
The SHARE package:
SNP-Haplotype Adaptive REgression

Ting-Yuan Liu, James Y. Dai

February 8, 2010

1 Introduction

Association studies have been widely used to identify genetic liability variants for com-
plex diseases. While scanning the chromosomal region one SNP at a time may not
fully explore linkage disequilibrium (LD), haplotype analyses tend to require a fairly
large number of parameters, thus potentially losing power. Clustering algorithms, such
as the cladistic approach, have been proposed to reduce the dimensionality, yet they
have important limitations. We propose the SHARE algorithm (Dai et al., 2009) that
seeks the most informative set of SNPs for genetic association in a targeted region by
growing/shrinking haplotypes with one more/less SNP in a stepwise fashion, and com-
paring prediction errors of different models via cross-validation. This is the manual of
the SHARE package.

2 Prequisites

Both haplo.stats and MASS packages are required for using the SHARE package. They
will be loaded automatically when loading the SHARE package.

3 SHARE Analysis

SHARE can handle both phased haplotype data and unphased genotype data. For un-
phased genetic data, SHARE adopts the haplo.em function in haplo.stats to estimate the
probability of haplotype pairs. Users can also phase the genotypic data upfront by using
existing software such as PHASE or fastPHASE (Stephens et al., 2001; Stephens and
Donnelly, 2003), then use SHARE to search for the most informative haplotypes. We
illustrate the usage of SHARE mainly on the genotypic data in Section 4, and briefly
show how to input the phased data in Section 5.

1

We use the Cystic Fibrosis data in Browning (2006) for illustration. The original R
dataset contains 186 haplotypes based on 23 SNPs, which can be found in HapVLMC
package (http://www.stat.auckland.ac.nz/~browning/HapVLMC/index.htm). Subject-
level diploid genetic information, either haplotype or genotype sequences, and the clinical
status (e.g., case or control) are required to perform the SHARE algorithm. Therefore,
we constructed the diploid level genotypic data (keremRandAllele) and haplotype data
(keremRandSeq) by randomly pairing two haplotypes and stored them in the package.

> data(keremRand)

> ls()

[1] "keremRandAllele" "keremRandSeq" "keremRandStatus"

The data.frame object keremRandSeq contains 186 sequences with 23 SNPs. The
row names show the subject id and the sequence id within this subject. The SNPs are
coded as 1 referring to the large allele of the RFLP, and 2 referring to the smaller allele.
The vector object keremRandStatus provides the CF/control status of each subject. 1
indicates subjects in case group (i.e., CF), and 0 indicates control group. There are 47
subjects in CF group and 46 in control group. keremRandAllele is a matrix object
containing allelic data for 23 SNPs, coded as 0, 1, and 2 as the number of minor alleles.

4 Unphased Genotype Sequences

Starting from allelic data such as keremRandAllele, we first estimate the haplotypes
and their frequencies. SHARE performs the EM algorithm to obtain these parameter
estimates.

4.1 genoSet

We first construct a genoSet object from our genotype sequences and the phenotype
information:

> unphasedGeno <- new("genoSet", genoSeq = data.frame(keremRandAllele),

+ phenoData = data.frame(CF = keremRandStatus))

> unphasedGeno

An object of class "genoSet"

of SNP: 23

of genotype sequence: 93

Phenotype:

CF

2

http://www.stat.auckland.ac.nz/~browning/HapVLMC/index.htm

4.2 Haplotype Reconstruction

The method haplo performs the EM-based haplotype reconstruction algorithm on genoSet
objects. The reconstructed haplotypes as well as other information will be stored in the
object of class haplo.

> unphasedHaplo <- haplo(unphasedGeno)

> unphasedHaplo

An object of class "haplo" (extended from class "haploSet")

of SNP: 23

of haplotype sequence: 90

4.3 SHARE Algorithm

The next step is to search for the most informative set of SNPs and its associated
haplotype model. The default method is to compare prediction deviance via ten-fold
cross-validation (ModSelMethod=”Cross-Val”). Alternatively, we also provide the BIC
criterion for faster computation (ModSelMethod=”BIC”). The mode of inheritance for
haplotype effects can be specified to be additive (Minherit=”additive”), dominant (Min-
herit=”dominant”), or recessive (Minherit=”recessive”). The cshare function will search
for the best subset up to a user-defined maximum number of SNPs (default 6 SNPs).

