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1 Introduction

The coin package implements a unified approach for conditional inference pro-
cedures commonly known as permutation tests. The theoretical basis of design
and implementation is the unified framework for permutation tests given by
Strasser and Weber (1999). For a very flexible formulation of multivariate lin-
ear statistics, Strasser and Weber (1999) derived the conditional expectation
and covariance of the conditional (permutation) distribution as well as the mul-
tivariate limiting distribution. For a more detailed overview see Hothorn et˜al.
(2006).

Conditional counterparts of a large amount of classical (unconditional) test
procedures for continuous, categorical and censored data are part of this frame-
work, for example the Cochran-Mantel-Haenszel test for independence in general
contingency tables, linear association tests for ordered categorical data, linear
rank tests and multivariate permutation tests.

The conceptual framework of permutation tests by Strasser and Weber (1999)
for arbitrary problems is available via the generic independence_test. Because
convenience functions for the most prominent problems are available, users will
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not have to use this extremely flexible procedure. Currently, the conditional
variants of the following test procedures are available:

oneway_test two- and K-sample permutation test
wilcox_test Wilcoxon-Mann-Whitney rank sum test
normal_test van der Waerden normal quantile test
median_test Median test
kruskal_test Kruskal-Wallis test
ansari_test Ansari-Bradley test
fligner_test Fligner-Killeen test
chisq_test Pearson’s χ2 test
cmh_test Cochran-Mantel-Haenszel test
lbl_test linear-by-linear association test
surv_test two- and K-sample logrank test
maxstat_test maximally selected statistics
spearman_test Spearman’s test
friedman_test Friedman test
wilcoxsign_test Wilcoxon-Signed-Rank test
mh_test marginal homogeneity test (Maxwell-Stuart).

Those convenience functions essentially perform a certain transformation of
the data, e.g., a rank transformation, and call independence_test for the com-
putation of linear statistics, expectation and covariance and the test statistic as
well as their null distribution. The exact null distribution can be approximated
either by the asymptotic distribution or via conditional Monte-Carlo for all test
procedures, the exact null distribution is available for special cases. Moreover,
all test procedures allow for the specification of blocks for stratification.

2 Permutation Tests

In the following we assume that we are provided with n observations

(Yi,Xi, wi, bi), i = 1, . . . , n.

The variables Y and X from sample spaces Y and X may be measured at arbi-
trary scales and may be multivariate as well. In addition to those measurements,
case weights w and a factor b coding blocks may be available. For the sake of
simplicity, we assume wi = 1 and bi = 0 for all observations i = 1, . . . , n for the
moment.

We are interested in testing the null hypothesis of independence of Y and X

H0 : D(Y|X) = D(Y)

against arbitrary alternatives. Strasser and Weber (1999) suggest to derive
scalar test statistics for testing H0 from multivariate linear statistics of the
form

T = vec

(
n∑

i=1

wig(Xi)h(Yi, (Y1, . . . ,Yn))>

)
∈ Rpq. (1)
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Here, g : X → Rp is a transformation of the X measurements and the influence
function h : Y × Yn → Rq depends on the responses (Y1, . . . ,Yn) in a permu-
tation symmetric way. We will give specific examples how to choose g and h
later on.

The distribution of T depends on the joint distribution of Y and X, which
is unknown under almost all practical circumstances. At least under the null
hypothesis one can dispose of this dependency by fixing X1, . . . ,Xn and con-
ditioning on all possible permutations S of the responses Y1, . . . ,Yn. This
principle leads to test procedures known as permutation tests.

The conditional expectation µ ∈ Rpq and covariance Σ ∈ Rpq×pq of T under
H0 given all permutations σ ∈ S of the responses are derived by Strasser and
Weber (1999):

µ = E(T|S) = vec

((
n∑

i=1

wig(Xi)

)
E(h|S)>

)
,

Σ = V(T|S)

=
w·

w· − 1
V(h|S)⊗

(∑
i

wig(Xi)⊗ wig(Xi)
>

)
(2)

− 1

w· − 1
V(h|S)⊗

(∑
i

wig(Xi)

)
⊗

(∑
i

wig(Xi)

)>
where w· =

∑n
i=1 wi denotes the sum of the case weights, and ⊗ is the Kronecker

product. The conditional expectation of the influence function is

E(h|S) = w−1·
∑
i

wih(Yi, (Y1, . . . ,Yn)) ∈ Rq

with corresponding q × q covariance matrix

V(h|S) = w−1·
∑
i

wi (h(Yi, (Y1, . . . ,Yn))− E(h|S))

(h(Yi, (Y1, . . . ,Yn))− E(h|S))
>
.

