
MAMA: a 9 in 1 R package for Meta-Analysis of

MicroArray

Ivana Ihnatova

October 1, 2010

Contents

I Introduction 2

II Methods that combine p-values 3

III Methods that combine effect sizes 4

IV Similarity of Ordered Gene Lists (SOGL) 14

V RankProduct 19

VI Z-statistic - posterior mean differential expression 23

VII TSP-clasiffier 25

VIII VennMapping 28

IX MAP-Matches 30

X METRADISC 34

XI Results combination 38

1

Part I

Introduction
This paper provides a user guide to R-package MAMA. The package implements
nine different methods that have been proposed in meta-analysis of microarray
and are designed to identify differentially expressed genes.

In here, we will demonstrate the features of the package with an example of
meta-analysis in cancer microarray data, the comparison of expression profiles
in MSI (microsatelite instable) and MSS (microsatelite stable) colon cancer. We
gathered three microarray data from public databases. The data are stored in
object DataColonHalf

The guide starts with package and sample data loading.

> rm(list = ls(all = TRUE))

> options(width = 60)

> library(MAMA)

gdata: read.xls support for ’XLS’ (Excel 97-2004)

gdata: files ENABLED.

gdata: Unable to load perl libaries needed by

gdata: read.xls()

gdata: to support ’XLSX’ (Excel 2007+) files.

gdata: Run the function ’installXLSXsupport()’

gdata: to automatically download and install the perl

gdata: libaries needed to support Excel XLS and XLSX

gdata: formats.

> load(url("http://math.muni.cz/~xihnatov/DataColonHalf.RData"))

> ls()

[1] "australia" "denmark" "japan"

The original data sets have been preprocessed and subsampled in order to reduce
the computational complexity. All data sets have been normalized and are in
log2-scale. The corresponding sample sizes tor the three datasets (denmark [1],
australia [1] and japan [2]) are 77 (39 MSI and 38 MSS), 36 (5 MSI and 31
MSS) and 41 (16 MSI and 25 MSS), respectively. In all expression profiles we
have selected the same set of 500 genes for analysis.

Each of the datasets is stored as an ExpressionSet object - a specific container
for microarray data and experimental metadata. The detailed information about
this object can be found at [3]. Gene expression data matrix can be obtained
by function exprs() and function pData() return a data frame with samples
description (class labels).

A different method is used in each of parts below and parts are written to
be independed from each other, so you can directly move to method that are
of your interest. Meta-analysis usually consist of three steps: Data preparation
(and its transformation if necessary), Detection of differentially expressed genes
and Extraction and visualization of results.

2

Part II

Methods that combine p-values

Introduction

In this part we will focus on methods that combine p-values [4], [5]. These
methods are inspired by Fisher’s S-statistic published in 1925 [6]. We usually
obtain two measurements of significance of change in gene expression: value
of test-statistic and p-value. These methods combine the p-values from study-
specific analysis and combine them into one p-value in sense of sum of logs.
Methods differ in test statistic that is used to calculate the study-specific p-
value.

Usage

Data preparation

When using this implementation we have to merge all gene expression data
matrices (exprs()) and class labels vectors (pData()[,]) to two lists.

> esets <- list(exprs(denmark), exprs(australia),

+ exprs(japan))

> classes <- list(pData(denmark)[, 1], pData(australia)[,

+ 1], pData(japan)[, 2])

Detecting differentially expressed genes

Functions pvalcombination and pvalcombination.paired provide meta-analysis
based on combination of p-values. The former is designed for unpaired data and
the latter for paired design of microarray experiments. Because, our data sets
are unpaired, we will use pvalcombination. The function requires: a list of gene
expression data matrices (esets), a list of vectors of class labels (classes), type
of test statistics (moderated) and threshold for significance (BHth). It returns
list of indices of selected genes. Three possible values for argument moderated

are available: "t" for common t-test, "limma" for moderated t-test used in
limma package [7] and "SMVar" for moderated t-test defined in SMVar package
[8].

> pvalt <- pvalcombination(esets, classes, moderated = "t",

+ BHth = 0.01)

DE IDD Loss IDR IRR

160.00 43.00 15.00 26.88 11.36

Several characteristics which have been defined in meta-analysis of microarray
(especially for methods which combine p-values or effect sizes). This character-
istics are outprinted by the function. DE denotes number of significant genes
in meta-analysis. IDD represents Integration Driven Discoveries, it means genes
which are significant in meta-analysis but not in any of the individual studies

3

alone. Other way round, if a gene is significant only in individual data sets
but not in meta-analysis, it is called Integration Driven Revision and Loss is a
number of such genes. IDR and IRR are percentages of Integration Driven Dis-
coveries and Integration Driven Revisions in identified differentially expressed
genes (DE).

Results

> summary(pvalt)

Length Class Mode

study1 113 -none- numeric

study2 8 -none- numeric

study3 59 -none- numeric

AllIndStudies 132 -none- numeric

Meta 160 -none- numeric

TestStatistic 500 -none- numeric

This object is a list with six slots. Study1 to Study3 are numeric vectors with
indices of differentially expressed genes in data sets 1 to 3. AllIndStudies is
a vector of indices of differentially expressed genes in at least one data set.
Differentially expressed genes found by meta-analysis have their indices stored
in Meta. And finally, a slot called TestStatistic is a vector with test statistics in
meta-analysis.

Part III

Methods that combine effect sizes

Introduction

Methods that combine effect size use hierarchical model:

yi = θi + εi, εi ∼ N(0, σ2
i)

θi = µ+ δi, δi ∼ N(0, τ2i),

where µ is true difference in mean expression between two classes, yi denotes
the measure effect for study i, with i = 1, .., k, τ2 represents the between study
variability, σ2

i denotes the within study variability. The analysis is different
depending on whether a fixed-effect model (FEM) or a random-effect model
(REM) is deemed appropriate. Under a FEM, τ = 0 is assumed, otherwise a
REM need to be fit. The estimates of the overall effect µ are different depending
on which model is used.

Two papers dealing with effect size combination as method for meta analysis
of microarray have been published [4] and [9]. They differ in effect size definition
and implementation.

Method presented in [4] offers three variants of effect sizes (classical and
moderated T-test) and uses explicitly random-effect model. It is implemented

4

as two functions EScombination for unpaired data and EScombination.paired

for paired data.
On the other hand, in [9] the effect size is defined as Hedge’s and Olkin’s g

and both random-effect and fixed-effect are available. Package GeneMeta [10]
implements this method.

Algorithm

1. Data recoding.

2. Effect size calculation in each data set.

3. Decision between random-effect model (REM) and fixed-effect model (FEM).

4. Model application.

Usage

Because there are two different ways of implementation for using combination
of effect size method on microarray data sets, we will discuss them separately.

Implementation from metaMA package

Data preparation This method requires two lists, one containing the data
matrices (exprs()) and the other one the corresponding vectors of group labels
(pData()[,]).

> esets <- list(exprs(denmark), exprs(australia),

+ exprs(japan))

> classes <- list(pData(denmark)[, 1], pData(australia)[,

+ 1], pData(japan)[, 2])

Detecting differentially expressed genes As we have unpaired data, we
are going to use function EScombination. This function has four arguments:
a list of gene expression data matrices (esets), a list of class labels vectors
(classes), effect size definition (moderated) and a threshold for false discovery
rate (FDR) (BHth). Three possible values for moderated are available: "t" for
common t-test, "limma" for moderated t-test used in limma package [7] and
"SMVar" for moderated t-test defined in SMVar package [8].

> ESt <- EScombination(esets, classes, moderated = "t",

+ BHth = 0.01)

DE IDD Loss IDR IRR

109.00 28.00 51.00 25.69 38.64

Function EScombination prints several measures defined in meta-analysis of
microarray. DE denotes number of significant genes in meta-analysis. IDD rep-
resents Integration Driven Discoveries, it means genes which are significant in
meta-analysis but not in any of the individual studies alone. Other way round,
if a gene is significant only in individual data sets but not in meta-analysis, it is

5

called Integration Driven Revision and Loss is a number of such genes. IDR and
IRR are percentages of Integration Driven Discoveries and Integration Driven
Revisions in identified differentially expressed genes (DE).

> summary(ESt)

Length Class Mode

study1 113 -none- numeric

study2 8 -none- numeric

study3 59 -none- numeric

AllIndStudies 132 -none- numeric

Meta 109 -none- numeric

TestStatistic 500 -none- numeric

This object is a list with six slots. Study1 to Study3 are indices of differentially
expressed genes in data sets 1 to 3. AllIndStudies is a vector of indices of
differentially expressed genes in at least one data set. Differentially expressed
genes found by meta-analysis have their indices stored in Meta. And finally, a
slot called TestStatistic is a vector with test statistics (”combined effect size”)
in meta-analysis.

Implemenetation from GeneMeta package

Data preparation Before calculating effect sizes we have to create vectors
with class labels in form of 1’s and 0’s. 1 is supposed to be for diseased samples
and 0 for normal samples. In data sets used as example in this document 1
refers to MSI samples and 0 to MSS.

> ph1 <- pData(denmark)[, 1]

> levels(ph1) <- c(1, 0)

> pData(denmark)[, 1]

[1] MSI MSI MSI MSI MSI MSI MSI MSI MSI MSI MSI

[12] MSI MSI MSI MSI MSI MSI MSI MSI MSI MSI MSI

[23] MSI MSI MSI MSI MSI MSI MSI MSI MSI MSI MSI

[34] MSI MSI MSI MSI MSI MSI MSS MSS MSS MSS MSS

[45] MSS MSS MSS MSS MSS MSS MSS MSS MSS MSS MSS

[56] MSS MSS MSS MSS MSS MSS MSS MSS MSS MSS MSS

[67] MSS MSS MSS MSS MSS MSS MSS MSS MSS MSS MSS

Levels: MSI MSS

> ph1

[1] 1

[29] 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[57] 0

Levels: 1 0

> ph2 <- pData(australia)[, 1]

> levels(ph2) <- c(1, 0)

> ph3 <- pData(japan)[, 2]

> levels(ph3) <- c(1, 0)

6

ph1, ph2 and ph3 are numeric vectors containing class labels for data sets den-
mark, australia and japan. These vectors are needed as arguments for func-
tions which provide effect size and its variability estimates.

Detecting differentially expressed genes Functions getdF, dstar and
sigmad estimate effect size and its variability for a individual data set, therefore
we have to use them three-times. For denmark data set

> d.den <- getdF(denmark, ph1)

> d.adj.den <- dstar(d.den, length(ph1))

> var.d.adj.den <- sigmad(d.adj.den, sum(ph1 ==

+ 0), sum(ph1 == 1))

> head(d.adj.den)

[1] 0.4835090 -0.1882238 -0.2740332 -0.4466879 -0.9850491

[6] -1.1694108

> head(var.d.adj.den)

[1] 0.05347487 0.05218687 0.05244444 0.05325247 0.05825761

[6] 0.06083683

and for other two data sets

> d.aus <- getdF(australia, ph2)

> d.adj.aus <- dstar(d.aus, length(ph2))

> var.d.adj.aus <- sigmad(d.adj.aus, sum(ph2 ==

+ 0), sum(ph2 == 1))

> d.jap <- getdF(japan, ph3)

> d.adj.jap <- dstar(d.jap, length(ph3))

> var.d.adj.jap <- sigmad(d.adj.jap, sum(ph3 ==

+ 0), sum(ph3 == 1))

Function getdF has two arguments: the data set (a ExpressionSet object or a
matrix) and class labels (a factor or numeric vector with 1 and 0) and computes
estimates of standardized mean difference, found in Hedge and Olkin’s [11].
Function dstar corrects the estimates for sample size bias, therefore its second
argument is sample size of the data set. Function sigmad calculates the estimate
of variance of unbiased effect size. For calculation, the user has to provide effect
size estimates and sample size of each class.

