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This vignetted partially introduces the amba package, an R package for using additive models in business

with an emphasis on functional estimates and missing values. The current package is not only incom-

plete, it’s in a transitional state. There were some serious flaws in the original design and the current

implementation is halfway through the process of correcting those flaws. The sections in this vignette

are essentially from the previous version, updated slightly. A completely new vignette is planned for

the next revision.

Implementation Notes

When fitting linear models, or more generally additive models, one tries to estimate “effects”, that is,
how some change in some explanatory variable influences the expected value of some response. In the
earlier versions of this package, those effects were captured by“term”objects, environment-based objects
following a class hierarchy. In the current version, term object have been replaced by “contribution”
objects, which are function-based objects.

Consistent with the previous versions, contributions can be linear or smooth, and linear terms can
be pure linear, categorical or polynomial.

One feature that’s different here, from other’s implementations, is that linear contributions may
contain multiple parameters each. Another feature that’s different, is that there’s no overall intercept,
and as a general rule, each contribution contains it’s own intercept.

The top level algorithm, is designed to be indifferent to the class of contribution, and computes
partial residuals in such a way that the models can produce good estimates even when there’s a large
amount of missing data.

Note, that the changes to the package have introduced some new problems. These should be fixed
in the next revision.

Backfitting with Missing Explanatory Values

The author finds the idea of throwing away entire observations when one or two values are missing,
somewhat barbaric. Here we present a simple solution (which is a natural extension term objects).

One way to think of residuals, is as some vector of values. If we start with the response values and
subtract the overall mean, we get values with relatively high variance. If we then subtract the fitted
values for the first term, the variance decreases. If we repeat for each term, the variance gradually
decreases, until we are left with values with relatively low variance. In the ideal case, the residuals
would have zero variance.

If we apply certain special conditions, then it is possible to only subtract a fitted value, where the
corresponding explanatory value is valid (i.e. not missing). Where it is not valid, we just skip that
subtraction operation (i.e. for that particular observation, the variance is not reduced as much). For
this to work, each explanatory variable’s partial residuals for each fit (not just the final fit) must be
zero-centered. For smoothers this isn’t a big issue, however conventional linear terms often do not satisfy



this zero-centered condition. Noting the centering condition applies to partial residuals in relation to an
explanatory variable (not in relation to a parameter) and each explanatory may have multiple parameters
associated with it. For our linear terms to satisfy it, we require extra parameters. Categorical terms
require one parameter for each level, and polynomial terms, their own intercepts.

This produces overall residuals. We can produce partial residuals by adding a term’s fitted values. If
that particular term has missing values then the corresponding partial residuals will be invalid. However
we still get valid partial residuals where other terms have missing values.

Note that we still require valid responses. Plus there are some issues with interactions which are still
being explored. For implementation purposes we regard a numeric value as invalid if it is one of {NA,
NaN, Inf, -Inf} and a factor as invalid if it is NA.

We could write standard residuals for an additive model as:

ri = yi − η̂i

= yi −

(
θ̂ +

∑
∀t

f̂[t][i]

)
Where

yi is the ith response value.

θ̂ is the overall intercept.

η̂i is the ith overall fitted value.

ri is the ith overall residual.

∀t means that we will sum over all terms.

f̂[t][i] is the ith fitted value for term t.

Standard partial residuals are achieved by merely by either excluding a particular term, or by adding
a term’s fitted values to the residuals above:

r∗[t∗][i] = ri + f̂[t∗][i]

Where

t∗ is a term, for which we are computing partial residuals.

r∗[t∗][i] is the ith partial residual for term t.

Achieving our overall residuals is trivial, we just modify the summation condition so that we only
include valid values. Here we are making an assumption that invalid explanatory value results in an
invalid fitted value.

ri = yi −

θ̂ +
∑

∀t;̂f[t][i]∈V

f̂[t][i]


Where V indicates a valid number as described above. We achieve partial residuals using the same

formula for standard partial residuals.

Example

Here we are going to use a made up dataset to demonstrate some of the things discussed so far. This
dataset is pretty bad, and may be replaced in future versions of this package. The examples here a
purely to demonstrate how to use the package, they are not intended to be “good” models. First we
need load the packages and the data.
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> library (amba)

> #may be changed...

