Introduction to SamplerCompare

Madeleine B. Thompson
University of Toronto

Abstract

SamplerCompare is an R package for comparing the performance of Markov Chain
Monte Carlo samplers. It samples from a collection of distributions with a collection of
MCMC methods over a range of tuning parameters. Then, using log density evaluations
per independent observation as a figure of merit, it generates a grid of plots showing
the results of the simulation. It comes with a collection of predefined distributions and
samplers and provides R and C interfaces for defining additional ones. This document
demonstrates the basics of running simulations, visualizing results, and defining distribu-
tions and samplers in R.

Keywords: MCMC, visualization.

1. Purpose of package

SamplerCompare is an R package that allows for automated comparison of MCMC methods.
It samples from collections of probability distributions with collections of Markov Chain Monte
Carlo samplers with a range of tuning parameters and presents the results of such simulations
graphically. These comparisons allow researchers to better understand which MCMC methods
perform best in which circumstances.

This document introduces the mechanics of using the SamplerCompare package. For the
mathematical background of the comparisons and analysis of the resulting graphics, see
Thompson (2010). Other sources of information on SamplerCompare are the R online help
and the vignette “R/C Glue in SamplerCompare.” A list of online help topics and vignettes
can be found by typing:

> library(help='SamplerCompare')
Vignettes can be read with the vignette command. For example:
> vignette('glue')

PDF copies can be found in the doc directory of the installed package.

2. Running MCMC simulations

The three central types of objects in SamplerCompare are distributions (which have the class
dist), sampler functions, and simulation results. The function compare.samplers runs a

2 Introduction to SamplerCompare

R function

Sampler

multivariate.metropolis.sample

univar.metropolis.sample
adaptive.metropolis.sample

arms.sample
stepout.slice.sample
interval.slice.sample
hyperrectangle.sample

nograd.hyperrectangle.sample

nonadaptive.crumb.sample
cov.match.sample

shrinking.rank.sample

Metropolis—Hastings with spherically symmetric
Gaussian proposals

Metropolis—Hastings with single-coordinate updates
Adaptive Metropolis—Hastings (Roberts and Rosen-
thal 2009)

Adaptive Rejection Metropolis (Gilks, Best, and Tan
1995)

slice sampler with stepping out (Neal 2003, §4)

slice sampler without stepping out (Neal 2003, §4)
slice sampler with hypercube for initial slice approxi-
mation, shrinkage using gradient (Neal 2003, §5.1)
slice sampler with hypercube for initial slice approxi-
mation, shrinkage in all dimensions (Neal 2003, §5.1)
slice sampler with Gaussian crumbs (Neal 2003, §5.2)
covariance-matching slice sampler (Thompson and
Neal 2010, §4)

shrinking rank slice sampler (Thompson and Neal
2010, §5)

Figure 1: Predefined samplers; see the R help for the sampler’s R function for more information

on an individual method.

R symbol Distribution

N2weakcor.dist weakly correlated two-dimensional Gaussian

N4poscor.dist strongly positively correlated four-dimensional Gaussian

Ndnegcor.dist strongly negatively correlated four-dimensional Gaussian

schools.dist ten-dimensional multilevel model (Gelman, Carlin, Stern,
and Rubin 2004, pp. 138-145)

funnel .dist ten-dimensional distribution with funnel-shaped marginals

(Neal 2003, p. 732)

R function Distributions generated
make.gaussian multivariate Gaussians
make.cone.dist distributions with cone-shaped log density (Roberts and

Rosenthal 2002)
make.multimodal.dist mixtures of standard Gaussians
make.mv.gamma.dist distributions with uncorrelated gamma marginals

Figure 2: Predefined distributions and functions that generate distributions; see the R help
for a symbol for more information on an individual distribution or generator.

Madeleine B. Thompson 3

list of samplers on a list of distributions with a set of tuning parameters and returns a data
frame containing simulation results. Sampler functions are assumed to have a single scalar
tuning parameter. If they have more, wrapper functions can be used to represent a single
sampler with a varying tuning parameter as multiple samplers. SamplerCompare comes with
a collection of predefined samplers (listed in figure 1) and distributions (listed in figure 2).

