
Round robin analyses in R: How to use TripleR

Felix D. Schönbrodt∗ Stefan C. Schmukle† Mitja D. Back‡

September 24, 2010

Contents

1 Getting the data into the right format 3

2 How to do the analyses . 5
2.1 Univariate manifest analysis . 6
2.2 Univariate latent analyses . 7
2.3 Bivariate manifest analysis . 8
2.4 Bivariate latent analysis . 8
2.5 Multiple groups . 9
2.6 Missing values . 10
2.7 Inspecting the results object . 10

3 Plots . 12

4 Formatting the output . 14

5 Subsequent analyses . 16

6 FAQ . 19
6.1 This is an excellent introduction - but where can I get more in-

formation or pose a question? . 19
6.2 How can I calculate a bivariate analysis between one manifest

variable and a latent construct indicated by two variables? 19
6.3 This long data format really sounds good. But unfortunately my

data already are in the wide format - how can I convert them into
the long format? . 20

6.4 I have to run many, many round robin analyses in a huge data
set. What is the most convenient way to do this? 21

6.5 An error occurs: ‘Aggregation requires fun.aggregate: length used
as default’ . 23

6.6 My original multi group data set has X participants - the effects
of the RR analysis, however, only have Y (Y < X) rows! 23

∗© September 24, 2010, Felix Schönbrodt, Department of Psychology, Ludwig-
Maximilians-University, Germany. This package partly was written during a Google Sum-
mer of Code 2010 project. Comments on this document may be sent to the author at fe-
lix@nicebread.de.
†University of Münster, Germany
‡University of Mainz, Germany

1

6.7 An example from David Kenny - Comparison with SOREMO.exe 23

References . 24

2

TripleR1 provides functions with a simple, yet powerful interface to calculate
round robin analyses in R. We assume that you are already familiar with social
relations analyses. If not, a good starter would be David Kenny’s website2,
or some introductory articles (e.g., Back & Kenny, in press; Kenny, Kashy, &
Cook, 2006, especially Ch. 8; Kenny, 1994, for detailed description of the model
and the formulae).

If you have already done your round robin study, this document will explain
how to get your data into the right format, how to tell TripleR what analyses to
do, and how to work with the results. In social relations analyses (SRAs), two
notations for the different roles are common. If the investigated phenomenon
is a behavior, one usually speaks of actors and partners. If the investigated
phenomenon is interpersonal perception, one speaks of perceivers and targets.
Both groups of labels are interchangeable; in the remainder of this document
(as well as in the help files), we will always call them actors and partners.

1 Getting the data into the right format

In dyadic data analyses, one often finds two data formats: either the “wide for-
mat”, in which each row is one participant, multiple variables or measurements
are stored in multiple columns. Concerning round robin data, this would lead
to a quadratic matrix with actors as rows and partners as columns. If we have
a group of 5 people who rate how much they like each other, the data matrix
would look like:

A B C D E
A NA 3 1 0 5
B 2 NA 5 4 1
C 4 1 NA 6 4
D 0 1 0 NA 4
E 2 2 5 3 NA

The most flexible data format, however is the “long format”. In this format
each observation is one row, which would look like:

actor.id partner.id value
1 A A NA
2 B A 2
3 C A 4
4 D A 0
5 E A 2
6 A B 3
7 B B NA
8 C B 1
9 D B 1
10 E B 2
11 A C 1
12 B C 5
13 C C NA
14 D C 0
15 E C 5
16 A D 0

1When you use TripleR in your research, please cite it as Schmukle, S. C., Schönbrodt,
F.D., & Back, M. D. (2010). TripleR: A package for round robin analyses using R (version
0.4.5). Retrieved from http://www.persoc.net/ToolBox/TripleR.

2http://davidakenny.net/kenny.htm

3

17 B D 4
18 C D 6
19 D D NA
20 E D 3
21 A E 5
22 B E 1
23 C E 4
24 D E 4
25 E E NA

The long format has several advantages:

• Several variables can be stored in one data structure (instead of putting
each variable into another quadratic matrix)

• Several groups can be stored in the same data structure by an column
indicating the group id

• The data format can be more efficient, as missing values just are missing,
and do not occupy a NA place in the matrix (however, as actor ids and
partner ids need their own column, the long format has some overhead)

• Data input can be easier, as the order of rows in long format is arbitrary.
Each data row is uniquely identified by their actor id and partner id, hence
it does not matter whether data entries are grouped along the partner id
(as in the example above). You can also group them along the actor id
(which could be favorable, as for example the data from one perceiver
are typed in one block), or do not group them at all. If you find a lost
questionnaire, you can just append it at the end of the long format data
frame, regardless of what happend in between.

If the example data set from above would be extended to multiple groups
and multiple variables, it would look like:

actor.id partner.id value value2 group.id
1 A A NA NA 1
2 B A 2 6 1
3 C A 4 1 1
4 D A 0 4 1
5 E A 2 3 1
6 A B 3 2 1
7 B B NA NA 1
8 C B 1 5 1
9 D B 1 3 1
10 E B 2 3 1
11 A C 1 2 1
12 B C 5 6 1
13 C C NA NA 1
14 D C 0 4 1
15 E C 5 3 1
16 A D 0 2 1
17 B D 4 3 1
18 C D 6 5 1
19 D D NA NA 1
20 E D 3 3 1
21 A E 5 2 1
22 B E 1 6 1
23 C E 4 1 1
24 D E 4 4 1

4

25 E E NA NA 1
26 F F NA NA 2
27 G F 6 3 2
28 H F 2 5 2
29 I F 3 3 2
30 J F 5 3 2
31 F G 3 2 2
32 G G NA NA 2
33 H G 3 1 2
34 I G 6 4 2
35 J G 2 3 2
36 F H 5 2 2
37 G H 4 3 2
38 H H NA NA 2
39 I H 2 3 2
40 J H 0 3 2
41 F I 1 2 2
42 G I 6 6 2
43 H I 4 1 2
44 I I NA NA 2
45 J I 5 3 2
46 F J 5 2 2
47 G J 1 3 2
48 H J 1 5 2
49 I J 6 3 2
50 J J NA NA 2

Note: The rows where actors == partners (which contain NAs in all mea-
sured variables) could have been omitted in the long format. They are only
kept for illustration. Furthermore, if you assess self ratings (which would natu-
rally be stored in these fields) they can stay in the data set. These values are
automatically set to NA prior to performing the SRAs.

To summarize, for TripleR we need data in the long format. We need at least
3 columns: the actor id, the partner id, and the variable. If multiple variables are
assessed, they are coded in a separate column. If multiple groups are assessed,
the group id goes into another column. Actor and partner ids have to be unique
within each group (i.e., person in different groups can have the same id. To
avoid confusions, however, it might be preferable to assign person ids which are
unique for the whole data set). Throughout this documentation, the column
indicating the actor id is called actor.id (the other id columns respectively).
Note, however, that you can assign any other name to these columns.