Now, we are going to use Chochran’s Q statistic [12] to test between-study
variability, so we can decide whether we should be considering random-effect
(REM) or fixed-effect model(FEM) for the data.

Function f.Q provides a straightforward calculation of Cochran’s Q statistic.
If the null hypothesis that the between-study variance is equal to zero (data are
well modeled by a fixed effects design) then the estimated Q values will have
approximately a chi-squared distribution with degrees of freedom equal to the
number of studies minus one. We are going to look at mean and histogram of
Q statistics. Later we will compare quantiles of Q to quantiles of chi-square
distribution.

7

> mymns <- cbind(d.adj.den, d.adj.aus, d.adj.jap)

> myvars <- cbind(var.d.adj.den, var.d.adj.aus,

+ var.d.adj.jap)

> my.Q <- f.Q(mymns, myvars)

> mean(my.Q)

[1] 2.576469

> hist(my.Q, breaks = 50, col = "red")

Histogram of my.Q

my.Q

F
re

qu
en

cy

0 5 10 15

0
40

80

> num.studies <- 3

> plotQvsChi(my.Q, num.studies)

8

**

**

****** * *

0 2 4 6 8 12

0
5

10
15

QQ Plot

Quantiles of Chi > square

Q
ua

nt
ile

s
of

 S
am

pl
e

According to Q-Q plot the hypothesis seems to be valid and fixed-effect model
(FEM) should be used. However, we are going to use random-effect model
(REM) too, so we can see if there is any difference in estimates of combined
effect size.

The computation is simpler for FEM than for REM. Functions mu.tau2 and
var.tau2 estimate combined effect size (mu.tau2) and variance (var.tau2).
Each effect size is a weighted average of the effects for the individual data sets
divided by its standard error. The weights are the reciprocal of the estimated
variances.

> muFEM = mu.tau2(mymns, myvars)

> sdFEM = var.tau2(myvars)

> ZFEM = muFEM/sqrt(sdFEM)

> qqnorm(ZFEM, pch = "*")

> qqline(ZFEM, col = "red")

9

*

*

*
*

*
*

*
*

**

*

*

*

*

**

**

*

*
*

*

*

** *

*
*

*

*

*

*
*

*

**

*

**

*

**
*

**
*

*

*

*

*
*

*

*

*

*

*

*

*

**

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

* *

*

*

*

*

*
*

*
*

*

*
**

*

*

*

*
**

*

*

*

*

*

*

*

*

**

*

**

*
*

*

*

* *
**

*
*

*
*

*
*

*

*

*

*

* *
**

*
*

*

*
** **

*

*
*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*
*

*

*

*

**

*

*

*

**

*

*
*

*

*

*

*

*
*

*
*

*

*

*

**

*

*
*

*

*

*

**

*

*

*

*

*
*

*
*

*

*

* *

* *

**
*

**

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*
**

*
*

*
*

*

*

*

*

*

*

*

*
*

*
*

*

*

*
**

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

**

*

*
*

*

**

*

*

*
**

*

**

*

*

*

*

*

*

*

*
*

*

*

* *

*

*

*

**

*

*

*

*

*
*

*

* *

*

*
*

*

*

*

*

*

*

**
*

*

**

*

* *

*

*

*
* *

* *

*

* *

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
* *

*

*

*

**

*

*

*

*
* *

*

*

*

*

*

*
*

*
*

*

*

*

**

*

*

** *
**

*

*
*

*

*
**

*

*

*

*

*

*

*

*

**

*

*
*

*

*
*

*

*

*

**
**

*

**

*

*

*

*
*

* *

*

*
*

*

*

*

*

*

*
*

*

*
*

*

*

*
*

*

*

*

*
*

*
*

−3 −2 −1 0 1 2 3

−
10

−
5

0
5

10

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Plotting the quantiles of the effects we can see that the presumption of
approximate Normality seems to be appropriate.

In REM we have to account between-study variability (τ2). Function tau2.DL

provides DerSimonian’s and Laird’s [13] estimates of τ2 from Cochran’s Q. It
has two addional arguments: number of studies (num.studies) and weights
(my.weights=1/myvars). We add between-study variability to estimated vari-
ance (myvars) and calculate the combined effect size like in FEM.

> num.studies <- 3

> my.tau2.DL <- tau2.DL(my.Q, num.studies, my.weights = 1/myvars)

> myvarsDL <- myvars + my.tau2.DL

> muREM <- mu.tau2(mymns, myvarsDL)

> varREM <- var.tau2(myvarsDL)

> ZREM <- muREM/sqrt(varREM)

muFEM or muREM are numeric vectors with estimated combined (overall) effect
size for a gene in FEM or REM. The estimated standard error of overall effect
size for each gene is stored in numeric vectors: varFEM or varREM. We will test
significance of overall effect size by Z-score (ZFEM or ZREM) defined as mean
divided by standard error.

We can easily compare FEM estimates and REM estimates

> plot(muFEM, muREM, pch = "*")

> abline(0, 1, col = "red")

10

*

*

*
**

*

*
*

*
*

*
*

*

*

**

**

*

*
*

*

*

** *

*
*

*

*

*

*

*

*

**

*

**

*

**

*

**
*

*

*

*
*

*

*

*

*

*
*

*
*

**

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
* *

*

**

*

*

*

*

*
*

*
*

*

*

*

*
**

*

*

*

*

*

*

*

*

**

*

*
*

*
*

*

*

*
*

**
*

*
*

*

*
*

*

*

*

*

* ***

* *

*

*

*

*

* **

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*
*

*

*

*

**

*

*

*

**

*

*
*

*

*
*

*

*
*

*
*

*

*

*
**

*

*
*

*

*
*

**

*

*
*

*

*
*

**

*
*

**

* *
*
**

**

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*
*

*
*

*

*

*

*

*

*

*
*

*
*

*

*

*

*
**

*

*

*
*

*

*

*
*

*

*
*

*

*

*

*

**
*

*
*

*

**

*

*

**
*

*

*
*

*

*

*

*
*

*

*

*
*

*

*

* *

*
*

*

**

*

*

*

*

*

*

*

**
*

*
*

*

*

*

*

*

*

**
*

*

**

*

**

*

*

*
**

**
*

*
*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*
*
*

*

*

*

**

*

*

*

* *
*

*

*

*

*

*

*
*

*
*

*

*
**

*

*
*

** *
**

*

**
*

*
**

*

*

*

*

*

*

*

*

**

*

*
*

*

*
*

*

*

*

**
**

**
*

*

*
*

*
*

**

*

* *

*

*

*
*

*

*
*

*
*

*

*

*

**

*

*

*

*
*

*
*

−2 −1 0 1 2

−
2

−
1

0
1

2

muFEM

m
uR

E
M

We do not see much difference here. Actually, for most of the genes the τ2 is
estimated as zero.

> hist.tau <- hist(my.tau2.DL, col = "red", breaks = 100,

+ main = "Histogram of tau")

11

Histogram of tau

my.tau2.DL

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0

Results The procedure described in details above is also implemented in func-
tion zScores. The arguments of this function are a list of expression sets (esets)
and a list of classes (classes). Argument useREM chooses between REM and
FEM.

> esets <- list(denmark, australia, japan)

> classes <- list(ph1, ph2, ph3)

> theScores <- zScores(esets, classes, useREM = FALSE)

> round(theScores[1:2,], 3)

zSco_Ex_1 zSco_Ex_2 zSco_Ex_3 zSco MUvals

217562_at 2.091 -0.542 0.881 1.865 0.326

203766_s_at -0.824 -0.085 0.855 -0.196 -0.034

MUsds Qvals df Qpvalues Chisq Effect_Ex_1

217562_at 0.175 1.964 2 0.375 0.062 0.484

203766_s_at 0.174 1.379 2 0.502 0.845 -0.188

Effect_Ex_2 Effect_Ex_3 EffectVar_Ex_1

217562_at -0.262 0.283 0.053

203766_s_at -0.041 0.275 0.052

EffectVar_Ex_2 EffectVar_Ex_3

217562_at 0.233 0.103

203766_s_at 0.232 0.103

We get a matrix (theScores) with the following columns:

� Effect Ex are the unbiased estimates of the effect (d.adj.)

12

� EffectVar Ex are the estimated variances of the unbiased effects (var.d.adj.
)

� zSco Ex are the unbiased estimates of the effects divided by their standard
deviation

� Qvals are the Q statistics (my.Q) and df is the number of combined ex-
periments minus one

� MUvals and MUsds are equal to muFEM and sdFEM (the overall mean
effect size and its standard deviation)

� zSco are the z scores (ZFEM)

� Qpvalues is for each gene the probability that a chi-square distribution
with df degree of freedom has a higher value than its Q statistic

� Chisq is the probability that a chi-square distribution with 1 degree of
freedom has a higher value than zSco2

Function zScoresFDR implements SAM [?] type analysis to estimate the false
discovery rate (FDR).

> ScoresFDR <- zScoreFDR(esets, classes, useREM = FALSE,

+ nperm = 50, CombineExp = 1:3)

> names(ScoresFDR)

[1] "pos" "neg" "two.sided"

> round(ScoresFDR$pos[1:2,], 3)

zSco_Ex_1 FDR_Ex_1 zSco_Ex_2 FDR_Ex_2 zSco_Ex_3

217562_at 2.091 0.084 -0.542 1.083 0.881

203766_s_at -0.824 1.219 -0.085 1.020 0.855

FDR_Ex_3 zSco FDR MUvals MUsds Qvals df

217562_at 0.585 1.865 0.102 0.326 0.175 1.964 2

203766_s_at 0.586 -0.196 1.052 -0.034 0.174 1.379 2

Qpvalues Chisq

217562_at 0.375 0.062

203766_s_at 0.502 0.845

Function plotES provides several visualizations of the results. Specifying which=1
will plot so called IDRplot. This plot shows the fraction of the genes that have
a higher effect size than the threshold for the combined Z-score , but not for
any of the data set specific Z-scores. Genes with combined Z-score > 0 and < 0
are plotted separately. Selection which=2 will plot the number of genes and the
corresponding FDR for the two sided situation. If the user is more interested
in the number of genes that are below a given threshold for the FDR, he de-
cides for which=3. It shows for each study (indicated by different colors) and
various thresholds for the FDR (x axis) the number of genes that are below this
threshold in the given study but above in all other studies are shown (y axis).
If numeric vector is used that all figure specified in the vectors are plot.

Argument legend.names is a character vector with names of the date set
used in legends and colors is a vector of colors to be used for plotting.

