect size and P-value combinations for microarray meta-analyses, Bioin-
formatrics, Vol. 25 no. 20 2009, pp. 2692-2699

Rhodes, D.R., Barrette, T.R., Rubin, M. A., Ghosh, D. a Chinnaiyan, A. M.
2002, Meta-Analysis of Microarrays: Interstudy Validation of Gene Expres-
sion Profiles Reveals Pathway Dysregulation in Prostate Cancer, CANCER
RESEARCH 62, pp: 4427-4433

Fisher, R.A. 1925, Statistical methods for research, Oliver and Boyd, Edin-
burgh

Smyth, G. K. 2004, Linear models and empirical Bayes methods for assess-
ing differential expression in microarray experiments, Statistical Applica-
tions in Genetics and Molecular Biology 3, No. 1, Article 3

Jaffrézic, F., Marot, G., Degrelle, S., Hue, 1., Foulley, J.L. 2007, A structural
mized model for variances in differential gene expression studies, Genetical
Research, Vol. 89, pp. 19-25.

Choi, J. K., Yu, U., Kim, S. a Yoo, O.J. 2003, Combining multiple mi-
croarray studies and modeling interstudy variation, Bioinformatics, Vol.

19, Suppl. 1 2003, pp. i84-i90

Gentleman, R., Rauschhaupt, M., Huber, W., a Lusa L.
2008, Meta-analysis for Microarray Fxperiments, dostupné na:
http://www.bioconductor.org/packages/2.3/bioc/vignettes/GeneMeta
/inst/doc/GeneMeta.pdf

Hedged, V. L. a Olkin, I. 1985, Statistical Methods for Metaanalysis, Aca-
demic Press, Orlando

Cochran, B.G. 1954, The combination of estimates from different experi-
ments, Biometrics, Vol. 10, pp. 101-129

DerSimonian, R., a Laird, N. M. 1986, Meta-analysis in clinical trials,
Controlled Clinical Trials, Vol. 7, pp. 177-188

46

[14]

[15]

[16]

[17]

[23]

Scheid, S., Lottaz, C., Yang, X. a Spang, R. 2006, Similarities of Ordered
Gene Lists User’s Guide to the Bioconductor Package OrderedList 1.11.3,
dostupné na: http://www.bioconductor.org/packages/2.5/bioc/vignettes/
OrderedList /inst/doc/tr_2006_01.pdf

Hong, F., Breitling, R., McEntee,C. W., Wittner, B. S., Nemhauser, J. L.
a Chory, J. 2006, RankProd: a bioconductor package for detecting differ-
entially expressed genes in meta-analysis, Bioinformatics, Vol. 22, no. 22
2006, pp. 2825-2827

Wang, J., Coombes, K. R., Highsmith, W. E., Keating, M. J. a Abruzzo, L.
V. 2004, Differences in gene expression between B-cell chronic lymphocytic
leukemia and normal B cells: a meta-analysis of three microarray studies,
Bioinformatics, Vol. 20, no. 17 2004, pp. 3166-3178

Ghosh, D. a Choi, H. 2009, metaArray package
for meta-analysis of microarray data, dostupné na:
http://bioconductor.org/packages/2.5/bioc/vignettes/metaArray /inst/
doc/metaArray.pdf

Geman, D., d’Avignon, Ch., Naiman, D. Q. a Winslow, R.L. 2004, Classi-
fying Gene Expression Profiles from Pairwise mRNA Comparisons, Statis-
tical Applications in Genetics and Molecular Biology 2004, Vol. 3, Issue 1,
Article 19

A.C. Tan, D.Q. Naiman, L. Xu, R.L. Winslow, D. Geman, Simple decision
rules for classifying human cancers from gene expression profiles, Bioinfor-
matics, 21: 3896-3904, 2005.

Smid, M., Dorssers, L. C. J. a Jenster, G. 2003, Venn Mapping: clustering
of heterologous microarray data based on the number of co-occurring differ-
entially expressed genes, Bioinformatics, Vol. 19, no. 16 2003, pp. 2065-2071

Yang, X., Bentink, S. a Spang, R. 2005, Detecting Common Gene Expres-
sion Patterns in Multiple Cancer Outcome Entities, Biomedical Microde-
vices, Vol.7:3, pp. 247-251

Rhodes, D. R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh,
D., Barrette, T., Pandey, A. a Chinnaiyan, A. M. 2004, Large-scale meta-
analysis of cancer microarray data identifies common transcriptional pro-
files of neoplastic transformation and progression, PNAS, Vol. 101, no. 25,
pp. 9309-9314

Zintzaraz, E a loannidis, J.P.A. 2008, Meta-analysis for ranked discovery
datasets: Theoretical framework and empirical demonstration for microar-
rays, Computational Biology and Chemistry 32, pp. 39-47

47