2 How to do the analyses

TripleR is capable of doing 4 different types of analyses3:

• Univariate manifest analyses (i.e., one measured variable)

3Please make sure that you use the most recent version of TripleR (this document was
built using TripleR 0.4.5). You can check the installed version using sessionInfo(). You
can install the latest stable version from CRAN: install.packages("TripleR", dependen-

cies=TRUE). Or, if you are brave, you can install the current developer version from RForge:
install.packages(’TripleR’,repos=’http://www.rforge.net/’). But be aware that these
developer versions might be buggy or produce wrong results. For productive use, we only
recommend to use the stable version on CRAN. TripleR depends on some other packages
(reshape, plyr, and ggplot2), which have to be installed on your system as well. The param-
eter dependencies=TRUE in the install command forces R to install these additional packages
automatically.

5

• Univariate latent analyses, where two manifest variables are indicators for
one latent construct (in the current version, only two manifest variables
are possible. Future versions may be able to process an unlimited number
of indicators)

• Bivariate manifest analyses (i.e., two measured variables, which are corre-
lated within the SRM)

• Bivariate latent analyses, where each two manifest variables define one
latent construct

All of these analyses are possible in a single group (in this case, within
group tests for significance are employed), or with multiple groups (in this case,
between group t-tests, weighted for group size, are employed).

In the following paragraphs, all four analyses will be shown. Therefore, we
load a built in data set from the package. This data set comes from the ‘Mainz
Freshman Study’, which assessed liking (‘How much do you like X?’) and meta-
liking (‘How much, do you think, does X like you?’) in a group of 54 freshmen,
at zero acquaintance:

> # load the package
> library(TripleR)
> # load a data set in long format
> data(likingLong)
> #inspect the data set
> head(likingLong, 15)

actor.id partner.id liking_a liking_b metaliking_a metaliking_b
1 1 1 NA NA NA NA
2 2 1 4 5 3 2
3 3 1 4 4 4 4
4 4 1 3 3 3 3
5 5 1 5 5 3 3
6 6 1 3 4 4 3
7 7 1 5 4 3 3
8 8 1 4 3 3 3
9 9 1 3 4 3 3
10 10 1 3 3 2 2
11 11 1 3 3 3 3
12 12 1 3 3 3 3
13 13 1 3 3 3 3
14 14 1 5 4 3 3
15 15 1 4 3 3 3

As we can see, both liking and meta-liking have been assessed with two indi-
cators, which allows a latent analyses. But first let’s do an univariate analysis:

2.1 Univariate manifest analysis

All analyses can be run with one function: RR. For details, you definitely should
check the help entry for this function (type ?RR into the R console). Most
parameters of the function are specified via a formula interface. The formula
for the current analysis would be: liking_a ~actor.id * partner.id. The
measured variables are defined in the left part of the formula (left of the ˜sign).
The right part defines, which columns in the data frame indicate the actor, the
partner, and the group id. These three variables are always given in this order.
Actor and partner id are separated by a *, which indicates that these factors

6

are fully crossed (as in the lm notation). The group id is separated by a |, as
in the lattice notation.

After the formula, the data frame has to specified, on which the formula will
be applied. Unlike as in the lm notation, the data object has to be specified
explicitly by data=.... Hence, the final command for a univariate manifest
analysis is:

RR1 <- RR(liking_a ~actor.id * partner.id, data=likingLong)

Please note: all variable names in the formula (i.e., liking a, actor.id, and
partner.id) refer to column names in the specified data frame. They do not have
to be like this - if your data frame has other column names your formula might
look like DV a*p, or anything else.

When we run the command, an object of the class RR is returned. If we print
the object, a summary of the analysis is printed:

> RR1 <- RR(liking_a ~ actor.id * partner.id, data=likingLong)
> RR1

[1] "Round-Robin object ('RR'), calculated by TripleR"
[1] "Univariate analysis of one round robin variable"
[1] "Univariate analyses for: liking_a"

estimate standardized se t.value p.value
actor variance 0.172 0.194 0.035 4.914 0.000
partner variance 0.105 0.119 0.022 4.727 0.000
relationship variance 0.609 0.687 0.017 36.827 0.000
error variance NA NA NA NA NA
actor-partner covariance 0.014 0.105 0.020 0.703 0.618
relationship covariance 0.080 0.131 0.017 4.809 0.000
[1] "Actor effect reliability: 0.937"
[1] "Partner effect reliability: 0.901"

2.2 Univariate latent analyses

If you have two indicators to assess a latent construct, error variance can be
separated from relationship variance (in the univariate manifest case, error vari-
ance is mixed up in the relationship variance component). Two indicators for
one latent construct are separated by a /. In the current data set, we have two
indicators for liking, hence the analysis would look like:

> RR2 <- RR(liking_a/liking_b ~ actor.id * partner.id, data=likingLong)
> RR2

[1] "Round-Robin object ('RR'), calculated by TripleR"
[1] "Latent construct analysis of one construct measured by two round robin variables"
[1] "Univariate analyses for: liking_a/liking_b"

estimate standardized se t.value p.value
actor variance 0.161 0.164 0.036 4.525 0.000
partner variance 0.105 0.107 0.023 4.678 0.000
relationship variance 0.507 0.518 0.016 31.294 0.000
error variance 0.206 0.211 NA NA NA
actor-partner covariance 0.012 0.094 0.021 0.573 0.672
relationship covariance 0.079 0.156 0.016 4.887 0.000
[1] "Actor effect reliability: 0.865"
[1] "Partner effect reliability: 0.893"
[1] "Relationship effect reliability: 0.852"

7

As you can see, the error variance component changed from NA to a mean-
ingful value. For the error component no significance tests are provided. Fur-
thermore, in the single group case we are not aware of an approach to calculate
the significance of the latent covariances (in the multi group case, however, they
can be calculated, see below).

2.3 Bivariate manifest analysis

If you have two different variables (each assessing another construct), bivariate
SRAs can be performed. Two different variables are separated by a + on the
left hand side of the formula. In the current example, we can examined the
relationship between liking and meta-liking, by typing:

> RR3 <- RR(liking_a+metaliking_a ~ actor.id * partner.id, data=likingLong)
> RR3

[1] "Round-Robin object ('RR'), calculated by TripleR"
[1] "Bivariate analysis of two variables, each measured by one round robin variable"
[1] "Univariate analyses for: liking_a"

estimate standardized se t.value p.value
actor variance 0.172 0.194 0.035 4.914 0.000
partner variance 0.105 0.119 0.022 4.727 0.000
relationship variance 0.609 0.687 0.017 36.827 0.000
error variance NA NA NA NA NA
actor-partner covariance 0.014 0.105 0.020 0.703 0.618
relationship covariance 0.080 0.131 0.017 4.809 0.000
[1] "Actor effect reliability: 0.937"
[1] "Partner effect reliability: 0.901"
[1] "Univariate analyses for: metaliking_a"

estimate standardized se t.value p.value
actor variance 0.140 0.233 0.028 4.953 0.000
partner variance 0.027 0.044 0.007 4.005 0.000
relationship variance 0.436 0.723 0.012 36.767 0.000
error variance NA NA NA NA NA
actor-partner covariance 0.002 0.031 0.010 0.195 0.779
relationship covariance 0.062 0.143 0.012 5.247 0.000
[1] "Actor effect reliability: 0.944"
[1] "Partner effect reliability: 0.764"
[1] "Bivariate analyses:"

estimate standardized se t.value p.value
actor-actor covariance 0.072 0.462 0.025 2.900 0.015
partner-partner covariance 0.049 0.920 0.011 4.310 0.000
actor-partner covariance 0.014 0.206 0.011 1.258 0.359
partner-actor covariance 0.000 0.003 0.018 0.021 0.794
intrapersonal relationship covariance 0.289 0.560 0.011 25.498 0.000
interpersonal relationship covariance 0.067 0.129 0.011 5.893 0.000

In this case, we get three different outputs: univariate analyses for each of
the both variables, and a third section containing the bivariate analyses (i.e., all
possible covariances between the social relations effects from both variables).

