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1 Preamble

The R package dlnm provides some facilities to run distributed lag non-linear models (DLNM’s), a
modelling framework to describe simultaneously non-linear and delayed effects between predictors and
an outcome in time-series data.

The aim of this document is to provide an overview of the capabilities of the package, together with
extensive examples of application with real data. Some information on installation procedures and on
the data included in the package are given in Section 2. The theory underlying the DLNM methodology
is briefly illustrated in Section 3, while the functions included in the package are described in Section 4.
Some examples of applications are provided in Section 5: users mainly interested in the application
can skip the previous Sections and and start with these examples. Finally, Section 6 offers some
conclusions.

The DLNM’s methodology, together with a thorough algebraical development, has been previously
described in Gasparrini et al. (2010). This framework was originally conceived and proposed to inves-
tigate the health effect of temperature in Armstrong (2006).

Type citation("dlnm") in R to cite the dlnm package. A list of changes included in the cur-
rent and previous versions can be found typing file.show(system.file("ChangeLog", package =

"dlnm")) .

Please send comments or suggestions and report bugs to antonio.gasparrini@lshtm.ac.uk.

2 Installation and data

2.1 Installing the package dlnm

The dlnm package is installed in the standard way for CRAN packages, for example using the in-

stall.packages() function or directly through the menu in R (from version 2.9.0 onwards), clicking
on Packages and then on Install package(s).... The package can be alternatively installed using the
.zip file containing the binaries, via Packages and then Install package(s) from local zip files....

The functionalities of dlnm depend on other packages whose commands are called to specify the dlnm
functions. This hierarchy is ruled by the field Imports of the file description included in the package.
The functions are imported from the packages splines (functions ns() and bs()) and tsModel (function
Lag()). While splines is present in the basic installation of R, the package tsModel is automatically
downloaded if dlnm is installed through R using the CRAN, but must be independently installed if a
.zip file is used.

2.2 Data

Until the version 0.4.1, the package dlnm did not contain any data, and used the datasets stored in the
package NMMAPSlite.

In this version the package contains its own dataset chicagoNMMAPS, with daily mortality (all causes,
CVD, respiratory), weather (temperature, dew point temperature, relative humidity) and pollution
data (PM10 and ozone) for Chicago in the period 1987-2000. The data were assembled from pub-
licly available data sources as part of the National Morbidity, Mortality, and Air Pollution Study
(NMMAPS) sponsored by the Health Effects Institute (Samet et al., 2000a,b). They are download-
able from the Internet-based Health and Air Pollution Surveillance System (iHAPSS) website (http:
//www.ihapss.jhsph.edu) or through the packages NMMAPSdata or NMMAPSlite. See ?chicagoN-

MMAPS for additional information on the variables included.
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3 Distributed lag non-linear models (DLNM’s)

The aim of this Section is to provide a methodological summary of the DLNM framework. A de-
tailed description of this methodology and the algebraical development have been published elsewhere
(Armstrong, 2006; Gasparrini et al., 2010).

3.1 The issue

The main purpose of a statistical regression model is to define the relationship between a predictor and
an outcome, and then to estimate the related effect. A further complexity arises when the dependency
shows some delayed effects: in this case, a specific occurrence of the predictor (let us call it an exposure
event) affects the outcome for a certain period in the future. This step requires the definition of more
complex models to characterize the association, specifying the temporal structure of the dependency.
The main feature of DLNM’s is their bi-dimensional structure: the model describes simultaneously the
potentially non-linear relationship in the space of the predictor and along the new temporal dimension.

3.2 The concept of basis

Several different methods have been adopted to specify non-linear effects in a regression models. A
simple solution is to generate strata variables, applying specific cut-off points along the range of the
predictor in order to define specific intervals, and then specifying new variables through a dummy
parameterization.

Other types of manipulations of the original variable are applied when there are specific assumptions
on the shape of the relationship, for example when the effect is likely to exist and be linear only above
or below a specific threshold (hockey-stick model). An extension of this model assumes two distinct
linear effects below a first threshold and above a second threshold, with a null effect in between them.