13

> plotES(theScores, ScoresFDR, num.studies = 3,

+ legend.names = c("Combined set", "Denmark",

+ "Australia", "Japan"), colors = c("red",

+ "blue", "green", "yellow"), which = 1:3)

*
*
**
*
**
*
**
*

**
*

*

*
*
*
*

**

**
*
*

*
**
*
*
*

*

*
*

**

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z threshold

ID
R

**

**
**
*
*
*
**
*
*
*
**
*
*

*
*

**

*
*
*

*
*

*
*
**
*

*
*
*
*

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of genes

F
D

R

●

●

●

●

Combined set
Denmark
Australia
Japan

*
*

*
*

*
*

*
*

*

*
*

*

*

*

*

*
*

*
* *

0.02 0.04 0.06 0.08 0.10

0
10

20
30

40

two sided FDR

FDR threshold

N
um

be
r

of
 g

en
es

*

* *
*

*
*

* *
*

*
* *

*
* *

*

*
* * *

* *
* * * * * *

* * * * * * * * * * * *
*

*

*
* *

* * * * *
* *

*
*

* * *
*

*
*

Part IV

Similarity of Ordered Gene Lists
(SOGL)

Introduction

Similarity of Ordered Gene Lists is another method for meta-analysis of mi-
croarray. It is call as ”comparison of comparisons” by its authors [?].

Briefly, it assigns a similarity score to a comparison of two ranked (ordered)
gene lists. The score is based on the number of overlapping genes in the top
ranks. It computes the size of overlap for each rank. The final score is a weighted
sum of these values, with more weight put on the top ranks.

Algorithm

1. Required data sets - two data sets with same set of genes (or genes which
can be mapped to each other) are required.

2. Ranking of genes - The genes are then ranked based on gene-wise test on
difference of class mean. There is only one assumption about test result: a
large positive test score corresponds to up-regulation and a large negative
value to down-regulation.

3. Computing the overlap - for each rank (from 1 to number of genes) we
count the number of genes that appear in both ordered lists up to that

14

position. It is denoted as On(GA, GB), where GA and GB refer to ordered
gene lists.

4. Preliminary similarity score - First we compute a total overlap An at
position n given as On(GA, GB) + On(f(GA), f(GB)), where f() means
flipped list (down-regulated genes on top). Later we add weights (wα =
e−α.n)to it and we sum it up to preliminary score. Parameter α is needed
to tune the weights: a smaller α puts more weight on genes Further down
the list. Implementation can choose an appropriate α itself.

5. Final similarity score - it takes two possibilities into account. The possi-
bilities are: the class labels of the two data sets match or do not match.

The algorithm above is valid for meta-analysis in which expression data are also
available. However, we can analyze only two ordered gene list without expression
data. It has two peculiarities: we can not use same approach for calculating the
significance of overlap and we can not be sure if genes are ranked from the most
up-regulated to the most down-regulated. Please see [14] for more details.

Usage

Data preparation

We will use only first two datasets (denmark and australia) and they need to be
processed by function dataSOGL, so they can be merged into one ”ExpressionSet”
object with function prepareData. Function dataSOGL requires a ExpressionSet
object (data), a column number for pData to be used as class labels (group),
a name for class labels (groupname) and microarray platform for annotation
(annotation). Function prepareData has three aguments: eset1, eset2 and
mapping. eset1 and eset2 are lists consisting of: a data set as a ExpressionSet
object (data), name of the data set (name), name of the class labels (var),
numeric vector of class labels used in data set (out) and a indicator whether
paired data are present (paired). mapping is a two column data frame with
probe IDs of eset1 and eset2. The kth row of mapping provides the label of
the kth gene in each single study. If all studies were done on the same chip, no
mapping is needed.

> denmarkSOGL <- dataSOGL(data = denmark, group = 1,

+ groupname = "satelite", annotation = "hgu133plus2")

> australiaSOGL <- dataSOGL(data = australia, group = 1,

+ groupname = "satelite", annotation = "hgu133plus2")

> A <- prepareData(eset1 = list(data = denmarkSOGL,

+ name = "colon_cancer1", var = "groupname",

+ out = c(1, 2), paired = FALSE), eset2 = list(data = australiaSOGL,

+ name = "colon_cancer2", var = "groupname",

+ out = c(1, 2), paired = FALSE), mapping = NULL)

Detecting differentially expressed genes

Function OrderedList aims for the comparison of comparisons: given two com-
bined expression studies the function produces a gene ranking for each study

15

and quantifies the overlap by computing the weighted similarity scores. The
final list of overlapping genes consists of those probes that contribute a certain
percentage to the overall similarity score. We can choose three different statis-
tics for gene ranking: t-test with equal variances, log ratio (log fold change) or
Z-score (chosen explicitly, t-test with regularized variances). We apply function
OrderedList with default values to our combined data set.

> x.z <- OrderedList(A, empirical = TRUE)

Simulating score distributions...

0%.......:.........:.........:.........:......100%

Random: -- please wait...

Observed: --

Computing empirical confidence intervals...

Top: --

Bottom: --

> x.z

Similarity of Ordered Gene Lists

Comparison : colon_cancer1~colon_cancer2

Number of genes : 500

Test statistic : z

Number of subsamples: 1000

beta = 1 -> corresponding labels could be matched in different studies

Optimal regularization parameter: alpha = 0.02878231

Lists are more alike in direct order

Weighted overlap score: 1137.552

Significance of similarity: p-value = 0.000999001

Number of genes contributing 95 % to similarity score: 231

Results

The result is an object of class OrderedList for which print and plot function
exist. Output from print function can be seen above and plot function is used
below. The sorted list of overlapping genes is stored in $intersect.

> x.z$intersect[1:12]

[1] "1552281_at" "1552365_at" "1552485_at"

[4] "1552621_at" "1552680_a_at" "1553033_at"

[7] "1553986_at" "1554394_at" "1554508_at"

[10] "1554999_at" "1555086_at" "1556055_at"

Calling OrderedList with the empirical option set to true, causes OrderedList
to compute empirical bounds for expected overlaps. By default, this is switched
off and underestimated bounds deduced from a hypergeometric distribution are
used.

> plot(x.z, "pauc")

16

0.04 0.06 0.08 0.10

0.
09

99
6

0.
09

99
8

0.
10

00
0

α

pA
U

C
 s

co
re

αopt

Comparison: colon_cancer1~colon_cancer2

This is a plot of pAUC scores based on α selection. The separability between
the two distributions of observed and random similarity score is measured by
pAUC score. α is chosen where the pAUC score is maximal. It is marked by a
vertical line.

> plot(x.z, "scores")

17

200 400 600 800 1000 1200

0.
00

0
0.

00
2

0.
00

4
0.

00
6

Similarity score

D
en

si
ty

observed

resampled
random

direction: direct
p−value: 0.001

alpha: 0.029

Comparison: colon_cancer1~colon_cancer2

The red curve correspondence to kernel density estimate of simulated observed
scores and the black curve to kernel density of simulated random scores. The
actually observed similarity score is denoted by the vertical red line. The bottom
rugs mark the simulated values.

> plot(x.z, "overlap")

18

0
50

10
0

20
0

30
0

si
ze

 o
f o

ve
rla

p

1 80 240 320 160 1

top ranks bottom ranks

Upregulated:
1 in colon_cancer1
1 in colon_cancer2

Upregulated:
2 in colon_cancer1
2 in colon_cancer2

observed
expected

Comparison: colon_cancer1~colon_cancer2

This plot displays the numbers of overlapping genes in the two gene lists. It
is drawn as step function over the respective ranks. Top ranks correspond to
up-regulated and bottom ranks to down-regulated genes. The expected overlap
and confidence intervals are shown too. They are derived empirically form
the subsampling or deduced from a hypergeometric distribution, it depends on
parameter empirical.

Notes

We can also compare directly two ordered gene lis via functions: CompareLists
and getOverlap. Please see [14] for details.

Part V

RankProduct

Introduction

RankProduct is a non-parametric statistic that detects up-regulated and down-
regulated genes under one condition against another condition. In our sample
data set we look for difference in expression between MSI and MSS colon cancer.

It focuses on genes which are consistently highly ranked in a number of lists,
for example genes that are regularly found among top up-regulated genes in
many microarray studies. It assumes that under the null hypothesis that the

19

order of all items is random then the probability of finding a certain item among
the top r of n items in a list is p = r/n. Rank product is defined by multiplying
these probabilities RP =

∏
i
ri
ni

, where ri is the rank of the item in the i-th
list and ni is the total number of the items on i-th list. The smaller the RP
value the smaller the probability that the observation of the item at the top of
the lists is due to chance. It is equivalent to calculating the geometric mean
rank. A list of up- or down-regulated genes are selected based on the estimated
percentage of false positive prediction (pfp), it is known as false discovery rate
(FDR), too.

Algorithm

Algorithm of the method has five steps:

1. Fold-change ratio is calculated in each data set.

2. Ranks are assigned (1 for the highest value) according to fold-change ratio.
rgi is rank of gene g in comparison i, where i is from 1 to K, where K is
sum of products of number of slides in groups.

3. RankProduct for a gene (RPg) is calculated as
∏
i r

1/K
gi

4. l permutations of expression values at each microarray slide is performed

and all previous steps repeated. We obtain RP
(l)
g

5. Step 4 is repeated L times to estimate the distribution of RP
(l)
g . This

distribution is used to calculate p-value and pfp for each gene.

Usage

Data preparation

In order to run a rank product meta-analysis, users need to call function RPad-

vance. They both require three arguments: data, cl and origin. The first
required argument, data, is the matrix (or data frame) containing the gene ex-
pression data that should be analyzed. Each of its rows corresponds to a gene,
and each column corresponds to a sample. Second and third argument, cl and
origin, are vectors of length ncol(data) containing the class labels of the sam-
ples or the origin labels of the samples. Function mergedata returns a list with
three slots corresponding to arguments described above. class.col argument
is a numeric vector indicating which columns of pData should be used as class
labels. First number refers to first data set etc.

> rankdata <- mergedata(denmark, australia, japan,

+ class.col = c(1, 1, 2))

> rankdata$cl

[1] 1

[28] 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[55] 2 1 1 1 1

[82] 1 2

20

[109] 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2

[136] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

> rankdata$origin

[1] 1

[28] 1

[55] 1 2 2 2 2

[82] 2

[109] 2 2 2 2 2 3

[136] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

In cl all 1’s refer to MSI samples and all 2’s to MSS samples. Similarly in
origin, 1 belongs to samples from first data set (denmark), 2 from second data
set (australia) and 3 from japan study. You can choose different numbers for
labels, but same numbers are always treated like same samples from same class
or with same origin.

Detecting differentially expressed genes

In this section, we show how the rank product method can be applied to detect
differentially expressed gene in our data sets in sence of meta-analysis. It means
we will get two separate lists (up- and down-regulated genes separately) not
two such lists for each data set. For each gene, one pfp (percentage of false
prediction) is computed and used to select significant genes. We can run meta-
analysis by

> RP.out <- RPadvance(rankdata$dat, rankdata$cl,

+ rankdata$origin, num.perm = 50, logged = TRUE,

+ na.rm = FALSE, gene.names = rownames(exprs(denmark)),

+ plot = FALSE)

The data is from 3 different origins

Rank Product analysis for two-class case

Warning: Expected classlabels are 0 and 1. cl will thus be set to 0 and 1.

Starting 50 permutations...

Computing pfp...

The data are log-transformed, therefore we set logged=TRUE. The number of
permutations is default set to 100, you can change it to higher number, if you
wish more precise estimates of the pfp. The argument plot=FALSE will prevent
the graphical display of the estimated pfp vs. number of identified genes. We
will use function plotRP for a such display.