Having the conditional expectation and covariance at hand we are able to
standardize a linear statistic T ∈ Rpq of the form (1). Univariate test statistics˜c
mapping an observed linear statistic t ∈ Rpq into the real line can be of arbi-
trary form. An obvious choice is the maximum of the absolute values of the
standardized linear statistic

cmax(t, µ,Σ) = max

∣∣∣∣ t− µ
diag(Σ)1/2

∣∣∣∣
utilizing the conditional expectation µ and covariance matrix Σ. The application
of a quadratic form cquad(t, µ,Σ) = (t−µ)Σ+(t−µ)> is one alternative, although
computationally more expensive because the Moore-Penrose inverse Σ+ of Σ is
involved.
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The definition of one- and two-sided p-values used for the computations in
the coin package is

P (c(T, µ,Σ) ≤ c(t, µ,Σ)) (less)

P (c(T, µ,Σ) ≥ c(t, µ,Σ)) (greater)

P (|c(T, µ,Σ)| ≤ |c(t, µ,Σ)|) (two-sided).

Note that for quadratic forms only two-sided p-values are available and that in
the one-sided case maximum type test statistics are replaced by

min

(
t− µ

diag(Σ)1/2

)
(less) and max

(
t− µ

diag(Σ)1/2

)
(greater).

The conditional distribution and thus the p-value of the statistics c(t, µ,Σ)
can be computed in several different ways. For some special forms of the linear
statistic, the exact distribution of the test statistic is trackable. For two-sample
problems, the shift-algorithm by Streitberg and Röhmel (1986) and Streitberg
and Röhmel (1987) and the split-up algorithm by van˜de Wiel (2001) are imple-
mented as part of the package. Conditional Monte-Carlo procedures can be used
to approximate the exact distribution. Strasser and Weber (1999) proved (The-
orem 2.3) that the conditional distribution of linear statistics T with conditional
expectation µ and covariance Σ tends to a multivariate normal distribution with
parameters µ and Σ as n,w· →∞. Thus, the asymptotic conditional distribu-
tion of test statistics of the form cmax is normal and can be computed directly
in the univariate case (pq = 1) or approximated by means of quasi-randomized
Monte-Carlo procedures in the multivariate setting (Genz, 1992). For quadratic
forms cquad which follow a χ2 distribution with degrees of freedom given by the
rank of Σ (see Johnson and Kotz, 1970, Chapter 29), exact probabilities can be
computed efficiently.

3 Illustrations and Applications

The main workhorse independence_test essentially allows for the specification
of Y,X and b through a formula interface of the form y ~ x | b, weights can
be defined by a formula with one variable on the right hand side only. Four
additional arguments are available for the specification of the transformation
g (xtrans), the influence function h (ytrans), the form of the test statistic c
(teststat) and the null distribution (distribution).

Independent K-Sample Problems. When we want to compare the distri-
bution of an univariate qualitative response Y in K groups given by a factor X
at K levels, the transformation g is the dummy matrix coding the groups and
h is either the identity transformation or a some form of rank transformation.

For example, the Kruskal-Wallis test may be computed as follows (example
taken from Hollander and Wolfe, 1999, Table 6.3, page 200):
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R> library("coin")

R> YOY <- data.frame(

+ length = c(46, 28, 46, 37, 32, 41, 42, 45, 38, 44,

+ 42, 60, 32, 42, 45, 58, 27, 51, 42, 52,

+ 38, 33, 26, 25, 28, 28, 26, 27, 27, 27,

+ 31, 30, 27, 29, 30, 25, 25, 24, 27, 30),

+ site = factor(c(rep("I", 10), rep("II", 10),

+ rep("III", 10), rep("IV", 10))))

R> it <- independence_test(length ~ site, data = YOY,

+ ytrafo = function(data) trafo(data, numeric_trafo = rank),

+ teststat = "quadtype")

R> it

Asymptotic General Independence Test

data: length by site (I, II, III, IV)

chi-squared = 22.8524, df = 3, p-value = 4.335e-05

The linear statistic T is the sum of the ranks in each group and can be extracted
via

R> statistic(it, "linear")

I 278

II 307

III 119

IV 116

Note that statistic(..., "linear") currently returns the linear statistic in
matrix form, i.e.

n∑
i=1

wig(Xi)h(Yi, (Y1, . . . ,Yn))> ∈ Rp×q.