An alternative to the strata or threshold approaches is to include in the model some terms allowing a
true non-linear relationship, describing a smooth curve between the predictor and the outcome. The
traditional methods include a quadratic term or higher degree polynomials. Recently, spline functions
have been favoured, especially through a natural cubic parameterization.

A generalization may be provided assuming that all the approaches above imply the choice of a basis,
defined as a space of functions used to define the relationship (Wood, 2006). The choice of the
basis defines the related basis functions, completely known transformations of the original predictor
generating a new set of transformed variables, defined basis variables. Independently from the basis
chosen, the final result will be a matrix of transformed variables which can be included in the design
matrix of a model in order to estimate the related parameters. The choice of different bases leads to
the specification of different matrices, but the mechanism is common.

3.3 Delayed effect: DLM’s

In the specific context of time series analysis, given the ordered series of the predictor values, a delayed
(or lagged) effect is present when the outcome in a specific time is influenced by the level of the
predictor in previous times, up to a maximum lag. Therefore, the presence of delayed effects requires
to take into account the time dimension of the relationship, specifying the additional virtual dimension
of the lags.

A very simple model to deal with delayed effects considers the moving average of the predictor up to
a certain lag, specifying a transformed predictor which is the average of the values in that specific lag
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period. Although simple, this model is limited if the purpose is to assess the temporal structure of the
effects.

These limitations have been addressed using a more elegant approach based on distributed lag models
(DLM’s). The main advantage of this method is the possibility to depict a detailed description of the
time-course of the relationship. Originally developed in econometrics (Almon, 1965), this method has
recently been used to quantify the health effect in studies on environmental factors (Braga et al., 2001;
Schwartz, 2001; Welty and Zeger, 2005; Zanobetti et al., 2000).

In the basic formulation, a DLM is fitted by the inclusion of a parameter for each lagged predictor
occurrence. An estimate of the overall effect is given by the sum of the single lag effects upon the
whole lag period considered (Hajat et al., 2005; Schwartz, 2000).

This unconstrained version of DLM does not require any assumption on the shape of the effect along
lags, and consequently on the relationship between parameters. In order to define a more parsimonious
model, it is possible to specify some assumptions on the shape of the distributed effect, applying some
constraint. The simplest solution is to group the lags in different strata (Pattenden et al., 2003; Welty
and Zeger, 2005), while a more complex option is to force the curve along lags to follow a specific
smooth function, for example polynomials (Baccini et al., 2008; Schwartz et al., 2004; Zanobetti and
Schwartz, 2008) or splines (Zanobetti et al., 2000).

Following the general approach used in Section 3.2, it may be shown that all the different DLM’s above
can be described by the same equation, where different models are specified through different basis
functions to be applied to the vector of lags, building a new basis matrix (see Gasparrini et al., 2010,
Eq. 4). Again, the choice of different bases generates different matrices, but the mechanism is general.

3.4 The extension to DLNM’s

A general approach to specify non-linear but un-lagged effects has been introduced in Section 3.2,
while the methods to define distributed lag functions for simple linear effects have been presented in
Section 3.3. An obvious extensions is to combine these approaches to define distributed lag non-linear
models (DLNM’s), a family of models which can deal at the same time with non-linear and delayed
effects.

The different issues of non-linearity and delayed effects share a common feature: in both cases the
solution is to choose a basis to describe the shape of the relationship in the relative dimension. This
step leads to the concept of cross-basis: following the idea of basis in 3.2, a cross-basis can be imagined
as a bi-dimensional space of functions describing on the same time the shape of the relationship and
the distributed lag effects. The algebraic notation to define the cross-basis and then the DLNM can
be quite complex, involving tensor products of 3-dimensional arrays, and has been presented elsewhere
(Gasparrini et al., 2010, Section 4.2). Nonetheless, the basic concept is straightforward: choosing a
cross-basis amounts to choosing two independent set of basis functions, which will be combined to
generate the specific cross-basis functions. The DLM’s described in 3.3 can be considered as special
cases of DLNM’s with a simple linear function in the dimension of the predictor.