The cshare function outputs a share object, which contains the best size of SNPs,
and either the prediction deviance or BIC. If the best subset is null set (i.e., the model
with intercept only), there is no genetic association in the candidate region. If the best
subset contains at least 1 SNP, cshare also outputs the haplotype frequencies, the es-
timated haplotype effect, nominal p-values in the final model, and the experiment-wise
p-values that has corrected for multiple tests.

Here is an example that demostrates the SHARE algorithm by the cross-validation
method on an additive model:

> unphasedKerem <- list()

> unphasedKerem[["Cross-Val"]] <- cshare(unphasedHaplo, status = "CF",

+ nfold = 20, maxsnps = 5, ModSelMethod = "Cross-Val", Minherit = "additive")

> unphasedKerem[["Cross-Val"]]

An object of class "share"

Given nFold=20 cross-validation and maxSNP=5, the best number of SNP to select is 2.

of selected SNP: 2

of haplotype sequence: 4

3

Haplotype sequences in the final subset:

locus_11 locus_17 Frequency

hap1 1 1 0.037634

hap2 1 2 0.430108

hap3 2 1 0.381720

hap4 2 2 0.150538

Testing:

Coefficient Standard Error z-Score p-Value

hap 2 (Intercept) 4.172075 1.064413 3.919600 0.000044

hap 1 -4.367063 1.475469 -2.959780 0.001539

hap 3 -3.725943 0.919607 -4.051670 0.000025

hap 4 -2.735133 0.719839 -3.799646 0.000072

Global p-value: 0.00045

Here is an example using the BIC method on an additive model:

> unphasedKerem[["BIC"]] <- cshare(unphasedHaplo, , status = "CF",

+ maxsnps = 5, ModSelMethod = "BIC", Minherit = "additive",

+ verbose = 1)

> unphasedKerem[["BIC"]]

An object of class "share"

Given BIC criterion and maxSNP=5, the best number of SNP to select is 2.

of selected SNP: 2

of haplotype sequence: 4

Haplotype sequences in the final subset:

locus_11 locus_18 Frequency

hap1 1 1 0.370968

hap2 1 2 0.048387

hap3 2 1 0.435484

hap4 2 2 0.145161

Testing:

Coefficient Standard Error z-Score p-Value

hap 3 (Intercept) 4.579789 1.225504 3.737065 0.000093

hap 1 -3.778493 0.923236 -4.092661 0.000021

hap 2 -6.211824 1.616834 -3.841967 0.000061

hap 4 -2.984438 0.824179 -3.621103 0.000147

Global p-value: 0.000292

4

4.4 Deviance/BIC Plot

We can also check the path of model searching by creating a deviance/BIC plot (Figure 1
and Figure 2) by using the method dplot . The minimum deviance in the plot indicates
the best size of SNP (e.g., the best size in Figure 1 is 2 and in Figure 2 is 2).

> dplot(unphasedKerem[["Cross-Val"]])

●

●

●

●

●

●

●

●

●

●

45
50

55
60

65
70

Model Size

P
re

di
ct

io
n

D
ev

ia
nc

e

0 1 2 3 4 5 4 3 2 1

Figure 1: Deviance Plot

5

> dplot(unphasedKerem[["BIC"]])

●

●

●
●

●

●

●

●

●

●

90
10

0
11

0
12

0
13

0

Model Size

B
IC

0 1 2 3 4 5 4 3 2 1

Figure 2: BIC Plot

6

4.5 Permutation Test

If the best model size is zero, there will appear to be no genetic association in the region
of interest. There is no need to perform a permutation test. For final models with at
least 1 SNP, we permute case-control labels 1000 times regardless of the genotypic data,
carry out model searching for each permuted dataset, and compute the nominal p-value
using a Wald test. Finally the experiment-wise p-value is computed by comparing the
observed p-value to its null distribution (Besag and Clifford, 1991).

Here is an example that tests the SHARE algorithm result from the cross-validation
method.