The conditional expectation and covariance are available from

R> expectation(it)

I II III IV

205 205 205 205

R> covariance(it)

I II III IV

I 1019.0385 -339.6795 -339.6795 -339.6795

II -339.6795 1019.0385 -339.6795 -339.6795

III -339.6795 -339.6795 1019.0385 -339.6795

IV -339.6795 -339.6795 -339.6795 1019.0385
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and the standardized linear statistic (T− µ)diag(Σ)−1/2 is

R> statistic(it, "standardized")

I 2.286797

II 3.195250

III -2.694035

IV -2.788013

Since a quadratic form of the test statistic was requested via teststat = "quadtype",
the test statistic is

R> statistic(it)

[1] 22.85242

By default, the asymptotic distribution of the test statistic is computed, the
p-value is

R> pvalue(it)

[1] 4.334659e-05

Life is much simpler with convenience functions very similar to those avail-
able in package stats for a long time. The exact null distribution of the Kruskal-
Wallis test can be approximated by 9999 Monte-Carlo replications via

R> kw <- kruskal_test(length ~ site, data = YOY,

+ distribution = approximate(B = 9999))

R> kw

Approximative Kruskal-Wallis Test

data: length by site (I, II, III, IV)

chi-squared = 22.8524, p-value < 2.2e-16

with p-value (and 99% confidence interval) of

R> pvalue(kw)

[1] 0

99 percent confidence interval:

0.0000000000 0.0005297444

Of course it is possible to choose a cmax type test statistic instead of a quadratic
form.
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Independence in Contingency Tables. Independence in general two- or
three-dimensional contingency tables can be tested by the Cochran-Mantel-
Haenszel test. Here, both g and h are dummy matrices (example data from
Agresti, 2002, Table 7.8, page 288):

R> data("jobsatisfaction", package = "coin")

R> it <- cmh_test(jobsatisfaction)

R> it

Asymptotic Generalized Cochran-Mantel-Haenszel Test

data: Job.Satisfaction by

Income (<5000, 5000-15000, 15000-25000, >25000)

stratified by Gender

chi-squared = 10.2001, df = 9, p-value = 0.3345

The standardized contingency table allowing for an inspection of the devi-
ation from the null hypothesis of independence of income and jobsatisfaction
(stratified by gender) is

R> statistic(it, "standardized")

Very Dissatisfied A Little Satisfied

<5000 1.3112789 0.69201053

5000-15000 0.6481783 0.83462550

15000-25000 -1.0958361 -1.50130926

>25000 -1.0377629 -0.08983052

Moderately Satisfied Very Satisfied

<5000 -0.2478705 -0.9293458

5000-15000 0.5175755 -1.6257547

15000-25000 0.2361231 1.4614123

>25000 -0.5946119 1.2031648

Ordered Alternatives. Of course, both job satisfaction and income are or-
dered variables. When Y is measured at J levels and X at K levels, Y and X
are associated with score vectors ξ ∈ RJ and γ ∈ RK , respectively. The linear
statistic is now a linear combination of the linear statistic T of the form

MT = vec

(
n∑

i=1

wiγ
>g(Xi)

(
ξ>h(Yi, (Y1, . . . ,Yn)

)>) ∈ R with M = ξ ⊗ γ.

By default, scores are ξ = 1, . . . , J and γ = 1, . . . ,K.

R> lbl_test(jobsatisfaction)

Asymptotic Linear-by-Linear Association Test

data: Job.Satisfaction (ordered) by
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Income (<5000 < 5000-15000 < 15000-25000 < >25000)

stratified by Gender

chi-squared = 6.6235, df = 1, p-value = 0.01006

The scores ξ and γ can be specified to the linear-by-linear association test via
a list those names correspond to the variable names

R> lbl_test(jobsatisfaction,

+ scores = list(Job.Satisfaction = c(1, 3, 4, 5),

+ Income = c(3, 10, 20, 35)))

Asymptotic Linear-by-Linear Association Test

data: Job.Satisfaction (ordered) by

Income (<5000 < 5000-15000 < 15000-25000 < >25000)

stratified by Gender

chi-squared = 6.1563, df = 1, p-value = 0.01309

Incomplete Randomised Blocks. Rayner and Best (2001), Chapter 7, dis-
cuss the application of Durbin’s test to data from sensoric experiments, where
incomplete block designs are common. As an example, data from taste-testing
on ten dried eggs where mean scores for off-flavour from seven judges are given
and one wants to assess whether there is any difference in the scores between
the ten egg samples. The sittings are a block variable which can be added to
the formula via ‘|’.

R> egg_data <- data.frame(

+ scores = c(9.7, 8.7, 5.4, 5.0, 9.6, 8.8, 5.6, 3.6, 9.0,

+ 7.3, 3.8, 4.3, 9.3, 8.7, 6.8, 3.8, 10.0, 7.5,

+ 4.2, 2.8, 9.6, 5.1, 4.6, 3.6, 9.8, 7.4, 4.4,

+ 3.8, 9.4, 6.3, 5.1, 2.0, 9.4, 9.3, 8.2, 3.3,

+ 8.7, 9.0, 6.0, 3.3, 9.7, 6.7, 6.6, 2.8, 9.3,

+ 8.1, 3.7, 2.6, 9.8, 7.3, 5.4, 4.0, 9.0, 8.3,

+ 4.8,3.8,9.3,8.3,6.3,3.8),

+ sitting = factor(rep(c(1:15), rep(4,15))),

+ product = factor(c(1, 2, 4, 5, 2, 3, 6, 10, 2, 4, 6, 7,

+ 1, 3, 5, 7, 1, 4, 8, 10, 2, 7, 8, 9,

+ 2, 5, 8, 10, 5, 7, 9, 10, 1, 2, 3, 9,

+ 4, 5, 6, 9, 1, 6, 7, 10, 3, 4, 9, 10,

+ 1, 6, 8, 9, 3, 4, 7, 8, 3, 5, 6, 8)))