2.4 Bivariate latent analysis

In this case, two latent constructs are measured by two indicators each. In the
current example, we have two indicators for liking and for metaliking. Applying
the same logic as before, the command now is:

8

> RR4 <- RR(liking_a/liking_b + metaliking_a/metaliking_b
+ ~ actor.id * partner.id, data=likingLong)
> RR4

[1] "Round-Robin object ('RR'), calculated by TripleR"
[1] "Bivariate analysis of two constructs, each measured by two round robin variables"
[1] "Univariate analyses for: liking_a/liking_b"

estimate standardized se t.value p.value
actor variance 0.161 0.164 0.036 4.525 0.000
partner variance 0.105 0.107 0.023 4.678 0.000
relationship variance 0.507 0.518 0.016 31.294 0.000
error variance 0.206 0.211 NA NA NA
actor-partner covariance 0.012 0.094 0.021 0.573 0.672
relationship covariance 0.079 0.156 0.016 4.887 0.000
[1] "Actor effect reliability: 0.865"
[1] "Partner effect reliability: 0.893"
[1] "Relationship effect reliability: 0.852"
[1] "Univariate analyses for: metaliking_a/metaliking_b"

estimate standardized se t.value p.value
actor variance 0.148 0.217 0.031 4.730 0.000
partner variance 0.026 0.038 0.007 3.980 0.000
relationship variance 0.357 0.522 0.012 30.776 0.000
error variance 0.153 0.223 NA NA NA
actor-partner covariance 0.000 0.002 0.011 0.014 0.794
relationship covariance 0.071 0.197 0.012 6.075 0.000
[1] "Actor effect reliability: 0.899"
[1] "Partner effect reliability: 0.761"
[1] "Relationship effect reliability: 0.841"
[1] "Bivariate analyses:"

estimate standardized se t.value p.value
actor-actor covariance 0.092 0.593 0.027 3.370 0.004
partner-partner covariance 0.049 0.928 0.011 4.287 0.000
actor-partner covariance 0.007 0.114 0.011 0.676 0.630
partner-actor covariance 0.004 0.032 0.019 0.209 0.777
intrapersonal relationship covariance 0.330 0.774 0.012 28.570 0.000
interpersonal relationship covariance 0.075 0.177 0.012 6.532 0.000

Now we get a comparable output to the bivariate manifest analysis, only
that now the error variance can be separated form the relationship variance.

2.5 Multiple groups

Using the formula interface, analyses with multiple groups can be performed as
well. The only extension is, that the variable which identifies group membership
is specified at the end of the formula after a | sign. For example, we load another
built in data set which consists of 10 groups. Two variables are measured: ex

is a round robin extraversion rating, ne is a neuroticism rating (self ratings for
both variables also are included).

> data(multiGroup)
> RR1m <- RR(ex~actor.id*partner.id|group.id, data=multiGroup, na.rm=TRUE)
> RR1m

[1] "Round-Robin object ('RR'), calculated by TripleR"
[1] "Univariate analysis of one round robin variable in multiple groups"
[1] "Group descriptives: n = 10 ; average group size = 19.4 ; range: 15 - 24"
[1] "Univariate analyses for: ex"

estimate standardized se t.value p.value
actor variance 0.242 0.100 0.033 7.238 0.000
partner variance 0.898 0.373 0.147 6.103 0.000
relationship variance 1.270 0.527 0.056 22.634 0.000
error variance NA NA NA NA NA

9

actor-partner covariance 0.018 0.039 0.051 0.353 0.732
relationship covariance 0.112 0.088 0.041 2.706 0.024
[1] "Actor effect reliability: 0.777"
[1] "Partner effect reliability: 0.928"

Any formula explained above can be extended by the multi group parameter.
Concerning the output, no differences can be seen (except the second line of the
output, which always displays the type of analysis: "Univariate analysis of

one round robin variable in multiple groups").
As already described, one computational difference is the usage of between

group t-tests, instead of the within group method. Another difference is the
results object: all univariate analyses are contained (although, not displayed by
the print function) in the results. More details on the results object can be
found in the section 2.7.

2.6 Missing values

Missing values can be handled in TripleR. By default, calculations are aborted
if missing values are outside the diagonale of the round robin matrix. To allow
missing values, add the argument na.rm="remove", or na.rm="impute".

You can inspect the distribution of missing values by using the plot_missings
command. It takes the same parameters as an univariate manifest RR analysis;
for details see the help files.

2.7 Inspecting the results object

When a round robin analysis is performed (and stored in an object), not all
information is displayed. When the object is printed (either by print(object),
or by simple writing the name of the object, e.g. RR1), a custom print function
is called, which displays the table of variance components, effects reliability
estimates, and some other information. During the calculation, however, much
more results are computed and stored in the object.

To see the structure of the object type str(object):

> str(RR1)

List of 9
$ effects :'data.frame': 54 obs. of 3 variables:
..$ id : Factor w/ 54 levels "1","10","11",..: 1 12 23 34 45 51 52 53 54 2 ...
..$ liking_a.a: atomic [1:54] -0.477 0.276 -0.324 -0.323 0.198 ...
.. ..- attr(*, "reliability")= num 0.937
..$ liking_a.p: atomic [1:54] 0.2639 -0.854 0.3611 0.4177 0.0125 ...
.. ..- attr(*, "reliability")= num 0.901
$ effectsRel :'data.frame': 2862 obs. of 4 variables:
..$ actor.id : int [1:2862] 1 2 1 3 1 4 1 5 1 6 ...
..$ partner.id : int [1:2862] 2 1 3 1 4 1 5 1 6 1 ...
..$ dyad : chr [1:2862] "01_02" "01_02" "01_03" "01_03" ...
..$ relationship: num [1:2862] 1.1509 0.2805 -0.0642 0.8802 -1.1208 ...
$ effects.gm :'data.frame': 54 obs. of 3 variables:
..$ id : Factor w/ 54 levels "1","10","11",..: 1 12 23 34 45 51 52 53 54 2 ...
..$ liking_a.a: num [1:54] 2.7 3.46 2.86 2.86 3.38 ...
..$ liking_a.p: num [1:54] 3.44 2.33 3.54 3.6 3.19 ...
$ varComp :'data.frame': 6 obs. of 6 variables:
..$ type : Factor w/ 6 levels "actor variance",..: 1 4 6 3 2 5
..$ estimate : num [1:6] 0.1717 0.1053 0.6088 NA 0.0141 ...
..$ standardized: num [1:6] 0.194 0.119 0.687 NA 0.105 ...