Results

> plotRP(RP.out, cutoff = 0.01)

21

●

●

●

●

●

●

● ●● ●●
●

●

●

●

●

●●
●●

●

●

● ●

●
● ●

●

●●

●
● ●

●
●

●

●

●

●

●

● ●

●●

●

●●

●

●
●

●
●

●

● ●
●

●
●

●

●

● ● ●●

●
●

●

●

●

●

●

●
●● ●

●

●●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●● ●
●

●

●●

●
●

●

●
●

●

●
●

●●

●●
●

●
●

●

●
●

●●

●

●

●

●
●

●

●●

●

● ●
●●●

●

●

●●●

●

●
●

●

●

●
● ●

●
●

●

●
● ●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●●

● ●

●

●

●

●●
● ●●

● ●

●

●

● ●
●

●

●

●

●●

● ●

●

●

●

●
●●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

● ●● ●

●

●●●

●

●
●

●
● ●

●
●● ●

●●
●●

●

●

●

●

●
●

●

●

●

●

●●
●

●

● ●●

●

●

●●

●

●

●

●

●

●
●

●

●
●

● ●● ●
●

●

●

● ●

●

●
●

●

●
● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●●

●
●

●

●
●

●
●

●

● ●
● ●●

●

●

●

●

● ●

●●
●●

●

●
●

●
●● ●

●

●

●

●●●

●

●

●

●●●
●

●
●

●

● ●
● ●●

●

●
●

●
●

●
●

●

●
●

●
●●

●

● ●

●

●●

●

●

●

●●

●

●
●

●
●●

●

●
●●

●● ●●
●

●

● ●

●

●● ● ●

●

●

●

●
●

●
●

●

● ●
●

●

0 100 200 300 400 500

0.
0

1.
5

number of identified genes

es
tim

at
ed

 P
F

P

Identification of Up−regulated genes under class 2

●●

0 100 200 300 400 500

0.
0

1.
5

●

● ●● ●●

●●

●●

●
●

●

●

●
●

●

●

●●●

●

● ●
●

●●

●
●

●

●

●
●

●

●
●

●

●●
●●

●

●

●
●

● ●

●●

●
●

●

●

● ●●

●

●

●

●

●
● ●

● ●

●
●

●
●

●

●

●

●
●

●

●

● ● ●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●●

●●

●

●
● ●

●

●
●

●

●

●
●

●
●

● ●

●

●

●

●
●

●
● ● ●

●● ●
●

●

●

● ●

●●
●● ●● ●●

●

●

●
●●

●

● ●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●
●

● ●
●●

●
●

●●●

●

●
●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●●
●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●●

● ●●
●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

● ● ●
●

●

●

●● ●

●

●

●
●

●
●

● ●●●
●●●

●

●

●

●

●●

●
●

●
●

● ●

●

●
●

●

●
●●

●●
●

●

●

●
●

●

●●
●

●
● ●● ●

●

●●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●●●

●

●
●

●

●

●●

●

●

●
●

● ●
●

●

●●● ●

●

●
●

● ●
●

●

●●

●

●

●●●

●

●

●
●●

●

●
●●●

●
●

●

● ●●●

●
●

●
●

●

●
●●

●

●

●

●

●●

●
●

●

●●●

●●

●

●

●

●

●

●

●
● ●

● ●

●● ●

●

●

●●● ● ●
●

●
●

● ●

●

●
●

0 100 200 300 400 500

0.
0

1.
5

number of identified genes

es
tim

at
ed

 P
F

P

Identification of down−regulated genes under class 2

●●●

0 100 200 300 400 500

0.
0

1.
5

The function plotRP graphicaly displays the estimated pfp vs. number of iden-
tified genes using the output from RPadvance. If cutoff (the maximum accepted
pfp) is specified, identified genes are marked in red.

> RankRes <- topGene(RP.out, cutoff = 0.01)

Table1: Genes called significant under class1 < class2

Table2: Genes called significant under class1 > class2

> head(round(RankRes$Table1, 3))

gene.index RP/Rsum FC:(class1/class2) pfp

228030_at 254 15.955 0.234 0

228915_at 462 26.810 0.407 0

206239_s_at 77 28.268 0.344 0

243669_s_at 237 30.786 0.465 0

213880_at 258 40.144 0.520 0

213385_at 213 43.146 0.456 0

P.value

228030_at 0

228915_at 0

206239_s_at 0

243669_s_at 0

213880_at 0

213385_at 0

> head(round(RankRes$Table2, 3))

22

gene.index RP/Rsum FC:(class1/class2) pfp P.value

205242_at 257 31.645 3.092 0 0

37145_at 154 34.843 2.678 0 0

209301_at 164 37.957 2.276 0 0

206442_at 280 42.928 2.927 0 0

206391_at 168 49.136 1.836 0 0

204818_at 277 50.370 2.216 0 0

The function topGene is used to output a table of the identified genes from the
output object from function RPadvance. Table contains genes according to other
arguments. It is obligatory to specify either the cutoff (the desired significance
of the identification) or num.gene (the number of top genes identified), otherwise
a error message will be printed and the function will be stopped. If cutoff is
selected, user needs to choose between pfp (percentage of false prediction) or
pval (p-value). pfp is the default setting, which is selected when no selection
is made.

Two tables are output, listing identified up- (Table1: class 1 < class 2) and
down- (Table2: class1 > class 2) regulated genes. There are 5 columns in the
table

1. gene.index is the gene index in the original data set

2. RP/Rsum is the computed rank product for each gene

3. FC:(class1/class2) is the computed fold change of the average expression
levels under two conditions, which would be converted to the original scale
using input logbase (default value is 2) if logged=TRUE is specified

4. pfp is the estimated pfp value for each gene in the list if that gene serves
as the cutoff point

5. P.value is the associated P-values for each gene

Notes

By combining data sets from different origins together, the test gets increased
power, which leads to more identified genes. For more information see also [15].

Part VI

Z-statistic - posterior mean
differential expression

Introduction

The main idea of this method is that one can use data from one study to con-
struct a prior distribution of differential expression and thus utilize the posterior
mean differential expression, weighted by variances, whose distribution is stan-
dard normal distribution due to classic Bayesian probability calculation.

23

It is based on assumption that gene expression is normally distributed with
mean µg and SD σ2

g and that we can estimate σ2
g by pooling together all genes

with similar levels of mean intensity. The difference in gene expression is tested
by

Z =
D

σD
=

X1 −X2√
σ2
1

n1
+

σ2
2

n2

∼ N(0, 1),

where X1 and X2 denotes mean gene expression values in classes, σ2
1 and σ2

2

denotes the estimated SD in classes and n1 and n2 denotes the number of samples
in classes.

Usage

Data preparation

Because the same number of samples in each class and study is used in primary
publication of the method [16], we will first look at number of samples in our
data.

> table(pData(denmark)[, 1])

MSI MSS

39 38

> table(pData(australia)[, 1])

MSI MSS

5 31

> table(pData(japan)[, 2])

MSI MSS

16 25

The smallest value in the tables above is 5, therefore we will randomly choose 5
samples in each class and data set. Function dataZ performs such data reduc-
tion. It has four required arguments: a data set as ExpressionSet object (data),
number of column of pData slot with class labels (group), number of samples to
be selected (nsamp) and name for class labels (varname). We need to merge the
data sets into one mergeExprSet object created by function mergeExprs from
R package MergeMaid.

> denmarkZ <- dataZ(data = denmark, group = 1, nsamp = 5,

+ varname = "satelite")

> australiaZ <- dataZ(australia, 1, 5, "satelite")

> japanZ <- dataZ(japan, 2, 5, "satelite")

> library(MergeMaid)

> merged <- mergeExprs(denmarkZ, australiaZ, japanZ)

Now, we can proceed to detecting differentially expressed genes.

24

Detecting differentially expressed genes

We apply this method by

> z.stat <- Zscore(merged)

Pheno data is assumed to be in the first column of phenoData slot

0 marked as 0

1 marked as 1

Contrast will be 1 - 0

Results

> head(round(z.stat, 3))

Zscore Pvalue

1552281_at 4.609 0.000

1552365_at -7.066 0.000

1552485_at -3.123 0.002

1552502_s_at -1.798 0.072

1552546_a_at -0.088 0.930

1552553_a_at -1.512 0.131

Only values of Z-statistic (Zscore) and their p-values (Pvalue) are provided by
function Zscore.

Notes and discussion

This implementation expects either same microarray platform or same scale of
expression values (like after POE transformation [17]) in all data sets.

Part VII

TSP-clasiffier

Introduction

This method has been originally described in [18]. A top scoring pair (TSP)
is a pair of genes whose relative ranks can be used to classify arrays according
to a binary phenotype. A top scoring pair classifier has three advantages over
standard classifiers:

1. the classifier is based on the relative ranks of genes and is more robust to
normalization and preprocessing,

2. the classifier is based on a pair of genes and is likely to be more inter-
pretable than a more complicated classifier,

3. a classifier based on a small number of genes lends itself diagnostic tests
based on PCR that are both more rapid and cheaper than classifiers based
on a large number of genes.

25

Usage

In this section we will demonstrate the use of the functions made for meta-
analysis of example data sets. We will show how to calculate top scoring pair,
how to calculate p-values for significance and how to plot TSP objects.

Data preparation

We are going to use function mergedata again. Please see Data preparation
section of RankProduct part for details.

> tspdata <- mergedata(denmark, australia, japan,

+ class.col = c(1, 1, 2))

Detecting differentially expressed genes

Function tspcalc calculates top scoring gene pair. It has two arguments: dat

and grp. dat can be either an m genes by n samples matrix of expression data
or an ExpressionSet object. There are also two posibilities for grp: A group
indicator in character or numeric form or an integer indicating the column of
pData() to use as the group indicator. We use gene expression data matrix and
vector of numeric class labels.

> tsp <- tspcalc(dat = tspdata$dat, grp = tspdata$cl)

We can compute the significance of a top scoring pair, too. It calculates ”how
strong a top scoring pair is”.

The function tspsig performs a permutation test with the null hypothesis
that no TSP exists in the data set. It permutes the group labels B times and
calculates a null TSP score for each time. The p-value is then the total number
of null TSP scores that exceed the observed TSP score plus 1 divided by B+ 1.
A progress bar indicates the time left in the calculation. You have to again
specify the data expression matrix, class labels and additionally the number
of permutations. You can also set the seed for permutations to make results
reproducible.

> out <- tspsig(tspdata$dat, tspdata$cl, B = 50)

|2% |20% |40% |60% |80% |100%

Progress: ||

Results

Function tspcalc returns a tsp object.

> tsp

tsp object with: 1 TSPs

Pair: TSP Score Tie-Breaker Indices

TSP 1 : 0.75 NA 243 415

26

In the output above each row refers to one top scoring pair. TSP Score is TSP
score as defined in [18], essentially it is the empirical average of sensitivity and
specificity for the pair. Tie-Breaker denotes the tie-breaking score described
in [19]. Briefly, each expression value is ranked within its array, then a rank
difference score is calculated for each pair of genes. Finally, Indices gives the
rows of the gene expression matrix that define a top scoring pair.

> tspplot(tsp)

Number of TSPs: 1

TSP 1

5 6 7 8 9

5
6

7
8

9
10

Groups: 1 = Red | 2 = Blue; Score: 0.748

Gene: 203566_s_at Expression

G
en

e:
 2

03
00

8_
x_

at
 E

xp
re

ss
io

n

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●●

●
●

●
●

●

●● ●●

●

●
● ●

●

●

●

● ●●●

●

●

●
●

● ●
●

The tspplot accepts a tsp object and returns a TSP plot. The figure plots the
expression for the first gene in the TSP pair versus the expression for the second
gene in the TSP pair across arrays. The user defined groups are plotted in the
colors red and blue. The score for the pair is shown across the top of each plot.
If there is more than one TSP, hitting return will cycle from one TSP to the
next.