> d = datafile ("amba", "sample", TRUE)

Here d represents a data.frame. A preview of the data.frame shows that it’s a bit messy.

> d [1:10,]

g1 g2 x1 x2 x3 x4 y

1 A A NA NA NA NA 109.4480

2 B C NA -8.2178 3.6634 NA 1.3881

3 A <NA> -9.0099 0.0990 9.0099 NA 18.6786

4 A B NA NA -4.6535 NA -6.5811

5 B D NA 3.2673 -3.2673 4.8515 117.2306

6 A B NA -5.6436 -3.6634 6.2376 -50.2027

7 <NA> B NA -5.4455 NA NA -45.0123

8 B E NA -7.2277 1.6832 NA 96.0798

9 B F 3.4653 3.8614 NA 7.0297 78.0201

10 B B NA NA -8.6139 -7.8218 37.8071

The last part of the preview output is information on the number of valid realisations. Note that
there are only two complete realisations. We are only going to use four of the explanatories, so now we
have five complete realisations.

> d [1:10,c (1:3, 6)]

g1 g2 x1 x4

1 A A NA NA

2 B C NA NA

3 A <NA> -9.0099 NA

4 A B NA NA

5 B D NA 4.8515

6 A B NA 6.2376

7 <NA> B NA NA

8 B E NA NA

9 B F 3.4653 7.0297

10 B B NA -7.8218

We create terms using constructors, re-iterating the earlier point, in general there is one term to one
variable.

> t1 = categorical (g1)

> t2 = categorical (g2)

> t3 = linear (x1)

> t4 = linear (x4)

We can fit a term separately either by specifying the response as the second argument in the con-
structor, or by using the fit command. It is not necessary to do an explicit assignment. Terms are
environments and the fit command will adjust the estimate object within the term. Functions summary
and plot act as expected, except that the summary output is currently a mess and that a response (or
partial residuals) are often required as an argument.

> fit (t1, y)

> summary (t1, y)
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categorical (g1)

parameter estimate

1 A 48.43023

2 B 74.07840

pcd: NA

> plot (t1)
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> plot (t1, y)
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> plot (t1, y, index=TRUE)
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We can create a MMBA model, using the mmba function. Here the response is fit onto each term,
ignoring the other terms. However, first we need to create a termlist object. Noting we can do both
in one step if we want. It is also possible to plot the termlist object using the pairs function. We get
something based on R’s standard pairs plot, the main difference is that categorical variables are jittered.

> ts = t1 + t2 + t3 + t4

> m = mmba (y, ts)

> plot (m)
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> pairs (ts)
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We create an AMBA model basically the same, except using the amba function.

> m = amba (y, t1 + t4)

> plot (m)
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We can can try a polynomial instead of a regular linear term.

> t4 = polynomial (x4, degree=2)

> m = amba (y, t1 + t4)

> plot (m)
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Or create a semiparametric model using a smooth term.

> t4 = smooth (x4, smoothness=0.9)

> m = amba (y, t1 + t4)

> plot (m)
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Sometimes we just want to plot one of the terms from the AMBA model.

> plot (m, 2)
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We can also get summary output for a single term, noting this uses the partial residuals, not the
response itself. We can do the same thing (with some more work) by extracting the partial residuals
and using the summary method for the term.

> summary (m, 2)

smooth (x4)

sx sy

1 -8.6139000 -73.83569

2 -6.5676889 10.43336

3 -4.5214778 10.43336

4 -2.4752667 10.43336

5 -0.4290556 10.43336

6 1.6171556 10.43336

7 3.6633667 10.43336

8 5.7095778 10.43336

9 7.7557889 10.43336

10 9.8020000 10.43336
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pcd: NA

> summary (t4, residuals (m, 2))

smooth (x4)

sx sy

1 -8.6139000 -73.83569

2 -6.5676889 10.43336

3 -4.5214778 10.43336

4 -2.4752667 10.43336

5 -0.4290556 10.43336

6 1.6171556 10.43336

7 3.6633667 10.43336

8 5.7095778 10.43336

9 7.7557889 10.43336

10 9.8020000 10.43336

pcd: NA
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