10

..$ se : num [1:6] 0.0349 0.0223 0.0165 NA 0.02 ...

..$ t.value : num [1:6] 4.914 4.727 36.827 NA 0.703 ...

..$ p.value : num [1:6] 1.57e-05 2.98e-05 1.35e-39 NA 6.18e-01 ...
$ relMat.av : num [1:54, 1:54] NA 0.716 0.408 -0.621 0.321 ...
..- attr(*, "group.id")= chr "1"
..- attr(*, "varname")= chr "liking_a"
..- attr(*, "dimnames")=List of 2
.. ..$: chr [1:54] "1" "2" "3" "4" ...
.. ..$: chr [1:54] "1" "2" "3" "4" ...
$ relMat.diff: num [1:54, 1:54] NA -0.87 0.944 1 2.074 ...
..- attr(*, "group.id")= chr "1"
..- attr(*, "varname")= chr "liking_a"
..- attr(*, "dimnames")=List of 2
.. ..$: chr [1:54] "1" "2" "3" "4" ...
.. ..$: chr [1:54] "1" "2" "3" "4" ...
$ group.size : int 54
$ latent : logi FALSE
$ anal.type : chr "Univariate analysis of one round robin variable"
- attr(*, "class")= chr "RRuni"
- attr(*, "group.size")= int 54
- attr(*, "varname")= chr "liking_a"

Multiple data structures are stored in the object in list mode. Some objects
are for internal use, others, however, are very important for subsequent analyses
(see section 5). You can access all stored objects via the $ operator. For example,
the actor and partner effects are stored in the effects object:

> head(RR1$effects)

id liking_a.a liking_a.p
1 1 -0.4768519 0.26388889
2 2 0.2756410 -0.85398860
3 3 -0.3240741 0.36111111
4 4 -0.3230057 0.41773504
5 5 0.1976496 0.01246439
6 6 1.0544872 0.42485755

Following data objects might be relevant for subsequent analyses:

effects The actor and partner effects. You access each effect by another $

operator; the effects have the same name like the original variable with a
suffix for actor and partner effect. Default suffixes are ‘.a’ for actor and ‘.p’
for partner effect. For example, if your original variable is called liking,
you can access the actor effect by RR1$effects$liking.a. If self ratings
are present in the data set, they are also returned with the default suffix
.s. You can inspect the effects by typing str(RR1$effects).

effects.gm Actor and partner effects with group mean added

effectsRel A data frame in long format which corresponds to the n x n matrix
of relationship effects

varComp A data frame with the absolute and standardized variance compo-
nents and their respective significance tests (this object is printed int the
print function of an RR object)

group.var In the multi group case: display group variance

In section 5 (Subsequent Analyses) it is explained how follow up analyses
using the actor and partner effects, and the variance components can be done.

11

S
ta

nd
ar

di
ze

d
va

ria
nc

e
co

m
po

ne
nt

0.0

0.2

0.4

0.6

0.8

1.0

1

Variance Component

actor variance

partner variance

relationship variance

Figure 1: Variance decomposition of a single round robin group

3 Plots

Several plots can be made from the result objects. Simply type plot(RR_object)
to see the standard variance plot associated with each analysis. The main differ-
ence between plots is whether you have multiple groups or a single round robin
group.

> # see Figure 1
> plot(RR1)

> # see Figure 2
> plot(RR1m)

You can also try different parameters:

measure =behavior (default) or perception: changes the labels of the plots

geom (single groups) = bar (default) or pie: show variance components as
stacked bars or as a pie chart

geom (multiple groups) = scatter (default) or bar: show variance compo-
nents of all groups as scatter plots with confidence intervals or as a bar
charts

12

Multiple round robin groups:
Absolute (co−)variance estimates

and 95 %−CI (weighted for group size)

es
tim

at
e

0.0

0.5

1.0

1.5

●

●

●

●
●

actor
variance

partner
variance

relationship
variance

error
variance

actor−partner
covariance

relationship
covariance

Group size

16

18

20

22

24

Figure 2: Variance decomposition of multiple round robin groups

13

connect (multiple groups) = FALSE (default) or TRUE: connect the dots of
each group in the scatter plot (usually this looks very cluttered and should
not be turned on)

conf.level (multiple groups) (defaults to 0.95) defines the size of the confi-
dence interval in the scatter plot

Hence you can try several combinations of these parameters, e.g.:

> plot(RR1, measure="perception", geom="pie")
> plot(RR1, measure="behavior", geom="pie")
> plot(RR1m, measure="perception", geom="bar")
> plot(RR1m, conf.level=0.5, connect=TRUE)

The plot function returns a ggplot2 object, which in turn can be altered
(e.g., you can change the title, the axes labels, the colors, etc.). For more
information, please consult the ggplot2 documentation.

4 Formatting the output

As mentioned above, two nomenclatures have been established, depending on
whether behaviors or interpersonal perceptions are assessed. While internally
always the labels actor and partner are used, the summary output can be cus-
tomized by specifying whether the measure is a behavior or a perception

(default is behavior). In bivariate analyses, both variables can be specified, e.g.
measure1=‘behavior’, measure2=‘perception’, or all other combinations,
e.g.:

> print(RR1, measure1="perception")

[1] "Round-Robin object ('RR'), calculated by TripleR"
[1] "Univariate analysis of one round robin variable"
[1] "Univariate analyses for: liking_a"

estimate standardized se t.value p.value
perceiver variance 0.172 0.194 0.035 4.914 0.000
target variance 0.105 0.119 0.022 4.727 0.000
relationship variance 0.609 0.687 0.017 36.827 0.000
error variance NA NA NA NA NA
perceiver-target covariance 0.014 0.105 0.020 0.703 0.618
relationship covariance 0.080 0.131 0.017 4.809 0.000
[1] "Perceiver effect reliability: 0.937"
[1] "Target effect reliability: 0.901"

> print(RR4, measure1="behavior", measure2="perception")