> summary(out)

Length Class Mode

p 1 -none- numeric

nullscores 50 -none- numeric

> out$p

[1] 0.01960784

27

> out$nullscores

[1] 0.3248227 0.3446809 0.3177305 0.3159574 0.3645390

[6] 0.3017730 0.3475177 0.3503546 0.3060284 0.3234043

[11] 0.2783688 0.3609929 0.3265957 0.3095745 0.3152482

[16] 0.3386525 0.3081560 0.3138298 0.3336879 0.3202128

[21] 0.3351064 0.3113475 0.3010638 0.3035461 0.2872340

[26] 0.3000000 0.3248227 0.3166667 0.4156028 0.2897163

[31] 0.3851064 0.3521277 0.3078014 0.3687943 0.3113475

[36] 0.3049645 0.3563830 0.3095745 0.3124113 0.3010638

[41] 0.2957447 0.2769504 0.3347518 0.3120567 0.3290780

[46] 0.3340426 0.3900709 0.2893617 0.3659574 0.3173759

p and nullscores are two the most interesting elements of output from tspsig

function. The former is the significance of TSP and the latter contains top
scores observed in permutations.

Part VIII

VennMapping

Introduction

VennMapping [20] is a method based on Venn diagrams and contingency tables.
It looks for number of common genes in pairs of gene lists, statistical significance
of observed match and returns also names of the common genes.

Algorithm

Algorithm of this method consists of three steps:

1. Calculation of fold-change in each data set.

2. Selection of significant (interesting) genes.

3. Comparison of gene lists pairs.

Usage

Data preparation

Function fold.change calculates mean fold-change in one data set. It has two
arguments: data set (e.g. denmark) and column number of pData slot with class
labels to be used. It assumes data are on log2 scale.

> fc.d <- fold.change(denmark, 1)

> fc.a <- fold.change(australia, 1)

> fc.j <- fold.change(japan, 2)

> FC <- cbind(fc.d, fc.a, fc.j)

28

Function gene.select selects significant/interesting genes from mean fold-change
matrix with rows referring to genes and columns to data sets. The user has to
specify (apart from mean fold-change matrix) a cutoff for selection. The cut-
off is on log2 scale, too. We chose 1 for genes with at least 2-fold change in
expression.

> list <- gene.select.FC(FC, 1)

> summary(list)

Length Class Mode

fc.d 33 -none- character

fc.a 27 -none- character

fc.j 35 -none- character

Object list is a list in which each slot contains names of selected genes in one
study. For example from the print above 33 genes have been selected in denmark

data set.

Detecting differentially expressed genes

Now, we can move on comparison of selected gene lists in pairs of data sets.
There are three functions to perform such a analysis: conting.tab, Z and
gene.list. conting.tab returns contingency table with number of common
genes. Z provides Z statistic to measure significance of observed number of
common genes and gene.list outputs table with names of common genes.
All of them have one argument same - it is a list object with names of se-
lected genes in individual data sets. For function Z one additional argument
is necessary - the number of genes involved in meta-analysis (calculated by
length(rownames(exprs(denmark)))).

> conting.tab(list)

fc.d fc.a fc.j

fc.d NA 12 16

fc.a 12 NA 7

fc.j 16 7 NA

> Z(list, n = length(rownames(exprs(denmark))))

fc.d fc.a fc.j

fc.d NA 7.920245 9.320174

fc.a 7.869850 NA 3.821593

fc.j 9.340196 3.854327 NA

> gene.list(list)

fc.d

fc.d NA

fc.a "205009_at;206239_s_at;37145_at;205044_at;213385_at;228030_at;205242_at;204818_at;206442_at;202917_s_at;202589_at;230793_at"

fc.j "202803_s_at;230964_at;213915_at;206239_s_at;1556055_at;1552281_at;37145_at;209301_at;206391_at;230621_at;243669_s_at;228030_at;206442_at;209436_at;230793_at;228915_at"

fc.a

fc.d "205009_at;206239_s_at;37145_at;205044_at;213385_at;228030_at;205242_at;204818_at;206442_at;202917_s_at;202589_at;230793_at"

29

fc.a NA

fc.j "206239_s_at;209583_s_at;37145_at;228030_at;206442_at;210143_at;230793_at"

fc.j

fc.d "202803_s_at;230964_at;213915_at;206239_s_at;1556055_at;1552281_at;37145_at;209301_at;206391_at;230621_at;243669_s_at;228030_at;206442_at;209436_at;230793_at;228915_at"

fc.a "206239_s_at;209583_s_at;37145_at;228030_at;206442_at;210143_at;230793_at"

fc.j NA

Part IX

MAP-Matches

Introduction

Meta-Analysis Pattern Matches (MAP-Matches) [21] is a method that extends
VennMapping [20] and meta-profiling [22]. It is designed to analyze more dis-
tinct microarray data (search for common molecular mechanism in all types of
cancer). It assumes same gene set in all data sets.

Algorithm

Algorithm of this method has five steps:

1. Calculation of T-statistic for each two classes in each data set.

2. Building matrix of T-statistics (T-matrix) with rows referring to genes
and columns to pairs of classes and data set.

3. Selection of threshold for T-statistic.

4. Transformation of T-matrix into a binary matrix: 1 for T-statistics above
threshold, 0 for T-statistics below threshold.

5. Statistical analysis of transformed T-matrix (more details in Usage sec-
tion).

Usage

Data preparation

The analysis starts with calculation of T-statistics. Function meta.test returns
a list with two slots: matrix of test statistics (test) and matrix of p-values (p).
In each of the matrices rows correspond to genes and columns to data sets. We
need only test slot for this method. Argument class.col is a numeric vector
indicating which column of pData should be used and data.names is a character
vector with names of the data sets.

> stat.real <- meta.test(denmark, australia, japan,

+ class.col = c(1, 1, 2), data.names = c("denmark",

+ "australia", "japan"))$test

> colnames(stat.real) <- c("Denmark", "Australia",

+ "Japan")

30

Detecting differentially expressed genes

The do not select significant genes in each study we only set threshold for T-
statistics. We decided for 98 % quantile (same in [21]).

> stat <- c(stat.real)

> quan <- T.select(stat)

> T.default <- quan["98.00%"]

Now, we transform stat.real (T-matrix) into a binary matrix. We replace
T-statistics above threshold with 1 and below with 0.

> value.dis <- apply(stat.real, MARGIN = c(1, 2),

+ function(x) ifelse(abs(x) > T.default, 1,

+ 0))

> rownames(value.dis) <- featureNames(denmark)

> head(value.dis)

Denmark Australia Japan

217562_at 0 0 0

203766_s_at 0 0 0

1554394_at 0 0 0

212662_at 0 0 0

1555370_a_at 0 0 0

240574_at 0 0 0

Each row value.dis is called a meta-analysis pattern. We are going to analyze
their occurrence, significance and genes they occur at. Function ratio provides
basic summarization of value.dis.

> results <- ratio(value.dis)

> summary(results)

Length Class Mode

n 3 -none- numeric

X.string 23 -none- character

p.strong 6 -none- numeric

p.soft 6 -none- numeric

In results we can find: number of genes with T-statistic sufficiently high in
each study n, patterns observed in data (X.String), probability of observing
strong match (p.strong) and probability of observing soft match (p.soft). We
say two patterns match strongly if they are equal. The rule for soft match is
weaker as only 1’s in patterns must match.

Function MAPmatrix calculates a matrix with rows corresponding to pat-
terns and four columns: unique patterns that are being observed in our data
(uniqe.pat), number of observed soft matches with the pattern (n.soft), number
of observed strong matches (n.strong and number of 1’s in the pattern n.sig).

> MAPmat <- MAPmatrix(value.dis)

> MAPmat

31

unique.pat n.soft n.strong n.sig

100 100 18 12 1

010 010 4 2 1

001 001 8 3 1

101 101 5 4 2

111 111 1 1 3

110 110 2 1 2

Only pattern with multiply 1’s are connected with common molecular mecha-
nism and we will focus on them in the rest of analysis.

> MAPmat2 <- MAPmat[MAPmat$n.sig > 1,]

> unique.pat <- as.character(MAPmat2[, 1])

We assume that sufficiently high number of strong matches may provides evi-
dence of common molecular mechanism. Functions MAPsig1 and MAPsig2 per-
form statistical analysis to answer whether we observe significant number of
matches or not. The statistical analysis can be done in two ways (both based
on permutation testing): we either permute columns of T-matrix (in binary
form) or permute class labels in data sets and repeat the whole procedure with
same threshold for T-statistics. The former is implemented in MAPsig1 and the
latter in MAPsig2. Function test.group.shuffle calculates T-statistics with
permuted class label repeatedly.

> p1 <- MAPsig1(unique.pat, value.dis, iter = 1000)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000

> p1

p.soft p.strong

1 0.000 0.000

2 0.001 0.001

3 0.012 0.150

> den.shuf <- test.group.shuffle(data = denmark,

+ dataname = "Denmark")

> aus.shuf <- test.group.shuffle(data = australia,

+ dataname = "Australia")

> jap.shuf <- test.group.shuffle(data = japan, dataname = "Japan",

+ var = 2)

> dataset <- c("Denmark", "Australia", "Japan")

> p2 <- MAPsig2(dataset, value.dis, unique.pat,

+ B = 100)

> p2

permu.soft permu.strong

1 0 0.0

2 0 0.0

3 0 0.1

Both p1 and p2 have same structure: rows refer to patterns and columns to
statistical signifficance of observed soft (p.soft or permu.soft) or strong (p.strong
or permu.strong) matches.

32

Results

Finally, we will bind all necessary outputs together.

> resx <- cbind(MAPmat2, p1, p2)

> colnames(resx) <- c(colnames(MAPmat2), "p.strong",

+ "p.weak", "p.permu.strong", "p.permu.weak")

> intx <- t(as.matrix(resx[which(resx[, 4] < 0.06),

+]))

> t(resx)

101 111 110

unique.pat "101" "111" "110"

n.soft "5" "1" "2"

n.strong "4" "1" "1"

n.sig "2" "3" "2"

p.strong "0.000" "0.001" "0.012"

p.weak "0.000" "0.001" "0.150"

p.permu.strong "0" "0" "0"

p.permu.weak "0.0" "0.0" "0.1"

We can plot p-values by

> plotpattern(resx, method = 1)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
00

0.
05

0.
10

0.
15

pattern ID

pv
al

ue

p.strong
p.weak
p.permu.strong
p.permu.weak

or

> plotpattern(resx, method = 2)

33

p.
st

ro
ng

●● ●
p.

w
ea

k

●● ●

p.
pe

rm
u.

st
ro

ng

●●●

0.00 0.05 0.10 0.15

p.
pe

rm
u.

st
ro

ng

●● ●

● ● ●

Pattern

101 111 110

Until now, we have only found out that for some patterns there is significantly
high count of strong or soft matches being observed. Obviously we want to know
expression of which genes is changed in these patterns. Function MAP.genes

returns a list in which each slot contains list of genes involved in one pattern.
If argument files is set to TRUE a files with gene names are also saved.