The result of a DLNM can be interpreted building a grid of predictions for each lag and for suitable
values of the predictor, using three dimensional plots to provide an overall picture of the effects varying
along the two dimensions. In addition, it is possible to compute the effects for single predictor levels or
lags, simply cutting a ”slice” of the grid along specific values of predictor or lags, respectively. Finally,
an estimate of the overall effect can be computed by summing all the contributions at different lags.
The effects are usually reported versus a reference value of the predictor, centering the basis functions
for this space to their corresponding transformed values (Cao et al., 2006).

The choice of the two set of basis functions for each space is perfectly independent, and should be
based on a-priori assumptions or on a compromise between complexity and generalizability. Linear,
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threshold, strata, polynomial or splines functions can be used to define the relationship along the space
of predictor, while unconstrained, strata, polynomial or splines functions can be applied to specify the
shape along lags.

4 The functions in the package dlnm

The functions included in the package can be used to complete all the steps required to specify and
interpret a DLNM. The data are assumed to represent an equally-spaced, complete and ordered series
of observations.

The internal functions mkbasis() and mklagbasis() are called in order to build the basis matrices for
the dimension of the predictor and lags, respectively. In concrete terms, they apply a transformation
to the vector of predictor and to the vector of lags, and stored the transformed variables in two matrix
objects. Several different choices are available, for example splines, polynomials, stratification and
threshold parameterization. Details on the basis specification are given in Section 5.1. These two
internal commands are called by other functions, and they are not meant to be run by the users.
However, they are included in the namespace of the package and therefore made accessible, with the
intention to keep the process more transparent and give the opportunity to change or improve them.

The main function in the package dlnm is crossbasis(). It calls the internal functions mkbasis()

and mklagbasis() and combines the two basis matrices in order to create the cross-basis matrix which
specifies the dependency simultaneously in the two dimensions. The arguments are set to some default
values, and can be automatically changed for nonsensical combinations, or set to null if not required.
Anyway, meaningless combinations of arguments (for example strata where no observation lies) could
lead to collinear variables, with identifiability problems in the model. The user is advised to test the
result with the function summary.crossbasis(), which provides a summary of the choices made for
the two bases and the final cross-basis.

The cross-basis matrix should be included in the model formula of default regression functions. More
than one cross-basis matrix can be included in the same formula. The name of the object containing
the cross-basis matrix will be used to extract the estimated parameters, and must not match the names
of other predictors in the model formula. Several different regression commands can be used: lm(),
glm(), gam() (package mgcv), glm.nb() (package MASS), gee() (package geepack), clogit() and
coxph() (package survival). Other commands may be included in the future.

The function crosspred() generates the predicted effects for a set of values of the original predictor,
given the applied cross-basis functions and the parameters estimated by the model. It stores them
in matrices with specific effects for each combination of predictor values and lags, and in vectors of
overall effects (summed up along lags). Cumulative effects may be included, and exponentiated values
are returned for model with log or logit link.

Finally, the function crossplot() provides some options to visualize the predicted effects.

See the related help pages (for example help(crossbasis) or ?crossbasis) for the details on the
usage and the arguments of these functions.

5 Some examples

This Section provides some examples of the use of the functions included in the dlnm package, described
in Section 4. In spite of the specific application on the health effects of air pollution and temperature,
these examples are easily generalized to different topics. The results included in this Section are
not meant to represent scientific findings, but are reported with the only purpose to illustrate the
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capabilities of the dlnm package.

First, some simple examples of the internal functions are showed in Section 5.1. Although these
commands are not expected to be performed directly by the user, but are commonly called through
crossbasis(), these codes can shine a light on the process to build the basis functions for the two
dimensions (predictor and lags), and clarify the meaning of the arguments of the function crossba-

sis().

Then, 3 different examples of the application of DLNM’s are illustrated in the Sections 5.2-5.4, using
the NMMAPS dataset for the city of Chicago in the period 1987-2000 included in the package, which
has been described in Section 2.2. These different cases cover most of the functionalities of the package,
providing a detailed overview of its capabilities and a basis to perform analyses on this dataset or on
other data sources.