[1] "Round-Robin object ('RR'), calculated by TripleR"
[1] "Bivariate analysis of two constructs, each measured by two round robin variables"
[1] "Univariate analyses for: liking_a/liking_b"

estimate standardized se t.value p.value
actor variance 0.161 0.164 0.036 4.525 0.000
partner variance 0.105 0.107 0.023 4.678 0.000
relationship variance 0.507 0.518 0.016 31.294 0.000
error variance 0.206 0.211 NA NA NA
actor-partner covariance 0.012 0.094 0.021 0.573 0.672
relationship covariance 0.079 0.156 0.016 4.887 0.000
[1] "Actor effect reliability: 0.865"
[1] "Partner effect reliability: 0.893"
[1] "Relationship effect reliability: 0.852"
[1] "Univariate analyses for: metaliking_a/metaliking_b"

estimate standardized se t.value p.value

14

perceiver variance 0.148 0.217 0.031 4.730 0.000
target variance 0.026 0.038 0.007 3.980 0.000
relationship variance 0.357 0.522 0.012 30.776 0.000
error variance 0.153 0.223 NA NA NA
perceiver-target covariance 0.000 0.002 0.011 0.014 0.794
relationship covariance 0.071 0.197 0.012 6.075 0.000
[1] "Perceiver effect reliability: 0.899"
[1] "Target effect reliability: 0.761"
[1] "Relationship effect reliability: 0.841"
[1] "Bivariate analyses:"

estimate standardized se t.value p.value
actor-perceiver covariance 0.092 0.593 0.027 3.370 0.004
partner-target covariance 0.049 0.928 0.011 4.287 0.000
actor-target covariance 0.007 0.114 0.011 0.676 0.630
partner-perceiver covariance 0.004 0.032 0.019 0.209 0.777
intrapersonal relationship covariance 0.330 0.774 0.012 28.570 0.000
interpersonal relationship covariance 0.075 0.177 0.012 6.532 0.000

> print(RR4, measure1="perception", measure2="metaperception")

[1] "Round-Robin object ('RR'), calculated by TripleR"
[1] "Bivariate analysis of two constructs, each measured by two round robin variables"
[1] "Univariate analyses for: liking_a/liking_b"

estimate standardized se t.value p.value
perceiver variance otherperception 0.161 0.164 0.036 4.525 0.000
target variance otherperception 0.105 0.107 0.023 4.678 0.000
relationship variance otherperception 0.507 0.518 0.016 31.294 0.000
error variance otherperception 0.206 0.211 NA NA NA
generalized reciprocity otherperception 0.012 0.094 0.021 0.573 0.672
dyadic reciprocity otherperception 0.079 0.156 0.016 4.887 0.000
[1] "Perceiver effect reliability: 0.865"
[1] "Target effect reliability: 0.893"
[1] "Relationship effect reliability: 0.852"
[1] "Univariate analyses for: metaliking_a/metaliking_b"

estimate standardized se t.value p.value
perceiver variance metaperception 0.148 0.217 0.031 4.730 0.000
target variance metaperception 0.026 0.038 0.007 3.980 0.000
relationship variance metaperception 0.357 0.522 0.012 30.776 0.000
error variance metaperception 0.153 0.223 NA NA NA
generalized reciprocity metaperception 0.000 0.002 0.011 0.014 0.794
dyadic reciprocity metaperception 0.071 0.197 0.012 6.075 0.000
[1] "Perceiver effect reliability: 0.899"
[1] "Target effect reliability: 0.761"
[1] "Relationship effect reliability: 0.841"
[1] "Bivariate analyses:"

estimate standardized se t.value p.value
Perceiver assumed reciprocity 0.092 0.593 0.027 3.370 0.004
Generalized assumed reciprocity 0.049 0.928 0.011 4.287 0.000
Perceiver meta-accuracy 0.007 0.114 0.011 0.676 0.630
Generalized meta-accuracy 0.004 0.032 0.019 0.209 0.777
Dyadic assumed reciprocity 0.330 0.774 0.012 28.570 0.000
Dyadic meta-accuracy 0.075 0.177 0.012 6.532 0.000

Possible combinations are for the univariate case: measure=c(‘behavior’,
‘perception’); and for the bivariate case: measure1 = c(‘behavior’, ‘per-

ception’), measure2 = c(‘behavior’, ‘perception’), and the special case
measure1=‘perception’, measure2=‘metaperception’.

As you can see, typical labels from different research traditions, like ‘general-
ized reciprocity metaperception’ or ‘perceiver meta-accuracy’ are automatically
printed to ease interpretation of the results.

A convenient short cut to achieve this styling is the function RR.style. You
can call this function once at the beginning of your script, and all subsequent

15

analyses will be labelled accordingly.

5 Subsequent analyses

Usually one does not only want to know about the variance components and
the within-SRM correlations. Often, we want to correlate the actor and partner
effects with the self-ratings, with external personality questionnaires, or demo-
graphic variables. To do this, we can extract the actor/ partner effects from
the RR-object, combine them with the other data (e.g., self ratings) in another
data frame, and do which ever analysis we like.

Be careful: in RR objects one cannot be sure about the order and the com-
pleteness of actor/ partner effects. That means, actors can be reordered and
their order might be different from that in the original data set. Furthermore,
if some participants are only actors or only partners they are removed prior to
to the social relations analyses, and do not appear in the actor/ partner effects.
Hence, merging of RR effects and other data always has to be done using the
merge command. As non-round robin variables usually are assigned to the actor
id, consequently merging should be done along the actor id).

The data set multiGroup contains round robin ratings and self ratings of
extraversion, which will serve as an extended example:

> # calculate the SRM
> data(multiGroup)
> RR.style("perception")
> RR1m <- RR(ex~actor.id*partner.id|group.id, data=multiGroup, na.rm=TRUE)
> RR1m

[1] "Round-Robin object ('RR'), calculated by TripleR"
[1] "Univariate analysis of one round robin variable in multiple groups"
[1] "Group descriptives: n = 10 ; average group size = 19.4 ; range: 15 - 24"
[1] "Univariate analyses for: ex"

estimate standardized se t.value p.value
perceiver variance 0.242 0.100 0.033 7.238 0.000
target variance 0.898 0.373 0.147 6.103 0.000
relationship variance 1.270 0.527 0.056 22.634 0.000
error variance NA NA NA NA NA
perceiver-target covariance 0.018 0.039 0.051 0.353 0.732
relationship covariance 0.112 0.088 0.041 2.706 0.024
[1] "Perceiver effect reliability: 0.777"
[1] "Target effect reliability: 0.928"

> # extract the actor and partner effects
> eff <- RR1m$effects
> head(eff)

id ex.p ex.t ex.s group.id
90201 90201 -0.721568627 0.8078431 1.6654412 2
90205 90205 -0.227450980 0.7137255 0.6654412 2
90207 90207 -0.007843137 -1.7725490 -1.3345588 2
90209 90209 0.003921569 2.4156863 2.6654412 2
90210 90210 -0.066666667 1.2862745 1.6654412 2
90212 90212 -0.058823529 -0.5882353 1.6654412 2

As actor and partner effects are corrected for group membership in g groups,
according to Kenny et al. (2006) partial correlations should be used when these
effects are correlated with external (non-SRM) variables (i.e. external variables
like self ratings also have to be controlled for group membership). ‘Controlling
for group membership’ by g-1 dummy variables is equivalent to group centering

16

all measures. As the self ratings returned by RR$effects already are centered
on group level, all variables (actor & partner effects, self ratings) already are
controlled for group membership.

Correlations between group centered variables and partial correlations be-
tween their non-centered counterparts controlled for group membership are ex-
actly the same. However, when controlling for group membership, one loses g-1
degrees of freedom, hence their test of significance is more conservative.