> probs <- MAP.genes(resx, value.dis, files = FALSE)

> names(probs) <- rownames(resx)

> summary(probs)

Length Class Mode

101 5 -none- character

111 1 -none- character

110 2 -none- character

probs is a list with each slot referring to one pattern and list of gene names is
stored there. The pattern has been observed at these genes.

If there is annotation package available for microarray platform used in meta-
analysis we can create a HTML annotation of found patterns by

> library(annaffy)

> library(hgu133plus2.db)

> MAP.HTMLanno(resx, probs, "hgu133plus2.db")

34

Part X

METRADISC

Introduction

METRADISC [23] is unique among rank-based methods (like Rank Product or
TSP) because it provides an estimate of heterogeneity as one of its outputs.
Additionally the method can deal with genes which are being measured in only
some of the studies. The implementation available in MAMA package is re-
stricted to genes common in all microarray studies analyzed.

Algorithm

1. Gene Ranking - In microarray analysis we usually test samples for a large
number of genes. The results provide for each gene a test statistic and
its statistical significance (p-value). Therefore we can rank the tested
genes in each study based on direction in expression change and statistical
significance. If there are n genes being tested, the highest rank n is given to
the gene that shows the lowest p-value and it is up-regulated in diseased
samples. Then follow all other up-regulated genes ranked according to
increasing p-value. These are followed by down-regulated genes and the
lowest rank (1) is given to gene that shows the lowest p-value and is down-
regulated in diseased samples. Genes with equal p-values are assigned tied
ranks.

2. The Average Rank and Heterogeneity metrics - In this step we compute a
average rank and heterogeneity metrics. The average rank R∗ is defined

as R∗ =

∑s

i=1
Ri

s , where Ri is the rank of the gene in study i and s is
total number of studies (i = 1, 2, ..., s). The heterogeneity metrics Q∗ is
given by formula Q∗ =

∑s
i=1(Ri − R∗)2, it is actually generalization of

Cochran’s Q statistic.

3. Monte Carlo permutation test - To obtain statistical significance for av-
erage rank and heterogeneity metrics we randomly permute the ranks of
each study and the stimulated metrics are calculated. Then we repeat the
procedure to generate null distribution for the metrics. Each variable is
then tested against the corresponding null distribution. We are interested
genuinely in four statistical significances: for high average rank, for low
average rank, for high heterogeneity and for low heterogeneity. Distinction
between high and low average rank is important as we want to keep the
direction of effect in mind. Ignoring it can lead to spurious results that
a gene is consistently significant even if it is up-regulated in one study
and down-regulated in second one. On the other hand, statistically low
heterogeneity may suggest consistent results among different studies. The
statistical significance for high average rank (R∗) is defined as the percent-
age of simulated metrics that exceed or are equal to the observed (R∗).
The statistical significance for low average rank (R∗) is defined as the per-

35

centage of simulated metrics that are below or equal to the observed (R∗).
Significance of heterogeneity is defined analogously.

Usage

Data preparation

We will start with computing test statistic and p-value for each gene and data
set. Function meta.test returns a list with two slots: data frame of test statis-
tics and data frame of p-values. In each of the matrices rows correspond to genes
and columns to data sets. Argument class.col is a numeric vector indicating
which column of pData should be used and data.names is a character vector
with names of the data sets.

> metra <- meta.test(denmark, australia, japan,

+ class.col = c(1, 1, 2), data.names = c("denmark",

+ "australia", "japan"))

> head(metra$test)

denmark australia japan

217562_at -2.1666481 1.0669144 -0.9286918

203766_s_at 0.8318955 0.1014991 -0.9459710

1554394_at 1.2176000 4.0282590 1.1763280

212662_at 1.9755557 1.3046695 2.5983263

1555370_a_at 4.3678119 -0.6042763 2.7174563

240574_at 5.1746999 1.6404196 1.8830312

Detecting differentially expressed genes

Now, we can proceed to ranking genes. Function rank.genes.adv ranks the
genes as described in Algorithm section above.

> RANK <- rank.genes.adv(metra)

> head(RANK)

denmark australia japan

217562_at 105 368 156

203766_s_at 326 257 153

1554394_at 348 488 380

212662_at 390 397 442

1555370_a_at 473 170 445

240574_at 484 424 419

The genes ranks can be visualized by

> RANK2 <- RANK[order(RANK[, 1]),]

> colnames(RANK2) <- c("Denmark", "Australia", "Japan")

> heatcol <- colorRampPalette(c("Green", "Black",

+ "Red"))(100)

> metaheat(as.matrix(RANK2), col = heatcol)

36

D
en

m
ar

k

A
us

tr
al

ia

Ja
pa

n
202589_at213017_at37145_at213603_s_at213238_at201037_at1560228_at222262_s_at241891_at208296_x_at227345_at1552485_at203595_s_at203566_s_at213915_at1552680_a_at205213_at228167_at1569057_s_at1554508_at202803_s_at222680_s_at238742_x_at224454_at217628_at227863_at206391_at205242_at223441_at210116_at217371_s_at221935_s_at205003_at223276_at227347_x_at226372_at225344_at214073_at207017_at214130_s_at229566_at206442_at214553_s_at221724_s_at213419_at202917_s_at238520_at222793_at224470_at232026_at227759_at224453_s_at204661_at208982_at1565886_at218986_s_at236027_at205044_at226817_at202900_s_at1569408_at212985_at209363_s_at222412_s_at238010_at217546_at202906_s_at211902_x_at235368_at1554999_at224610_at204613_at1552553_a_at236006_s_at235476_at210143_at222529_at210664_s_at216228_s_at206107_at204818_at230061_at203553_s_at209583_s_at211908_x_at224995_at209301_at209436_at210118_s_at217084_at222294_s_at221529_s_at233446_at205009_at237839_at230788_at219854_at232504_at1562307_at202450_s_at237624_at211635_x_at220527_at223948_s_at217562_at220900_at208116_s_at234640_x_at217204_at210448_s_at237891_at228170_at228108_at218537_at204575_s_at201170_s_at222562_s_at200093_s_at220230_s_at232078_at206383_s_at228058_at231735_s_at204186_s_at210455_at209098_s_at229538_s_at219990_at223249_at209307_at229218_at1556007_s_at1554250_s_at1552546_a_at211527_x_at226726_at228506_at225599_s_at228238_at204115_at212454_x_at232195_at219159_s_at212570_at214313_s_at209267_s_at208126_s_at227995_at201746_at208782_at1557519_at215977_x_at201548_s_at202403_s_at230127_at217194_at240331_at229347_at1554440_at234064_at241744_x_at236634_at1569768_at227235_at206382_s_at236039_at209719_x_at218885_s_at216442_x_at234800_at227992_s_at225140_at228057_at225727_at204404_at214093_s_at201566_x_at232618_at217085_at207636_at216314_at219985_at229844_at203362_s_at1561564_at221037_s_at230895_at242557_at222943_at202316_x_at1552365_at220883_at223629_at213929_at232243_at234792_x_at242516_x_at227021_at234407_s_at1556421_at212667_at219954_s_at208539_x_at226755_at230781_at1552575_a_at219138_at214581_x_at1558214_s_at1563129_at205051_s_at232039_at208158_s_at236650_at1556240_at219463_at219313_at244854_at242878_at1565799_at230778_at1563670_at242029_at201028_s_at244094_at1562803_at233622_x_at1562737_at1555220_a_at1558937_s_at233827_s_at209286_at206211_at1552502_s_at1561482_at211341_at1553214_a_at221875_x_at242700_at1561553_at229170_s_at239343_at239967_at1561575_at209146_at204146_at1560225_at226558_at202368_s_at203305_at228994_at212856_atAFFX−r2−Bs−thr−3_s_at205987_at227870_at207463_x_at1557918_s_at241672_at1564758_at236948_x_at241621_at237961_at225613_at223235_s_atAFFX−ThrX−3_at1552722_at240348_at229178_at1553646_at205597_at206765_at242303_at1554182_at237582_at204939_s_at229846_s_at228390_at207879_at231051_at216614_at1554451_s_at1554771_at240709_at222324_at230462_at233845_at242491_at233340_at1568970_at213765_at205598_at214124_x_at226789_at215793_at1570338_at228432_at228086_at228642_at224618_at204608_at215564_at235651_at1553986_at244745_at232150_at226694_at1560581_at243875_at1555816_at207432_at208157_at211890_x_at209644_x_at219466_s_at234118_at233552_at202036_s_at242225_at234589_at226344_at234793_at241255_at222912_at217653_x_at202147_s_at203766_s_at244045_at225706_at213182_x_at201820_at1552621_at201785_at1567181_x_at1562389_at218948_at218312_s_at214646_at203860_at210693_at222714_s_at1554820_at231067_s_at239043_at233953_at1554996_at208821_at226806_s_at1554394_at204435_at243040_at230026_at202199_s_at233944_at227451_s_at209122_at221666_s_at211416_x_at1563072_at1564945_at229962_at202566_s_at235655_at227647_at208057_s_at241751_at220111_s_at1562226_at235845_at215124_at218701_at228949_at203000_at239761_at1555591_at241370_at205433_at238546_at241654_at232564_at207138_at230130_at241485_at228407_at229403_at220218_at1556090_at201753_s_at206743_s_at1569468_at212662_at213304_at205951_at1557085_at226991_at212923_s_at230319_at240563_at239647_at1553033_at240798_at204636_at231265_at1558748_at1564906_at235509_at215108_x_at202146_at213248_at204702_s_at231180_at215945_s_at236122_at206094_x_at1554733_at1564451_atAFFX−DapX−5_at221168_at1557809_a_at237584_at231980_at1560542_at232595_at237837_at237932_at239650_at205719_s_at222551_s_at238999_at1555086_at1556389_at214519_s_at1563364_at232466_at220948_s_at217479_at209512_at1556648_a_at1561080_at238149_at1563169_at219347_at1563045_at214877_at223360_at1568807_a_at202975_s_at205110_s_at1560119_at235008_at201279_s_at241811_x_at233058_at241607_at228396_at232333_at244407_at243759_at210727_at219296_at215128_at216992_s_at225432_s_at206239_s_at208741_at1560500_at231829_at242110_at206712_at236223_s_at213880_at239987_at1559391_s_at1555370_a_at223746_at1557889_at225802_at1556656_at239539_at230964_at234207_at235956_at239442_at219300_s_at240574_at230793_at225784_s_at228915_at1552281_at213385_at230921_s_at238812_at236947_at243669_s_at216173_at1556055_at243808_at228030_at207607_at203008_x_at230621_at

The next step is to compute average rank R∗ and heterogeneity metric Q∗ for
each gene.

> RQ <- compute.RQ(RANK)

> head(round(RQ, 1))

r.star q.star

217562_at 209.7 38904.7

203766_s_at 245.3 15168.7

1554394_at 405.3 10762.7

212662_at 409.7 1592.7

1555370_a_at 362.7 56072.7

240574_at 442.3 2616.7

And finally we use function MCtest to perform Monte Carlo permutation test.
Function requires the observed ranks (RANK), observed average rank and hetero-
geneity metric (RQ) and number of permutations (nper) as arguments. Number
of permutations depends on the required accuracy for the final p-values. 1/nper
is the accuracy for the final p-values. For example with 1000 permutations the
p-values are calculated with three decimal places.