> extdataDir <- system.file("extdata", package = "SHARE")

> if ("unphasedPermuPValue.RData" %in% dir(extdataDir)) {

+ load(file.path(extdataDir, "unphasedPermuPValue.RData"))

+ } else {

+ unphasedPermuPValue <- shareTest(outObj = unphasedKerem[["Cross-Val"]],

+ haploObj = unphasedHaplo, status = "CF", nperm = 1000)

+ }

> unphasedPermuPValue

[1] 0.002997003

5 Phased Genotype Sequences

For the data of phased DNA sequences, we first need to determine the set of unique
haplotypes:

> hapSeq <- apply(keremRandSeq, 1, function(x) {

+ paste(x, sep = "", collapse = "-")

+ })

> uniHap <- unique(hapSeq)

> nHap <- length(uniHap)

> hapNum <- unlist(sapply(1:nHap, function(x) {

+ paste(paste(rep("0", ceiling(log10(nHap)) - nchar(as.character(x))),

+ collapse = ""), x, sep = "", collapse = "")

+ }))

> names(uniHap) <- paste("hap_", hapNum, sep = "")

> hapPool <- strsplit(uniHap, "-")

> hapPool <- data.frame(t(data.frame(lapply(hapPool, function(x) {

+ as.numeric(x)

+ }))))

> colnames(hapPool) <- colnames(keremRandSeq)

7

There are 115 unique haplotypes determined, and they are stored in the data.frame
object hapPool.

For each unique haplotype, we also need to calculate its frequency among the observed
haplotype sample:

> hapCount <- sapply(uniHap, function(x) {

+ sum(x == hapSeq)

+ })

> hapFreq <- hapCount/sum(hapCount)

Then we need to determine the index of every haplotype for each subject:

> noNameUniHap <- uniHap

> names(noNameUniHap) <- NULL

> hapIndex <- sapply(hapSeq, function(x) {

+ which(x == noNameUniHap)

+ })

> hap1Index <- hapIndex[c(1:length(hapIndex)%%2) == 1]

> hap2Index <- hapIndex[c(1:length(hapIndex)%%2) == 0]

The object hap1Index indicates the first haplotype for each subject, and hap2Index

indicates the second haplotype.

We can then store all information together in a haplo object:

> phasedHaplo <- new("haplo", haploSeq = hapPool,

+ haploFreq = hapFreq, hap1 = hap1Index, hap2 = hap2Index,

+ poolHapPair = as.character(1:length(hap1Index)),

+ nPosHapPair = table(1:length(hap1Index)),

+ post = rep(1, length(hap1Index)), pheno = data.frame(CF = keremRandStatus))

The rest of the commands are the same as those for unphased data in Section 4.3.

6 Session Information

The version number of R and packages loaded for generating the vignette were:

R version 2.10.0 (2009-10-26)

x86_64-unknown-linux-gnu

locale:

[1] LC_CTYPE=en_US.ISO8859-1 LC_NUMERIC=C

8

[3] LC_TIME=en_US.ISO8859-1 LC_COLLATE=en_US.ISO8859-1

[5] LC_MONETARY=C LC_MESSAGES=en_US.ISO8859-1

[7] LC_PAPER=en_US.ISO8859-1 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.ISO8859-1 LC_IDENTIFICATION=C

attached base packages:

[1] tools stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] SHARE_1.0.5 MASS_7.2-46 haplo.stats_1.3.8

References

J. Besag and P. Clifford. Sequential monte carlo p-values. Biometrika, 78(2):301–304,
June 1 1991.

S. R. Browning. Multilocus association mapping using variable-length markov chains.
American Journal of Human Genetics, 78(6):903–913, Jun 2006.

J. Y. Dai, M. LeBlanc, N. L. Smith, B. M. Psaty, and C. Kooperberg. SHARE: an
adaptive algorithm to select the most informative set of SNPs for genetic association.
Biostatistics, In Press, 2009.

M. Stephens and P. Donnelly. A comparison of bayesian methods for haplotype recon-
struction from population genotype data. American Journal of Human Genetics, 73
(5):1162–1169, Nov 2003.

M. Stephens, N. J. Smith, and P. Donnelly. A new statistical method for haplotype
reconstruction from population data. American Journal of Human Genetics, 68(4):
978–989, Apr 2001.

9

	Introduction
	Prequisites
	SHARE Analysis
	Unphased Genotype Sequences
	genoSet
	Haplotype Reconstruction
	SHARE Algorithm
	Deviance/BIC Plot
	Permutation Test

	Phased Genotype Sequences
	Session Information