Practically, you can run a simple correlation between the group centered
measures and calculate the p-value ‘by hand’ and adjust the degrees of freedom
(see example below). Alternatively, you can use specialized packages for partial
correlations (e.g. the functions pcor and pcor.test in the package ggm) to run
these analyses.

Here is a step-by-step example for the calculation of bivariate correlations
between the target effect and the self rating:

> # correlate effects and self ratings
> c1 <- cor(eff$ex.t, eff$ex.s, use="p")
> print(round(c1, 3))

[1] 0.628

> # Be careful: when calculating partial correlations,
> # the degrees of freedom have to be adjusted by the number of groups - 1
>
> #Calculate the t value by hand:
>
> # k = number of control parameters: number of groups - 1
> k <- length(levels(factor(multiGroup$group.id)))-1
> n <- nrow(eff) # n = number of participants
> df <- n-2-k
> t.value <- c1*sqrt((n-2-k)/(1-c1^2))
> p.value <- dt(t.value, df=df)
> round(p.value, 4)

[1] 0

In this analysis, we find a considerable self-other agreement of extraversion
ratings rex.target,ex.self = 0.628.

Correlations which are calculated by SOREMO.exe are by default disatten-
uated for actor and/or partner effect unreliability. To replicate these results,
you have to disattenuate the obtained correlations by following formula:

rdisatt = rraw ∗ 1√
Reltargeteffect

Hence, the disattenuated correlation rex.target,ex.self would be 0.628∗ 1√
0.928

=
0.652.

If you have other external variables (except the self rating), you have to group
center them before doing this approach. The variable narc (= narcissism) in
the data set multiNarc is such a variable: it is a self rating of narcissism.

> # calculate the SRM
> data(multiGroup)
> data(multiNarc)
> RR.style("perception")
> RR1m <- RR(ex~actor.id*partner.id|group.id, data=multiGroup, na.rm=TRUE)
> RR1m

[1] "Round-Robin object ('RR'), calculated by TripleR"
[1] "Univariate analysis of one round robin variable in multiple groups"
[1] "Group descriptives: n = 10 ; average group size = 19.4 ; range: 15 - 24"
[1] "Univariate analyses for: ex"

17

estimate standardized se t.value p.value
perceiver variance 0.242 0.100 0.033 7.238 0.000
target variance 0.898 0.373 0.147 6.103 0.000
relationship variance 1.270 0.527 0.056 22.634 0.000
error variance NA NA NA NA NA
perceiver-target covariance 0.018 0.039 0.051 0.353 0.732
relationship covariance 0.112 0.088 0.041 2.706 0.024
[1] "Perceiver effect reliability: 0.777"
[1] "Target effect reliability: 0.928"

> # extract the actor and partner effects
> eff <- RR1m$effects
> datset <- merge(eff, multiNarc, by=c("id", "group.id"))
> # group center narcissism
> datset$narc.gc <- lm(narc~factor(group.id), datset)$resid
> c1 <- cor(datset$ex.t, datset$narc.gc)
> df <- nrow(datset) - 2 - (length(RR1m$groups)-1)
> (p.value <- dt(c1*sqrt((df)/(1-c1^2)), df=df))

[1] 1.094988e-36

Using the approach of group centering, groups are treated as fixed factors.
Both conceptually and by means of computations it might be preferable to
treat groups as random factors (which, however, requires a sufficient number of
groups). When using a multilevel approach, we would like to keep the group
variance in our dependent variable (as the multilevel modeling takes care of
this), hence we use the effects with group mean added (effects.gm) and the
raw self ratings. Using a multilevel modeling approach, the calculation would
look like the following:

> library(lme4)
> eff.gm <- RR1m$effects.gm
> # scale all continuous variables to obtain standardized estimates
> eff.gm[,2:4] <- apply(eff.gm[,2:4], 2, scale)
> # Allow the intercept to vary between groups
> # (this is equivalent to the fixed effects approach, only with random effects).
> # Additionally, allow slopes to vary:
> lmer(ex.s~ex.t + (ex.t|group.id), eff.gm)

Linear mixed model fit by REML
Formula: ex.s ~ ex.t + (ex.t | group.id)

Data: eff.gm
AIC BIC logLik deviance REMLdev

471.5 491.1 -229.7 451.6 459.5
Random effects:
Groups Name Variance Std.Dev. Corr
group.id (Intercept) 0.00000 0.00000

ex.t 0.00000 0.00000 NaN
Residual 0.60677 0.77895
Number of obs: 194, groups: group.id, 10

Fixed effects:
Estimate Std. Error t value

(Intercept) -2.803e-16 5.593e-02 0.00
ex.t 6.296e-01 5.607e-02 11.23

Correlation of Fixed Effects:
(Intr)

ex.t 0.000

The multilevel analysis reveals a self-other agreement of extraversion ratings
βex.target,ex.self = .630. As there is no random variance of the group level in

18

this analysis (and also no random variance of the slopes), the result is virtually
the same as in the fixed effects analysis.

For principal reasons, the lme4 package does not report p values, as it is
not clear how to compute the degrees of freedoms in multilevel models4. For
practical reasons, however, with sufficient degrees of freedom the t distribu-
tion converges to the z distribution. Hence, the reported t value still can be
examined. Some authors argue that absolute t values > 2 can be judged as
significant, regardless of the actual df (e.g., Baayen, Davidson, & Bates, 2008;
Kliegl, Masson, & Richter, 2010).

For subsequent analyses of relationship effects, please note that in contrast
to actor and partner effects, relationship effects have another structure: they
are nested in each dyad. Hence, in this case a dyadic data analysis such as the
actor-partner interdendence model (APIM) has to conducted (see Kenny, Kashy
& Cook, 2006, p. 210). Relationship effects can be retrieved from the RR object
by typing RR1m$effectsRel.

6 FAQ

6.1 This is an excellent introduction - but where can I get
more information or pose a question?

The best way is to join the tripler-info mailing list on R-Forge. Bug reports,
questions, or praise can be put on this list; important announcements (new
versions, functions, etc.) also are posted on this list:
http://lists.r-forge.r-project.org/mailman/listinfo/tripler-info

6.2 How can I calculate a bivariate analysis between one
manifest variable and a latent construct indicated by
two variables?

A natural application of the formula interface would be:

RR1 <- RR(liking_a + metaliking_a / metaliking_b ~actor.id *

partner.id, data=likingLong)

This approach, however, does not work in the current version of TripleR.
However, you can do the analysis by first creating a new variable for the latent
construct by taking the mean of both indicators for metaliking. Then, you can
perform a normal bivariate manifest analysis:

RR1 <- RR(liking_a + metaliking_latent ~actor.id * partner.id,

data=likingLong)

4https://stat.ethz.ch/pipermail/r-help/2006-May/094765.html, also see several lengthy
discussions on the R-sig-ME mailing list

19

6.3 This long data format really sounds good. But un-
fortunately my data already are in the wide format -
how can I convert them into the long format?