The package is assumed to be present in the R library (see Section 2.1) and loaded in the session,
together with the data, typing:

> library(dlnm)

> data(chicagoNMMAPS)

5.1 Examples for mkbasis() and mklagbasis()

As a first step, we provide an example of the use of the function mkbasis(). We build a basis matrix
applying the selected basis functions to the vector of integers going form 1 to 5. We leave many of the
arguments at their default values, apart from the selection of the degrees of freedom df.

> basis.var <- mkbasis(1:5, knots=3)

> basis.var

$basis

b1 b2

[1,] -0.56626284 0.21084190

[2,] -0.20921622 -0.00635585

[3,] 0.00000000 0.00000000

[4,] -0.03716777 0.37894518

[5,] -0.22216593 0.98144395

$type

[1] "ns"

$df

[1] 2

$knots

[1] 3

$bound

[1] 1 5

$int

[1] FALSE
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$cen

[1] TRUE

$cenvalue

[1] 3

The result is a simple ”list” object. The chosen basis is a natural cubic B-splines (default type="ns")
with 1 knot and df=2 (df is equal to length(knots)+1+int for type="ns"). Apart from the fact
that the basis variables are centered at cenvalue=3 (the mean of the predictor values, the default for
this argument), the same results could be obtained by the command ns(1:5, knots=3) . The basis
matrix is stored in the object basis.var$basis, while the arguments specifying it are included as
other objects in the list, and can be called directly (for example, try basis.var$knots).

Alternative choices may be specified through the following code (results not shown, the user can try
to run the commands):

> mkbasis(1:5, type="bs", df=4, degree=2)

> mkbasis(1:5, type="lin", cenvalue=4)

In the first case the result is a quadratic spline where the number and location of knots are chose
automatically, and fixed to 2 (df is length(knots)+degree+int for this type) and at equally spaced
quantiles, respectively. The second line returns a simple linear function, where the only transformation
is the centering at the value of 4.

The function mklagbasis() calls mkbasis() to create a basis matrix for the space of the lag. The basis
functions are applied to the vector 0:maxlag expressly created by the function. This is an example of
application:

> mklagbasis(maxlag=5, type="poly", degree=3)

$basis

b1 b2 b3 b4

lag0 1 0 0 0

lag1 1 1 1 1

lag2 1 2 4 8

lag3 1 3 9 27

lag4 1 4 16 64

lag5 1 5 25 125

$type

[1] "poly"

$df

[1] 4

$degree

[1] 3

$int

[1] TRUE

$maxlag

[1] 5
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The command specifies a 3rd degree polynomial. Differently from the bases for the space of the
predictor build above, this matrix contains an intercept (int=TRUE by default), in this case a vector of
1’s (see ?crossbasis), and is never centered. df is equal to the degree of the polynomial plus 1 when
an intercept is included. In this case, for a polynomial basis, the argument knots is not included.

Other examples (results not shown):

> mklagbasis(maxlag=5, type="integer")

> mkbasis(1:5, type="dthr", knots=c(2,3))

In the first line, the command applies a specific transformation in the space of lags in order to define
unconstrained distributed lag effects (see ?crossbasis), simply returning an identity matrix. The
second choice returns a double threshold basis which can be applied to describe linear effects below 2
and above 3, with a null effect in between them.

A basis matrix of type="strata" with and without intercept is created by (results not shown):

> mklagbasis(maxlag=10, type="strata", knots=c(4,7))

> mklagbasis(maxlag=10, type="strata", knots=c(4,7), int=F)

In this case, the intercept is represented by the dummy variable for the first stratum (see ?crossbasis).
The values in knots specify the cut-off point for the strata, and represent the lower boundaries for the
right-open intervals.

The effect of centering is illustrated below (results not shown):

> mkbasis(0:10, type="poly", degree=3)

> mkbasis(0:10, type="poly", degree=3, cen=F)

Each basis function is centered on the relative transformation of cenvalue, which is placed at the
mean of the predictor values by default, or defined by the user.