> MC <- MCtest(RANK, RQ, nper = 1000)

100 200 300 400 500 600 700 800 900 1000

> head(MC)

37

R.high R.low Q.high Q.low

217562_at 0.666 0.337 0.457 0.543

203766_s_at 0.499 0.505 0.740 0.260

1554394_at 0.029 0.971 0.814 0.186

212662_at 0.015 0.985 0.971 0.029

1555370_a_at 0.101 0.900 0.305 0.695

240574_at 0.008 0.992 0.949 0.051

Results

The command below creates a character vector of genes with significant average
ranks and low heterogeneity. The selected threshold for statistical significance
is 0.01.

> METRA <- c(rownames(MC)[MC[, 1] < 0.01 & MC[,

+ 4] < 0.01], rownames(MC)[MC[, 2] < 0.01 &

+ MC[, 4] < 0.01])

> METRA[1:10]

[1] "234207_at" "225802_at" "230964_at" "236223_s_at"

[5] "201279_s_at" "231829_at" "230621_at" "239539_at"

[9] "238812_at" "228030_at"

Part XI

Results combination
In this part we are going to compare and combine outputs from all methods so
we can look and changes in gene expression in various ways.

We are going to start with lists of differentially expressed genes, because
this is the only one output common for all methods mentioned in this vignette.
We will merge all lists into one variable via function join.DEG. The function
requires a complete list of genes involved in meta-analysis so it can map indices
to gene names like for example function pvalcombination provides. Function
featureNames() returns a character vector with genes present in the Expres-
sionSet object. Because the same set of genes was measured in each data set we
can arbitrarily choose one data set.

> lists <- join.DEG(pvalt, ESt, ScoresFDR, x.z,

+ RankRes, z.stat, tsp, probs, genenames = featureNames(denmark),

+ type = c(1, 1, 3, 4, 5, 6, 7, 8), cutoff = 0.01)

> names(lists) <- c("PvalCom", "ESCom", "ESCom2",

+ "OrderedList", "RankProduct", "Z-stat", "TSP",

+ "MAP")

> summary(lists)

Length Class Mode

PvalCom 160 -none- character

ESCom 109 -none- character

ESCom2 163 -none- character

38

OrderedList 231 -none- character

RankProduct 140 -none- character

Z-stat 150 -none- character

TSP 2 -none- character

MAP 6 -none- character

Now, we will transform this list to a binary matrix where rows refer to genes
and columns to method and 1 means that the gene was identified as a differ-
entially expressed gene in the method. Function make.matrix provides such
transformation.

> MAT <- make.matrix(lists)

> MAT[1:5, 1:5]

PvalCom ESCom ESCom2 OrderedList RankProduct

212662_at 1 0 1 1 0

1555370_a_at 1 0 1 0 1

240574_at 1 1 1 1 1

203553_s_at 1 1 1 1 0

207607_at 1 0 1 1 1

It is very popular to visualize results of microarray analysis as a heatmap. A
heatmap is a graphical representation for a numeric matrix where values are
presented as colors. Gene expression values are usually used in microarray anal-
ysis. In these pictures colors go continuously from green (for down-regulation)
through black (for no change in gene expression) to red (for up-regulation).
There are several R-packages which implement plotting heatmaps in slightly
different way. Functions metaheat and metaheat2 are modification of two of
them, so a discrete set of colors (only two in metaheat but even several in
metaheat2) can be used with an appropriate legend.

Function metaheat has three arguments: a data matrix (MAT), a number
defining position of legend (legend=1 is legend drawn below the picture) and
vector of colors (col).

> metaheat(MAT, legend = 1, col = c("khaki1", "lightsalmon3"))

39

P
va

lC
om

E
S

C
om

E
S

C
om

2

O
rd

er
ed

Li
st

R
an

kP
ro

du
ct

Z
−

st
at

T
S

P

M
A

P

212662_at1555370_a_at240574_at203553_s_at207607_at239442_at214130_s_at225784_s_at226372_at233446_at201037_at237837_at236947_at226817_at215108_x_at217479_at227345_at234207_at227995_at210116_at202803_s_at201753_s_at225802_at230964_at213915_at227863_at223276_at209122_at1555086_at1563364_at212454_x_at222412_s_at206239_s_at227759_at236223_s_at211908_x_at237932_at207017_at1556055_at209583_s_at1552281_at211902_x_at222551_s_at210727_at212985_at242110_at205213_at221724_s_at218537_at240798_at1552485_at1560500_at238010_at37145_at206712_at213419_at214519_s_at232595_at209301_at1560119_at206391_at201279_s_at1559391_s_at217546_at205044_at223360_at232026_at231829_at235956_at230621_at203595_s_at220948_s_at221935_s_at1560228_at213385_at239539_at238812_at236006_s_at238742_x_at236122_at243669_s_at208116_s_at216992_s_at203566_s_at233058_at217371_s_at1563169_at1569057_s_at228030_at232333_at205242_at213880_at222294_s_at211635_x_at243808_at222680_s_at204818_at206442_at232466_at202917_s_at209436_at213238_at221168_at204702_s_at224453_s_at216173_at210143_at238520_at205719_s_at214553_s_at214073_at213017_at225432_s_at1570338_at227347_x_at209512_at1554508_at205003_at1556656_at1552680_a_at202589_at216228_s_at230793_at219296_at213248_at228167_at208296_x_at1557809_a_at244407_at208982_at208741_at223746_at239987_at1560542_at236027_at222262_s_at243759_at215128_at229962_at241607_at1557889_at203008_x_at228396_at202900_s_at204661_at204613_at223441_at224454_at230921_s_at213603_s_at1552621_at202146_at238999_at228915_at229566_at202975_s_at219300_s_at241891_at239647_at204186_s_at1554999_at224470_at223249_at218986_s_at222793_at238149_at1552365_at1553033_at1553986_at1554394_at1556090_at1556389_at1556648_a_at1557085_at1558214_s_at1564451_at1564906_at1568807_a_at200093_s_at201170_s_at201548_s_at201746_at202199_s_at202403_s_at202450_s_at202906_s_at203000_at203362_s_at203860_at204115_at204404_at204435_at204575_s_at205009_at205433_at206383_s_at207432_at208126_s_at208782_at209098_s_at209307_at210664_s_at211416_x_at211890_x_at212570_at212667_at213304_at213929_at214093_s_at215124_at215945_s_at216442_x_at217084_at217204_at217653_x_at218312_s_at218885_s_at218948_at219159_s_at219466_s_at219990_at220111_s_at220230_s_at222943_at224610_at224995_at225140_at225599_s_at225706_at226726_at226806_s_at227235_at228238_at228407_at228506_at228642_at229218_at229403_at229538_s_at229844_at230788_at231265_at232078_at232150_at232195_at234640_x_at234792_x_at235368_at235476_at235655_at235845_at237624_at239043_at239650_at244045_at235008_at226789_at206094_x_at231180_at204636_at223235_s_at205110_s_atAFFX−DapX−5_at226991_at228058_at232504_at217628_at232618_at1552575_a_at1563129_at1569768_at201785_at205951_at208158_s_at219954_s_at219985_at220883_at220900_at226558_at230781_at231980_at241744_x_at241811_x_atAFFX−r2−Bs−thr−3_s_atAFFX−ThrX−3_at

neg pos

Function metaheat2 has as many arguments as heatmap.2 form gplots package
and two more. Argument legend.names is a character vector with labels to
be used in legend. Setting discret=TRUE will indicate that legend for discrete
values should be drawn.

> metaheat2(MAT, col = c("khaki1", "lightsalmon3"),

+ legend.names = c("DEG", "noDEG"), discrete = TRUE,

+ trace = "none", dendrogram = "none")

40

T
S

P

M
A

P

O
rd

er
ed

Li
st

Z
−

st
at

R
an

kP
ro

du
ct

E
S

C
om

P
va

lC
om

E
S

C
om

2

203566_s_at203008_x_at230921_s_at202589_at228030_at1556055_at230621_at224470_at1554999_at223249_at218986_s_at222793_at217628_at232504_at228058_at204636_at231180_at206094_x_at235008_at226789_at235845_at227235_at224610_at216442_x_at212667_at203860_at202450_s_at202403_s_at1558214_s_at201746_at238149_at229218_at218312_s_at210664_s_at208126_s_at1552365_at205009_at232618_at226991_atAFFX−DapX−5_at223235_s_at205110_s_atAFFX−ThrX−3_atAFFX−r2−Bs−thr−3_s_at241811_x_at241744_x_at231980_at230781_at226558_at220900_at220883_at219985_at219954_s_at208158_s_at205951_at201785_at1569768_at1563129_at1552575_a_at1570338_at212454_x_at227995_at239650_at239043_at234640_x_at230788_at225706_at222943_at220230_s_at218948_at217204_at217084_at215945_s_at202199_s_at1556389_at1568807_a_at244045_at237624_at235655_at235476_at235368_at234792_x_at232195_at232150_at232078_at231265_at229844_at229538_s_at229403_at228642_at228506_at228407_at228238_at226806_s_at226726_at225599_s_at225140_at224995_at220111_s_at219990_at219466_s_at219159_s_at218885_s_at217653_x_at215124_at214093_s_at213929_at213304_at212570_at211890_x_at211416_x_at209307_at209098_s_at208782_at207432_at206383_s_at205433_at204575_s_at204435_at204404_at204115_at203362_s_at203000_at202906_s_at201548_s_at201170_s_at200093_s_at1564906_at1564451_at1557085_at1556648_a_at1556090_at1554394_at1553033_at1553986_at202975_s_at232466_at243808_at205213_at1555370_a_at225784_s_at241607_at213017_at211635_x_at235956_at227345_at1563364_at215128_at204661_at1557889_at243759_at223746_at1556656_at225432_s_at232333_at238812_at221935_s_at1560119_at238010_at242110_at223276_at226372_at234207_at239647_at219296_at206712_at238742_x_at1557809_a_at236006_s_at227863_at221724_s_at204186_s_at202146_at1552621_at236027_at232595_at1560500_at218537_at210727_at222551_s_at237932_at1555086_at201753_s_at217479_at212662_at226817_at238999_at202900_s_at1560542_at239987_at214553_s_at1569057_s_at1563169_at217371_s_at208116_s_at1560228_at240798_at212985_at211902_x_at203553_s_at237837_at217546_at241891_at206391_at228396_at229962_at1552680_a_at221168_at211908_x_at220948_s_at204613_at216228_s_at204702_s_at222294_s_at207017_at232026_at219300_s_at224454_at208741_at214519_s_at227759_at209122_at236947_at207607_at233446_at229566_at228915_at213603_s_at223441_at222262_s_at208982_at244407_at208296_x_at228167_at213248_at230793_at205003_at1554508_at209512_at227347_x_at214073_at205719_s_at238520_at210143_at216173_at224453_s_at213238_at209436_at202917_s_at206442_at204818_at222680_s_at213880_at205242_at233058_at216992_s_at243669_s_at236122_at239539_at213385_at203595_s_at231829_at223360_at205044_at1559391_s_at201279_s_at209301_at213419_at37145_at1552485_at1552281_at209583_s_at236223_s_at206239_s_at222412_s_at213915_at230964_at225802_at202803_s_at210116_at215108_x_at201037_at214130_s_at240574_at239442_at

DEG noDEG

The user can perform cluster analysis on MAT to search for similarities between
methods or genes.

We can look at number of genes found by number of methods by

> dim(MAT)

[1] 286 8

According to the outsprint above, eight different methods have found 217 dif-
ferentially expressed genes.