Suppose we would like to compare Adaptive Metropolis (adaptive.metropolis.sample) and
Adaptive Rejection Metropolis (arms.sample) with the tuning parameters 1, 20, and 400 on
two-dimensional Gaussian (make.gaussian) and Gamma (make.mv.gamma.dist) distribu-
tions. We can do this with compare.samplers using the code:

> library(SamplerCompare)

> gauss.cor7 <- make.gaussian(mean = c(1, 2), rho = 0.7)

> gamma.shape23 <- make.mv.gamma.dist (shape = c(2, 3))

> sim.results <- compare.samplers(sample.size = 1000, dists = list(gauss.cor7,
+ gamma.shape23), samplers = list(adaptive.metropolis.sample,

+ arms.sample), tuning = c(1, 20, 400))

N2,rho=0.7 Adaptive Metropolis: 8.77 (7.42,10.5) evals tuning=1
N2,rho=0.7 Adaptive Metropolis: 3.2e+03 (845,Inf) evals tuning=20
N2,rho=0.7 Adaptive Metropolis: 3.2e+03 (845,Inf) evals tuning=400
N2,rho=0.7 ARMS: 64.4 (40.1,121) evals tuning=1

N2,rho=0.7 ARMS: 54.7 (41.3,72.4) evals tuning=20

N2,rho=0.7 ARMS: 133 (113,158) evals tuning=400

Gamma2 Adaptive Metropolis: 21.1 (16,28.7) evals tuning=1

Gamma2 Adaptive Metropolis: 178 (75.1,2.42e+03) evals tuning=20
Gamma2 Adaptive Metropolis: 3.2e+03 (845,Inf) evals tuning=400
Gamma2 ARMS: 6.77 (5.92,7.86) evals tuning=1

Gamma2 ARMS: 13.1 (11.4,15.3) evals tuning=20

Gamma2 ARMS: 16.4 (14.4,18.9) evals tuning=400

Each line in the trace output has the distribution name, the sampler name, the number of
evaluations per independent observation with 95% confidence interval in parentheses, and the
tuning parameter.

3. Visualizing results

To visualize the results from a simulation, one can use the comparison.plot function. It
has a single required argument, a data frame containing results from compare.samplers, and
returns a ggplot2 plot object. One can call print on this object to view the plot; it can also
be edited with the grid package. To plot the results from the previous example, one would

type:

> print(comparison.plot(sim.results))

4 Introduction to SamplerCompare

Adaptive Metropolis ARMS

“1

=d)N

log density evals. per indep. obs. (with 95% CI)
Em
e
(Lo

1045

I o I 1
N N 9 N N

scale tuning parameter

In this graphic, the columns of plots represent the samplers and the rows of plots represent
the distributions. The vertical axis in each plot is the number of log density evaluations per
independent observation; see the help for ar.act for more information on how this is com-
puted. The horizontal axis is the scalar tuning parameter. The vertical bars are approximate
95% confidence intervals for the figure of merit.

4. Defining additional samplers
MCMC samplers are specified by functions that have the signature:
sampler(target.dist, x0, sample.size, tuning)

They must also have a name attribute, a length-one character vector. The target.dist
parameter specifies the target distribution; see the R help for make.dist for details on its
structure. x0 specifies the start state for the simulation, sample.size specifies the sample
size, and tuning specifies a scalar tuning parameter.

A sampler function should return a list with two elements: X, a matrix of rows of ob-
servations, and evals, a count of the number of times it evaluated the log density (with
target.dist$log.density). If the sampler evaluates the gradient of the log density (with
target.dist$grad.log.density), the list should contain a grads element, indicating the
number of times it did this.

The following code specifies a Metropolis sampler with multivariate proposals:

> metropolis.sample <- function(target.dist, x0, sample.size, tuning) {
+ X <- matrix(nrow = sample.size, ncol = target.dist$ndim)

+ state <- x0

+ evals <- 1

+ state.log.dens <- target.dist$log.density(state)

+ for (obs in 1:sample.size) {

+ proposal <- rnorm(target.dist$ndim, state, tuning)

Madeleine B. Thompson

+ evals <- evals + 1

+ proposal.log.dens <- target.dist$log.density(proposal)
+ if (runif(1) < exp(proposal.log.dens - state.log.dens)) {
+ state <- proposal

+ state.log.dens <- proposal.log.dens

+ }

+ X[obs,] <- state

+ }

+ return(list(X = X, evals = evals))

+ }

> attr(metropolis.sample, "name") <- "Metropolis"

See the R help for compare.samplers for more information on writing samplers in R. See
the R help for wrap.c.sampler and the vignette “R/C Glue in SamplerCompare” for more
information on writing samplers in C.

5. Defining additional distributions

make.dist can be used to specify a distribution whose log density is expressed in R. (See
the R help for make.c.dist and the vignette “R/C Glue in SamplerCompare” for more in-
formation on specifying distributions in C.) Its most important arguments are ndim, name,
and log.density. ndim specifies the dimension of the distribution and name names the dis-
tribution. log.density is a function of one vector argument of length ndim that returns the
log density at that point; it should return -Inf if the point is outside the support of the
distribution. The log density does not need to be normalized.

