
R/C Glue in SamplerCompare

Madeleine Thompson

2010–09–14

1 Introduction

The SamplerCompare R package allows both samplers and distributions to be implemented in either R or C.
This document describes the interface for implementing them in C and documents the internals of the glue
holding it together. It assumes familiarity with the interface for implementing samplers and distributions in
R; for more on those interfaces, see the help pages for make.dist and compare.samplers and the vignette
“Introduction to SamplerCompare.”

Section 2 describes how to compile and link C code into R so that it can extend SamplerCompare; this
procedure is the same whether you are implementing a distribution or a sampler. Sections 3 and 4 describe
the specifics of implementing distributions and samplers. The remaining sections are intended for a narrower
audience: Sections 5 and 6 describe the internals of the glue code. Section 7 describes an alternative interface
for implementing samplers, useful when Markov chain iterations are expressible as a sequence of updates.

2 Compiling and linking

Whether you’re implementing a sampler or distribution, you must compile it and link it into R before it can
be used. If you are not using the R package system, you can do this is with R CMD SHLIB and dyn.load.
Suppose your implementation is in mycode.c. At the Unix command line, type:

SC_INCLUDE=`echo 'suppressPackageStartupMessages(library(SamplerCompare)) ;

cat(system.file("include", package="SamplerCompare"))' | R --vanilla --slave`

MAKEFLAGS="CPPFLAGS=-I$SC_INCLUDE" R CMD SHLIB mycode.c

The first command locates the SamplerCompare/include directory containing the required header file,
SamplerCompare.h. The second generates a shared object, mycode.so. Then, in R, type:

dyn.load('mycode.so')

At this point, from within R, you can use wrap.c.sampler if you’ve implemented a sampler or make.c.dist if
you’ve implemented a distribution. For an example of this procedure that works on both Unix and Windows,
you can read tests/test-indep-mh.R.

Alternatively, suppose you are using the R package system and the code with your sampler or distribution
is in the src directory of MyPackage. If you are not using a custom Makefile and are targeting Unix

1

and MacOS, you can add the following lines to MyPackage/src/Makevars so that R CMD build can find
SamplerCompare.h:

PKG_CPPFLAGS=-I`echo 'suppressPackageStartupMessages(library(SamplerCompare)) ; \

cat(system.file("include", package="SamplerCompare"))' | R --vanilla --slave`

Be sure no whitespace follows the backslash. Then, to ensure that the shared library created by R CMD build

is loaded, add the following to MyPackage/NAMESPACE:

useDynLib(MyPackage)

Then, any code in MyPackage/R can call wrap.c.sampler or make.c.dist.
Makevars is not used under Windows, so if you want your package to work under Windows, you will also

need to create a Makevars.win like the following:

PKG_CPPFLAGS=-I.../path/to/SamplerCompare/include

PKG_LIBS=$(BLAS_LIBS)

3 Implementing a distribution in C

A distribution is defined in C by writing a log density function that follows the log_density_t interface,
defined in SamplerCompare.h. The function has the type:

typedef double log_density_t(dist_t *dist, double *x, int compute_grad, double *grad);

The distribution itself is represented by a dist_t:

typedef struct {

log_density_t *log_dens; /* log density declared above */

SEXP context; /* opaque context object */

int ndim; /* dimension of the distribution */

} dist_t;

When a sampler wants to evaluate the log density (and optionally its gradient), it calls the log_density_t

with the first argument set to the dist_t, the second equal to an ndim-long array of doubles indicating the
point at which to evaluate the log density, and the third a boolean indicating whether the gradient is needed.
If compute_grad is nonzero, the fourth argument, grad, is a pointer to an ndim-long array of doubles to be
filled in with the gradient. The log density itself is returned by the log_density_t.

An example density function implementing a one-dimensional standard normal is:

#include <R.h>

#include <SamplerCompare.h>

double normal_log_dens(dist_t *dist, double *x, int compute_grad, double *grad) {

double log_dens;

if (dist->ndim!=1)

2

error("Dimension must be one.");

log_dens = -0.5 * sqrt(2.0*M_PI) - 0.5 * x[0]*x[0];

if (compute_grad)

grad[0] = -x[0];

return log_dens;

}

If the distribution requires external data defined at runtime, the context element of dist_t may be used;
it is defined when calling make.c.dist. See the file distributions.c in the SamplerCompare source for
more examples, including ones that use context.

If one cannot or does not want to write code to compute the gradient, the log density function should call
the R error function if compute_grad is nonzero. The resulting distribution will not be usable by samplers
that require gradients. Similarly, distributions should not access the memory pointed to by grad unless
compute_grad is nonzero.

Once the log density function has been written in C, it is compiled and linked as described in section 2.
An R dist object can then be created with make.c.dist, which takes as arguments (among others) the
name of the C function and an R object to be passed as the context element of the dist_t passed as the
first argument to the log_density_t. An example invocation for the function above is:

std.normal.dist <- make.c.dist("Std. Normal", "normal_log_dens",

mean=0, cov=as.matrix(1))

std.normal.dist could then be sampled from as if it had been implemented in R and defined with
make.dist.

4 Implementing a sampler in C

The other side of the interface of section 3 is the sampler that calls the log density function. The Sampler-
Compare glue code ensures that R distributions also appear to implement this interface, so if one wants to
implement a sampler in C, one only need target that interface.