Converting data from wide to long is relatively easy in R. If you have quadratic
matrices, TripleR provides a function which converts these data into long format.
For example, in the package is a built in data set (liking_a), which is in wide
format:

> data(liking_a)
> head(liking_a)

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 V23 V24
1 NA 3 3 2 2 4 3 3 2 3 3 2 2 3 2 3 2 3 2 3 2 2 3 3
2 4 NA 3 4 3 4 3 2 2 3 2 3 3 3 4 3 2 3 3 4 4 4 3 4
3 4 3 NA 3 3 3 4 3 2 3 2 3 1 4 2 4 0 3 2 3 2 3 3 2
4 3 3 3 NA 4 2 1 2 3 2 2 4 2 3 2 3 2 4 4 3 3 3 2 2
5 5 4 4 4 NA 4 3 2 3 3 4 3 2 4 3 4 3 4 4 4 2 3 3 4
6 3 3 4 3 4 NA 5 5 3 4 5 4 4 5 4 5 4 4 5 5 4 5 4 3

V25 V26 V27 V28 V29 V30 V31 V32 V33 V34 V35 V36 V37 V38 V39 V40 V41 V42 V43 V44 V45 V46
1 3 3 3 3 3 2 2 3 1 3 3 3 2 2 3 3 3 3 3 3 2 3
2 3 4 4 3 4 4 4 4 4 4 4 2 3 4 4 4 4 4 4 3 4 3
3 1 2 3 2 3 2 4 2 4 4 3 2 3 3 3 2 4 3 2 4 3 2
4 3 3 3 3 3 3 2 3 4 3 3 3 2 4 3 3 3 3 3 4 3 2
5 3 4 4 4 3 3 3 4 4 2 4 4 4 4 3 3 4 4 4 3 3 3
6 3 4 5 5 4 4 5 4 3 5 4 5 5 4 4 4 5 4 4 5 3 4

V47 V48 V49 V50 V51 V52 V53 V54
1 3 3 3 3 3 3 3 3
2 4 4 3 4 3 4 4 4
3 3 4 4 3 3 4 4 3
4 3 3 3 3 3 3 3 2
5 3 2 4 3 2 3 3 3
6 3 5 4 4 5 5 5 5

To convert this into long format you can use the function matrix2long:

> long <- matrix2long(liking_a)
> str(long)

'data.frame': 2916 obs. of 3 variables:
$ actor.id : int 1 2 3 4 5 6 7 8 9 10 ...
$ partner.id: int 1 1 1 1 1 1 1 1 1 1 ...
$ value : int NA 4 4 3 5 3 5 4 3 3 ...

Now you can run the SRAs as usual using the data frame long. If you
assessed multiple variables (and now have a separate matrix for each variable),
you have to get each variable into long format and then combine all long data
frames using merge (in the final data frame, each variable should be a separate
column):

> data(liking_a)
> data(liking_b)
> long_a <- matrix2long(liking_a, var.id="liking_a")
> long_b <- matrix2long(liking_b, var.id="liking_b")
> long <- merge(long_a, long_b, by=c("actor.id", "partner.id"))
> str(long)

'data.frame': 2916 obs. of 4 variables:
$ actor.id : int 1 1 1 1 1 1 1 1 1 1 ...
$ partner.id: int 1 10 11 12 13 14 15 16 17 18 ...
$ liking_a : int NA 3 3 2 2 3 2 3 2 3 ...
$ liking_b : int NA 2 2 1 2 3 3 3 2 3 ...

20

If you have multiple groups, all transformed long data frames are combined
row wise and an additional column is necessary to indicate the group id. In lack
of appropriate demo data, for the following example imagine that liking_a is
the liking rating in group A, and liking_b is the liking rating in another group
B. Hence, one would combine both as following:

> data(liking_a)
> data(liking_b)
> long_a <- matrix2long(liking_a, var.id="liking")
> long_b <- matrix2long(liking_b, var.id="liking")
> # add group id
> long_a$group.id <- 1
> long_b$group.id <- 2
> long2 <- rbind(long_a, long_b)
> str(long2)

'data.frame': 5832 obs. of 4 variables:
$ actor.id : int 1 2 3 4 5 6 7 8 9 10 ...
$ partner.id: int 1 1 1 1 1 1 1 1 1 1 ...
$ liking : int NA 4 4 3 5 3 5 4 3 3 ...
$ group.id : num 1 1 1 1 1 1 1 1 1 1 ...

Be careful: rbind only works if all column names are identical in the data
frames which are combined. Hence, you have to make sure that all long data
frames have the same structure before applying rbind to them. Furthermore,
you should note that performing RR in this last example is not overly sensible,
as running a between group t-test with only two groups is rather debatable.

The function matrix2long essentially is a wrapper for the much more pow-
erful functions from the reshape package. If you do a lot of data manipulation
and conversions from wide to long format or vice versa, you definitely should
dig into this package.

6.4 I have to run many, many round robin analyses in a
huge data set. What is the most convenient way to
do this?

Imagine you assessed 50 variables in round robin style, and want to extract
the effects for all variables and to store them in a new data frame (e.g., for
subsequent analyses). Of course, you can type the RR command 50 times, but
there are more convenient ways to do this.

You can construct the formula by a loop, and iterate through all measured
variables, and combine the results at the end. As an example, let’s take the
likingLong data set, which has 4 round robin variables:

> data(likingLong)
> str(likingLong)

'data.frame': 2916 obs. of 6 variables:
$ actor.id : int 1 2 3 4 5 6 7 8 9 10 ...
$ partner.id : int 1 1 1 1 1 1 1 1 1 1 ...
$ liking_a : int NA 4 4 3 5 3 5 4 3 3 ...
$ liking_b : int NA 5 4 3 5 4 4 3 4 3 ...
$ metaliking_a: int NA 3 4 3 3 4 3 3 3 2 ...
$ metaliking_b: int NA 2 4 3 3 3 3 3 3 2 ...

If we want to extract the effects for all 4 variables, we could either type:

21

> RR(liking_a~actor.id*partner.id, data=likingLong)
> RR(liking_b~actor.id*partner.id, data=likingLong)
> RR(metaliking_a~actor.id*partner.id, data=likingLong)
> RR(metaliking_b~actor.id*partner.id, data=likingLong)

Or, we do it in a loop, store the results and combine them at the end:

> varnames <- colnames(likingLong)[3:6]
> # run a RR analysis for each variable and store results in a list
> res_list <- list()
> for (v in 1:length(varnames)) {
+ f1 <- formula(paste(varnames[v], "~actor.id*partner.id"))
+ RR1 <- RR(f1, data=likingLong)
+ res_list <- c(res_list, list(RR1$effects))
+ }
> # now combine all effects in a single data frame; merge by id
> library(reshape)
> res <- merge_recurse(res_list, by="id")

As you can see, there’s a new data frame with all actor and partner effects.
On this data frame you can run subsequent analyses, for example correlations:

> str(res)

'data.frame': 54 obs. of 9 variables:
$ id : Factor w/ 54 levels "1","10","11",..: 1 12 23 34 45 51 52 53 54 2 ...
$ liking_a.p : num -0.477 0.276 -0.324 -0.323 0.198 ...
$ liking_a.t : num 0.2639 -0.854 0.3611 0.4177 0.0125 ...
$ liking_b.p : num -0.2283 0.2571 -0.4915 -0.0395 -0.2411 ...
$ liking_b.t : num 0.253 -1.021 0.305 0.257 -0.426 ...
$ metaliking_a.p: num -0.2507 -0.3333 0.0338 0.0499 -0.5577 ...
$ metaliking_a.t: num 0.00855 -0.37037 0.08939 -0.06125 -0.2614 ...
$ metaliking_b.p: num -0.0958 -0.3123 0.036 0.1303 -0.9127 ...
$ metaliking_b.t: num 0.0524 -0.4234 0.036 0.0377 -0.2461 ...