R> yt <- function(data) trafo(data, numeric_trafo = rank,

+ block = egg_data$sitting)

R> independence_test(scores ~ product | sitting,

+ data = egg_data, teststat = "quadtype",

+ ytrafo = yt)

Asymptotic General Independence Test
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data: scores by

product (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

stratified by sitting

chi-squared = 39.12, df = 9, p-value = 1.096e-05

and the Monte-Carlo p-value can be computed via

R> pvalue(independence_test(scores ~ product | sitting,

+ data = egg_data, teststat = "quadtype", ytrafo = yt,

+ distribution = approximate(B = 19999)))

[1] 0

99 percent confidence interval:

0.000000000 0.000264894

If we assume that the products are ordered, the Page test is appropriate and
can be computed as follows

R> independence_test(scores ~ product | sitting, data = egg_data,

+ scores = list(product = 1:10),

+ ytrafo = yt)

Asymptotic General Independence Test

data: scores by

product (1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < 10)

stratified by sitting

Z = -6.2166, p-value = 5.081e-10

alternative hypothesis: two.sided

Multiple Tests. One may be interested in testing multiple hypotheses si-
multaneously, either by using a linear combination of the linear statistic KT,
or by specifying multivariate variables Y and / or X. For example, all pair
comparisons may be implemented via

R> if (require("multcomp")) {

+ xt <- function(data) trafo(data, factor_trafo = function(x)

+ model.matrix(~x - 1) %*% t(contrMat(table(x), "Tukey")))

+ it <- independence_test(length ~ site, data = YOY, xtrafo = xt,

+ teststat = "max", distribution = approximate(B = 9999))

+ print(pvalue(it))

+ print(pvalue(it, method = "single-step"))

+ }

[1] 0.00010001

99 percent confidence interval:

5.013042e-07 7.428484e-04
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II - I 0.64726473

III - I 0.03680368

IV - I 0.02110211

III - II 0.00010001

IV - II 0.00010001

IV - III 0.99799980

When either g or h are multivariate, single-step adjusted p-values based on
maximum-type statistics are computed as described in Westfall and Young
(1993), algorithm 2.5 (page 47) and equation (2.8), page 50. Note that for the
example shown above only the minimum p-value is adjusted appropriately be-
cause the subset pivotality condition is violated, i.e., the distribution of the test
statistics under the complete null-hypothesis of no treatment effect of site is
the basis of all adjustments instead of the corresponding partial null-hypothesis.

Another important application are simultaneous tests for many response
variables. This problem frequently occurs in microarray expression studies and
we shall have a look at an artificial example: 100 variables (from a normal dis-
tribution) are to be tested in a one-way classification with n = 40 observations.
Only the first variable shows a difference and we are interested in both a global
test and the adjusted p-values. Here, the example is formulated within the
Biobase (Gentleman and Carey, 2005) framework (example currently not run
because of dependencies problems):

R> if (require("Biobase")) {

+

+ p <- 100

+ pd <- new("AnnotatedDataFrame",

+ data = data.frame(group = gl(2, 20)),

+ varMetadata = data.frame(labelDescription = "1/2"))

+ exprs <- matrix(rnorm(p * 40), nrow = p)

+ exprs[1, 1:20] <- exprs[1, 1:20] + 1.5

+ ex <- new("ExpressionSet", exprs = exprs, phenoData = pd)

+

+ it <- independence_test(group ~ ., data = ex,

+ distribution = approximate(B = 1000))

+

+ print(pvalue(it))

+ print(which(pvalue(it, method = "step-down") < 0.05))

+

+ }

4 Quality Assurance

The test procedures implemented in package coin are continuously checked
against results obtained by the corresponding implementations in package stats
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(where available). In addition, the test statistics and exact, approximative and
asymptotic p-values for data examples given in the StatXact˜-6 user manual
(Cytel Inc., 2003) are compared with the results reported in the StatXact˜6
manual. Step-down multiple adjusted p-values have been checked against re-
sults reported by mt.maxT from package multtest (Pollard et˜al., 2008). For
details on the test procedures we refer to the R transcript files in directory
coin/tests.
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