The histogram below shows that the most of the genes have been selected in
only one method.

> n.met <- apply(MAT, 1, sum)

> hist(n.met, main = "", xlab = "Number of methods",

+ ylab = "Number of genes", xlim = c(1, 8))

41

Number of methods

N
um

be
r

of
 g

en
es

1 2 3 4 5 6 7 8

0
20

40
60

80

n.met is a numeric vector of number of methods that identified the gene as
differentially expressed.

Next, we can look for example how many genes have been found as differen-
tially expressed in at least 6 methods.

> dim(MAT[n.met > 5,])

[1] 67 8

On the other hand, we can find out how many genes have been found by a
method.

> n.gen <- apply(MAT, 2, sum)

> barplot(n.gen, cex.names = 0.8, las = 2)

42

P
va

lC
om

E
S

C
om

E
S

C
om

2

O
rd

er
ed

Li
st

R
an

kP
ro

du
ct

Z
−

st
at

T
S

P

M
A

P

0

50

100

150

200

Function contig.tab provides a number of genes common in two gene lists. It
can be applied to lists, too.

> TAB <- conting.tab(lists)

> TAB[1:5, 1:5]

PvalCom ESCom ESCom2 OrderedList RankProduct

PvalCom NA 109 157 139 108

ESCom 109 NA 109 102 84

ESCom2 157 109 NA 140 111

OrderedList 139 102 140 NA 113

RankProduct 108 84 111 113 NA

Expression of one gene

In this section we are going to focus on one gene and to look at its expression
change from different points of view. The different points of view are represented
by different approaches used in the methods.

First we will join all the available results to one list and then select only
rows for one gene.

> results <- join.results(pvalt, ESt, theScores,

+ ScoresFDR$two.sided, x.z, RankRes, z.stat,

+ probs, MC, RQ, type = c(1, 1, 5, 5, 2, 3,

+ 5, 4, 5, 5), genenames = rownames(exprs(denmark)))

> gene <- metagene("203008_x_at", results)

> gene

43

[[1]]

study1 study2 study3 AllIndStudies

1.00000 1.00000 1.00000 1.00000

Meta TestStatistic

1.00000 -8.92453

[[2]]

study1 study2 study3 AllIndStudies

1.000000 1.000000 1.000000 1.000000

Meta TestStatistic

1.000000 8.674749

[[3]]

zSco_Ex_1 zSco_Ex_2 zSco_Ex_3 zSco

-6.44329249 -3.76525489 -4.69659562 -8.80275939

MUvals MUsds Qvals df

-1.77309287 0.20142467 0.26260012 2.00000000

Qpvalues Chisq Effect_Ex_1 Effect_Ex_2

0.87695460 0.00000000 -1.71847860 -2.02486588

Effect_Ex_3 EffectVar_Ex_1 EffectVar_Ex_2 EffectVar_Ex_3

-1.75867849 0.07113324 0.28920365 0.14021890

[[4]]

zSco_Ex_1 FDR_Ex_1 zSco_Ex_2 FDR_Ex_2 zSco_Ex_3

-6.4432925 0.0000000 -3.7652549 0.0275000 -4.6965956

FDR_Ex_3 zSco FDR MUvals MUsds

0.0000000 -8.8027594 0.0000000 -1.7730929 0.2014247

Qvals df Qpvalues Chisq

0.2626001 2.0000000 0.8769546 0.0000000

[[5]]

[1] TRUE

[[6]]

gene.index RP/Rsum FC:(class1/class2)

415.0000 78.6607 0.5803

pfp P.value

0.0000 0.0000

[[7]]

Zscore Pvalue

203008_x_at 4.565183 4.990581e-06

[[8]]

101 111 110

FALSE FALSE TRUE

[[9]]

R.high R.low Q.high Q.low

0 1 1 0

44

[[10]]

r.star q.star

497 38

> save(gene, file = "gen.RData")

This output provides much of the information available on the gene through all
the described methods. It is a rather complicated structure, so we will try to
represent it graphically in comprehensible form.

> plotgene(gene, type = c(1, 1, 2, 3, 4, 5, 6, 7,

+ 8, 9), datalabels = c("denmark", "australia",

+ "japan", "combined"))

st
ud

y1

st
ud

y2

st
ud

y3

A
llI

nd
S

tu
di

es

M
et

a

st
ud

y1

st
ud

y2

st
ud

y3

A
llI

nd
S

tu
di

es

M
et

a

10
1

11
1

11
0

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

p−value

z.stat

RankProd

R.high

R.low

Q.high

Q.low

1

z.stat: 4.57

RankProd.down: 78.66

Average Rank: 497

Average Rank: 497

Heterogenity: 38

Heterogenity: 38

●

●

●

●

−2.2 −2.0 −1.8 −1.6

Effect Size

denmark

australia

japan

combined

FDR.twosided: 0

FDR.twosided: 0.028

FDR.twosided: 0

FDR.twosided: 0

The picture above shows in top part occurrence of gene in ... , in list of over-
lapping genes in SOGL method and in gene lists with observed MAP (Meta-
Analysis Pattern). The dark box means that the gene is present in the list.
Values from objects: pvalt, ESt, x.z and probs are used in here.

The middle part is dedicated to p-values available in meta-analysis. Specific
values of the statistics can be found on the right side of the chart. The vertical
dashed line denotes the signifficance threshold 5%. P-values from MC, RankRes
and z.stat are drawn in here.

Combination of effect size is plotted in the bottom graph. The point marks
the effect size. Horizontal lines denote the variance of effect size. Statistical
significance of the difference in gene expression (FDR adjusted) can be found
on the right side of the chart. This graph uses values from theScores and
ScoresFDR.

45

References

[1] Jorissen, R. N., Lipton, L., Gibbs, P., Chapman, M. et al. 2008, DNA copy-
number alterations underlie gene expression differences between microsatel-
lite stable and unstable colorectal cancers, Clinical Cancer Research, Vol.
14, pp. 8061-8069

[2] Watanabe, T., Kobunai, T., Toda, E., Yamamoto, Y. et al. 2006, Distal
colorectal cancers with microsatellite instability (MSI) display distinct gene
expression profiles that are different from proximal MSI cancers Cancer
Research, Vol.66, no. 20, pp. 9804-9808

[3] Falcon, S., Morgan, M. and Gentleman, R. 2007, An in-
troduction to Biocinductor’s ExpressionSet class, available at:
http://www.bioconductor.org/packages/2.2/bioc/vignettes/Biobase/inst
/doc/ExpressionSetIntroduction.pdf

[4] Marot, G., Foulley, J.L., Mayer, C.D.,Jaffrézic, F. 2009, Moderated ef-
fect size and P-value combinations for microarray meta-analyses, Bioin-
formatrics, Vol. 25 no. 20 2009, pp. 2692-2699

[5] Rhodes, D.R., Barrette, T.R., Rubin, M. A., Ghosh, D. a Chinnaiyan, A. M.
2002, Meta-Analysis of Microarrays: Interstudy Validation of Gene Expres-
sion Profiles Reveals Pathway Dysregulation in Prostate Cancer, CANCER
RESEARCH 62, pp: 4427-4433

[6] Fisher, R.A. 1925, Statistical methods for research, Oliver and Boyd, Edin-
burgh

[7] Smyth, G. K. 2004, Linear models and empirical Bayes methods for assess-
ing differential expression in microarray experiments, Statistical Applica-
tions in Genetics and Molecular Biology 3, No. 1, Article 3

[8] Jaffrézic, F., Marot, G., Degrelle, S., Hue, I., Foulley, J.L. 2007, A structural
mixed model for variances in differential gene expression studies, Genetical
Research, Vol. 89, pp. 19-25.

[9] Choi, J.K., Yu, U., Kim, S. a Yoo, O.J. 2003, Combining multiple mi-
croarray studies and modeling interstudy variation, Bioinformatics, Vol.
19, Suppl. 1 2003, pp. i84-i90

[10] Gentleman, R., Rauschhaupt, M., Huber, W., a Lusa L.
2008, Meta-analysis for Microarray Experiments, dostupné na:
http://www.bioconductor.org/packages/2.3/bioc/vignettes/GeneMeta
/inst/doc/GeneMeta.pdf

[11] Hedged, V. L. a Olkin, I. 1985, Statistical Methods for Metaanalysis, Aca-
demic Press, Orlando

[12] Cochran, B.G. 1954, The combination of estimates from different experi-
ments, Biometrics, Vol. 10, pp. 101-129

[13] DerSimonian, R., a Laird, N. M. 1986, Meta-analysis in clinical trials,
Controlled Clinical Trials, Vol. 7, pp. 177-188

46

[14] Scheid, S., Lottaz, C., Yang, X. a Spang, R. 2006, Similarities of Ordered
Gene Lists User’s Guide to the Bioconductor Package OrderedList 1.11.3,
dostupné na: http://www.bioconductor.org/packages/2.5/bioc/vignettes/
OrderedList/inst/doc/tr 2006 01.pdf

[15] Hong, F., Breitling, R., McEntee,C. W., Wittner, B. S., Nemhauser, J. L.
a Chory, J. 2006, RankProd: a bioconductor package for detecting differ-
entially expressed genes in meta-analysis, Bioinformatics, Vol. 22, no. 22
2006, pp. 2825-2827

[16] Wang, J., Coombes, K. R., Highsmith, W. E., Keating, M. J. a Abruzzo, L.
V. 2004, Differences in gene expression between B-cell chronic lymphocytic
leukemia and normal B cells: a meta-analysis of three microarray studies,
Bioinformatics, Vol. 20, no. 17 2004, pp. 3166-3178

[17] Ghosh, D. a Choi, H. 2009, metaArray package
for meta-analysis of microarray data, dostupné na:
http://bioconductor.org/packages/2.5/bioc/vignettes/metaArray/inst/
doc/metaArray.pdf

[18] Geman, D., d’Avignon, Ch., Naiman, D. Q. a Winslow, R.L. 2004, Classi-
fying Gene Expression Profiles from Pairwise mRNA Comparisons, Statis-
tical Applications in Genetics and Molecular Biology 2004, Vol. 3, Issue 1,
Article 19

[19] A.C. Tan, D.Q. Naiman, L. Xu, R.L. Winslow, D. Geman, Simple decision
rules for classifying human cancers from gene expression profiles, Bioinfor-
matics, 21: 3896-3904, 2005.

[20] Smid, M., Dorssers, L. C. J. a Jenster, G. 2003, Venn Mapping: clustering
of heterologous microarray data based on the number of co-occurring differ-
entially expressed genes, Bioinformatics, Vol. 19, no. 16 2003, pp. 2065-2071

[21] Yang, X., Bentink, S. a Spang, R. 2005, Detecting Common Gene Expres-
sion Patterns in Multiple Cancer Outcome Entities, Biomedical Microde-
vices, Vol.7:3, pp. 247-251

[22] Rhodes, D. R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh,
D., Barrette, T., Pandey, A. a Chinnaiyan, A. M. 2004, Large-scale meta-
analysis of cancer microarray data identifies common transcriptional pro-
files of neoplastic transformation and progression, PNAS, Vol. 101, no. 25,
pp. 9309-9314

[23] Zintzaraz, E a Ioannidis, J.P.A. 2008, Meta-analysis for ranked discovery
datasets: Theoretical framework and empirical demonstration for microar-
rays, Computational Biology and Chemistry 32, pp. 39-47

47