> round(cor(res[,2:9]), 2)

liking_a.p liking_a.t liking_b.p liking_b.t metaliking_a.p metaliking_a.t
liking_a.p 1.00 0.11 0.85 0.14 0.47 0.19
liking_a.t 0.11 1.00 0.04 0.95 0.01 0.85
liking_b.p 0.85 0.04 1.00 0.08 0.55 0.12
liking_b.t 0.14 0.95 0.08 1.00 0.03 0.88
metaliking_a.p 0.47 0.01 0.55 0.03 1.00 0.04
metaliking_a.t 0.19 0.85 0.12 0.88 0.04 1.00
metaliking_b.p 0.43 0.03 0.63 0.07 0.90 0.08
metaliking_b.t 0.10 0.77 0.01 0.84 -0.05 0.92

metaliking_b.p metaliking_b.t
liking_a.p 0.43 0.10
liking_a.t 0.03 0.77
liking_b.p 0.63 0.01
liking_b.t 0.07 0.84
metaliking_a.p 0.90 -0.05
metaliking_a.t 0.08 0.92
metaliking_b.p 1.00 -0.03
metaliking_b.t -0.03 1.00

For convenience, this short script is also implemented in TripleR (?getEffects),
which reduces the code to one or two lines:

> res <- getEffects(~actor.id*partner.id, data=likingLong,
+ varlist=c("liking_a", "liking_b", "metaliking_a", "metaliking_b"))

[1] "Calculate: liking_a"
[1] "Calculate: liking_b"
[1] "Calculate: metaliking_a"
[1] "Calculate: metaliking_b"

22

> str(res)

'data.frame': 54 obs. of 9 variables:
$ id : Factor w/ 54 levels "1","10","11",..: 1 12 23 34 45 51 52 53 54 2 ...
$ liking_a.p : num -0.477 0.276 -0.324 -0.323 0.198 ...
$ liking_a.t : num 0.2639 -0.854 0.3611 0.4177 0.0125 ...
$ liking_b.p : num -0.2283 0.2571 -0.4915 -0.0395 -0.2411 ...
$ liking_b.t : num 0.253 -1.021 0.305 0.257 -0.426 ...
$ metaliking_a.p: num -0.2507 -0.3333 0.0338 0.0499 -0.5577 ...
$ metaliking_a.t: num 0.00855 -0.37037 0.08939 -0.06125 -0.2614 ...
$ metaliking_b.p: num -0.0958 -0.3123 0.036 0.1303 -0.9127 ...
$ metaliking_b.t: num 0.0524 -0.4234 0.036 0.0377 -0.2461 ...

6.5 An error occurs: ‘Aggregation requires fun.aggregate:
length used as default’

This error most probably occurs when you specify a data set which has a multi
group structure, but you forgot to define the group id in the formula (i.e., the
| group.id part is missing).

6.6 My original multi group data set has X participants -
the effects of the RR analysis, however, only have Y
(Y < X) rows!

This happens, whenever single groups are excluded from the SRA. SRAs need
a minimum group size of 4 participants. If your data set contains groups with 3
or fewer members, this group is excluded from the analyses, and no effects are
calculated. A warning message informs you which groups have been excluded.

6.7 An example from David Kenny - Comparison with
SOREMO.exe

David Kenny describes how to estimate SRMs with other software programs
(http://www.davidakenny.net/doc/srmsoftware.doc) and also provides a data
set. We can do the analysis in TripleR as well:

> library(TripleR)
> library(foreign)
> dat <- read.spss("http://www.davidakenny.net/doc/contribute.sav", to.data.frame=TRUE)
> RR.Kenny <- RR(l1~Actor*Partner|Group, data=dat)
> RR.Kenny

[1] "Round-Robin object ('RR'), calculated by TripleR"
[1] "Univariate analysis of one round robin variable in multiple groups"
[1] "Group descriptives: n = 24 ; average group size = 4 ; range: 4 - 4"
[1] "Univariate analyses for: l1"

estimate standardized se t.value p.value
perceiver variance 0.233 0.335 0.054 4.307 0.000
target variance 0.240 0.345 0.045 5.330 0.000
relationship variance 0.222 0.320 0.030 7.316 0.000
error variance NA NA NA NA NA
perceiver-target covariance 0.059 0.250 0.047 1.244 0.226
relationship covariance 0.014 0.063 0.034 0.414 0.682
[1] "Perceiver effect reliability: 0.732"
[1] "Target effect reliability: 0.738"

23

Group variance is not printed in the standard RR-output, but it can be ac-
cessed by:

> RR.Kenny$group.var

[1] -0.09060487

If you compare these results with Table 1 from the srmsoftware.doc docu-
ment, you will see that all results are identical to SOREMO.

References

Baayen, R., Davidson, D., & Bates, D. (2008). Mixed-effects modeling with
crossed random effects for subjects and items. Journal of Memory and
Language, 59 (4), 390-412.

Back, M., & Kenny, D. (in press). The social relations model: How to understand
dyadic processes. Social and Personality Psychology Compass.

Kenny, D. (1994). Interpersonal perceptions: A social relations analysis. New
York: Guilford Press.

Kenny, D., Kashy, D., & Cook, W. (2006). Dyadic data analysis. New York:
Guilford.

Kliegl, R., Masson, M. E. J., & Richter, E. M. (2010). A linear mixed model
analysis of masked repetition priming. Visual Cognition, 18 (5), 655-681.

24

	Getting the data into the right format
	How to do the analyses
	Univariate manifest analysis
	Univariate latent analyses
	Bivariate manifest analysis
	Bivariate latent analysis
	Multiple groups
	Missing values
	Inspecting the results object

	Plots
	Formatting the output
	Subsequent analyses
	FAQ
	This is an excellent introduction - but where can I get more information or pose a question?
	How can I calculate a bivariate analysis between one manifest variable and a latent construct indicated by two variables?
	This long data format really sounds good. But unfortunately my data already are in the wide format - how can I convert them into the long format?
	I have to run many, many round robin analyses in a huge data set. What is the most convenient way to do this?
	An error occurs: `Aggregation requires fun.aggregate: length used as default'
	My original multi group data set has X participants - the effects of the RR analysis, however, only have Y (Y < X) rows!
	An example from David Kenny - Comparison with SOREMO.exe

	References