The following code defines a Beta(2,3) distribution:

> beta23.log.dens <- function(x) ifelse(x < 0 | x > 1, -Inf, log(x) +

+ 2 * log(1l - x))

> beta23.dist <- make.dist(ndim = 1, name = "Beta(2,3)", log.density = beta23
+ mean = 2/(2 + 3))

The optional mean argument to make.dist makes the autocorrelation time computation in
compare.samplers more accurate, so it is advisable to specify it when the mean is known.

6. A final example

Samplers and distributions defined as above can be used directly:

> sim <- metropolis.sample(beta23.dist, x0 = 0.5, sample.size = 100,
+ tuning = 1)
> summary (sim$X)

Vi
Min. :0.09057
1st Qu.:0.25804

.log.dens,

6 Introduction to SamplerCompare

Median :0.44070
Mean :0.43395
3rd Qu.:0.60327
Max. :0.77242

Or, they can be passed to compare.samplers:

> sim.results <- compare.samplers(sample.size = 100, dists = list(beta23.dist),
+ samplers = list(metropolis.sample), tuning = c(0.1, 1))

Beta(2,3) Metropolis: 17.8 (8.71,115) evals tuning=0.1
Beta(2,3) Metropolis: 7.96 (4.5,19.3) evals tuning=1

Note the large confidence intervals for the evaluations per independent observation; this is a
sign that a larger sample.size should be used.

7. Limitations

SamplerCompare was created to support my own research; I am publishing it with the hope
that others find it useful. Some current limitations include:

e Distributions are assumed to be continuous and to be of a constant dimension.
e All simulations start at a random point on the unit hypercube.
e Samplers are assumed to have exactly one scalar tuning parameter.

e All samplers in a given invocation of compare.samplers are run with the same simula-
tion length and set of tuning parameters.

e There is no explicit support for multithreading. (This, and the previous limitation,
can be worked around manually by using rbind on the results of multiple calls to
compare.samplers.)

e Distributions are defined entirely in terms of their log density; there is no way to specify
that a distribution is unimodal or that a particular parameter is always positive.

References

Gelman A, Carlin JB, Stern HS, Rubin DB (2004). Bayesian Data Analysis, Second Edition.
Chapman and Hall/CRC. URL http://www.stat.columbia.edu/ gelman/book/.

Gilks WR, Best NG, Tan KKC (1995). “Adaptive Rejection Metropolis Sampling within Gibbs
Sampling.” Applied Statistics, 44(4), 455-472. URL http://www.jstor.org/stable/
2986138.

http://www.stat.columbia.edu/~gelman/book/
http://www.jstor.org/stable/2986138
http://www.jstor.org/stable/2986138

Madeleine B. Thompson

Neal RM (2003). “Slice sampling.” Annals of Statistics, 31, 705-767. URL http:
//projecteuclid.org/getRecord?id=euclid.aos/1056562461.

Roberts GO, Rosenthal JS (2002). “The Polar Slice Sampler.” Stochastic Models, 18(2),
257-280. URL http://www.informaworld.com/openurl?genre=article&issn=1532}
2d6349&volume=18&issue=2&spage=257.

Roberts GO, Rosenthal JS (2009). “Examples of Adaptive MCMC.” Journal of Computational
and Graphical Statistics, 18(2), 349-367. URL http://pubs.amstat.org/doi/abs/10.
1198/jcgs.2009.06134.

Thompson MB (2010). “Graphical Comparison of MCMC Performance.” In preparation.

Thompson MB, Neal RM (2010). “Covariance-Adaptive Slice Sampling.” Technical Report
TR-1002, Dept. of Statistics, University of Toronto. URL http://www.cs.toronto.edu/
“radford/cass.abstract.html.

Affiliation:

Madeleine B. Thompson

Dept. of Statistics, University of Toronto

100 St. George Street Room 6022

Toronto, Ontario, M5S 3G3, Canada

E-mail: mthompson@utstat.toronto.edu

URL: http://www.utstat.toronto.edu/mthompson

http://projecteuclid.org/getRecord?id=euclid.aos/1056562461
http://projecteuclid.org/getRecord?id=euclid.aos/1056562461
http://www.informaworld.com/openurl?genre=article&issn=1532%2d6349&volume=18&issue=2&spage=257
http://www.informaworld.com/openurl?genre=article&issn=1532%2d6349&volume=18&issue=2&spage=257
http://pubs.amstat.org/doi/abs/10.1198/jcgs.2009.06134
http://pubs.amstat.org/doi/abs/10.1198/jcgs.2009.06134
http://www.cs.toronto.edu/~radford/cass.abstract.html
http://www.cs.toronto.edu/~radford/cass.abstract.html
mailto:mthompson@utstat.toronto.edu
http://www.utstat.toronto.edu/mthompson

	Purpose of package
	Running MCMC simulations
	Visualizing results
	Defining additional samplers
	Defining additional distributions
	A final example
	Limitations