A C sampler implements the sampler_t type, defined in SamplerCompare.h:

typedef void sampler_t(SEXP sampler_context, dist_t *ds, double *x0,

int sample_size, double tuning, double *X_out);

sampler_context is an opaque context object. ds is a dist_t representing the distribution to sample from.
x0 is an array of doubles of length ds->ndim containing the initial state of the Markov chain. X_out is an
array of doubles of length ds->ndim * sample_size. It should be filled in column-major with the result of
the simulation.

To obtain the log density at x0, for example, the sampler would call:

double y0 = ds->log_dens(ds, x0, 0, NULL);

Or, if the sampler wanted a gradient as well:

3

double g0[ds->ndim];

double y0 = ds->log_dens(ds, x0, 1, g0);

Then, when it wants to store a new state, using dcopy_ from BLAS:

// ... x_k is (zero-based) state k of the Markov chain

const int one = 1;

dcopy_(&ds->ndim, x_k, &one, X_out+k, &sample_size);

As with distributions, samplers implemented in C must be compiled and linked as described in section 2.
Then, an R sampler object can be defined with the function wrap.c.sampler, which takes arguments spec-
ifying the name of a the C function and a context object containing tuning parameters other than the first
one. The context object may be any R object; it is the sampler’s responsibility to interpret it.

The glue code calls GetRNGstate and PutRNGstate before and after invoking the sampler, so it is not nec-
essary for the sampler to do so itself. The sampler must, however, call R_CheckUserInterrupt periodically
to check for user interrupts; once per state transition is usually appropriate.

For a simple example of a complete sampler, implementing independence Metropolis–Hastings with uni-
variate updates, see the file indep-mh-sampler.c, which defines a sampler_t with the name indep_mh.
After compiling it as described in section 2, it can be accessed from R by typing:

indep.mh.sample <- wrap.c.sampler(sampler.symbol='indep_mh',

sampler.context=0,

name='Independence MH')

This method has two tuning parameters: the proposal mean, specified by the sampler context, and the
proposal standard deviation, specified as the tuning argument to indep.mh.sample.

5 Glue used by R samplers calling C distributions

When make.c.dist is called to define an R object that represents a log density function implemented in
C, it uses .Call to call the C function raw_symbol, which uses the R internal function R_FindSymbol to
obtain a function pointer for the log density function. If it cannot be found, an error is reported. Otherwise,
raw_symbol returns this function pointer so that the linker does not need to be called every invocation. The
function pointer is stored in the sym element of the dist object as an R raw.

The log.density and grad.log.density functions in the dist object returned by make.c.dist are
stubs that call log.density.and.grad, which itself uses .Call to invoke R_invoked_C_glue, a C function
that calls the function pointer located by raw_symbol.

6 Glue used by C samplers

wrap.c.sampler creates an R wrapper function for a sampler_t. When this R wrapper is called, it checks
whether the distribution has a c.log.density.and.grad element, as would occur if the distribution were de-
fined with make.c.dist. If so, it uses .Call to invoke sampler_glue_C_dist to call the sampler. Otherwise,
it invokes sampler_glue_R_dist to call the sampler.

4

sampler_glue_C_dist uses the c.log.density.and.grad string to obtain a function pointer to the C log
density function. It then creates a dist_t pointing not to that function, but to C_log_density_stub_func,
which itself obeys the log_density_t interface, storing the function pointer and the context object to be
passed to the actual sampler in a C_stub_context_t object. It then calls the sampler_t with this stub
distribution function. When invoked by the sampler, the stub distribution function increments a counter for
the number of evaluations and possibly for the number of gradients, then invokes the log density function
named by the user in make.c.dist. This way, C samplers, unlike R samplers, do not need to count function
and gradient evaluations.

sampler_glue_R_dist works in a similar way, but instead of being passed a string naming a C function,
it is passed a SEXP referencing an R function implementing the log.density.and.grad interface. (See
the help page for make.dist for more information.) Like sampler_glue_C_dist, it passes the sampler a
stub log_density_t, using the stub function R_log_density_stub_func, which in addition to tracking
evaluations, deals with packing the C state into R arguments, invoking the R log.density.and.grad, and
unpacking the results.

When the sampler_t invoked from either glue function returns, X_out, the evaluations counter, and the
gradient counter are packed up into an R list object by their glue function and returned to R wrapper, which
returns this list to the user.

7 The transition function interface

One can often express an MCMC update as a sequence of updates by simpler methods. The transition
function interface provides an alternative to the sampler_t interface that makes it more convenient to
implement these simple updates and combine them flexibly.

This interface specifies a single transition of the Markov chain using functions that implement the type:

typedef void transition_fn(SEXP sampler_context, dist_t *ds, double *x0,

double tuning, double *x1);

sampler_context is in a special format. ds and tuning are the target distribution and tuning parameter,
as with sampler_t. x0 is the current state. x1 is a vector in which the next state is returned.

To define a sampler that implements this interface, pass "transition_sample" to wrap.c.sampler as the
sampler symbol. The transition function is specified by passing a function pointer returned by raw.symbol or
a list whose first element is a function pointer returned by raw.symbol to wrap.c.sampler as the context.
This context will be passed along to the transition function. If the transition function needs additional
context, such as extra tuning parameters, it can use the elements of the context list after the first.

Then, if a user wants to perform updates with multiple transition functions each iteration of a Markov
chain, they can write a wrapper that calls each of them in sequence and pass a pointer to the wrapper to
wrap.c.sampler. This way, the individual functions do not have a loop over sample size, so they can be
called both individually and in sequence without changes, which I have found useful when experimenting
with combinations of methods.

5