5.2 Example 1: a simple DLM

In this first example, we specify a simple DLM, assessing the effect of PM10 on overall mortality, while
adjusting for the effect of temperature. In order to do so, we first build two cross-basis matrices for
the two predictors, and then include them in a model formula of a regression function. The effect of
PM10 is assumed linear in the dimension of the predictor, so, from this point of view, we can define
this as a simple DLM even if it estimates also the distributed lag function for temperature, which is
included as a non-linear term.

First, we run crossbasis() to build the two cross-basis matrices, saving them in two objects. The
names of the two objects must be different in order to predict the effects separately for each of them
(see ?crosspred). This is the code:

> basis.pm <- crossbasis(chicagoNMMAPS$pm10, vartype="lin", lagtype="poly",

lagdegree=4, cen=F, maxlag=15)

> basis.temp <- crossbasis(chicagoNMMAPS$temp, vardf=5, lagtype="strata",

lagknots=1, cenvalue=21, maxlag=3)

The function crossbasis() calls the two internal functions mkbasis() and mklagbasis() to build
the basis matrices. It passes the arguments with stub var- to the former, in order to specify the
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basis functions for the predictor (in this case chicagoNMMAPS$pm10 and chicagoNMMAPS$temp), and
the arguments with stub lag- to the latter, specifying the basis functions for the expressly created
vector 0:maxlag. Then it combines the two basis matrices to create the final cross-basis variables
included in the objects of class ”crossbasis” (basis.pm and basis.temp). As highlighted above, the
data are assumed to be composed by equally-spaced, complete and ordered series.

In this case, we assume that the effect of PM10 is linear (vartype="lin"), while we model the rela-
tionship with temperature through a natural cubic spline with 5 degrees of freedom (vartype="ns",
chosen by default). In this space, the internal knots (if not provided) are placed by default at equally
spaced quantiles, while the boundary knots are located at the range of the observed values, so we need
to specify only vardf. We did not center PM10, in order to compute the predicted effects versus a
reference value of 0 µgr/m3 (the same results could be obtained setting cen=TRUE and cenvalue=0).
The reference value for temperature is set to 21◦C.

The basis for the space of the lags is chosen through the same arguments but with stub lag-. We
specify the lagged effect of PM10 up to 15 days of lag with a 4th degree polynomial function (setting
lagdegree=4). The delayed effect of temperature are defined by two lag strata (0 and 1-3), assuming
the effects as constant within each stratum. The argument varknots=1 defines the lower boundary of
the second interval.

An overview of the specifications for the cross-basis (and the related bases in the two dimensions) is
provided by the function summary.crossbasis, which calls the attributes of the crossbasis object:

> summary(basis.pm)

CROSSBASIS FUNCTIONS

observations: 5114

range: -3.049835 , 356.1768

total df: 5

maxlag: 15

BASIS FOR VAR:

type: lin

df: 1

BASIS FOR LAG:

type: poly with degree 4

df: 5

with intercept

Now the two crossbasis objects can be included in a model formula in order to fit the DLM. In this
case we model the effect assuming an overdispersed Poisson distribution, including a smooth function
of time with 7 df/year (in order to correct for seasonality and long time trend) and day of the week as
factor:

> model <- glm(death ~ basis.pm + basis.temp + ns(time, 7*14) + dow,

family=quasipoisson(), chicagoNMMAPS)

The effects of specific levels of PM10 on overall mortality, predicted by the model above, can be
computed by the function crosspred() and saved in an object with the same class:

> pred.pm <- crosspred(basis.pm, model, at=0:20, cumul=T)
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Figure 1
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The function includes the basis.pm and model objects used to estimate the parameters as the first
two arguments, while at=0:20 states that the prediction must be computed for each integer value from
0 to 20 µgr/m3. The argument cumul (default to FALSE) indicates that also cumulative effects along
lags must be included. Now that the predicted effects have been stored in pred.pm, they can be plot
by the function crossplot():

> crossplot(pred.pm, "slices", var=10,

title="Effects of a 10-unit increase in PM10 along lags")

> crossplot(pred.pm, "slices", var=10, cumul=T,

title="Cumulative effects of a 10-unit increase in PM10 along lags")

The function includes the pred.pm object with the stored results, and the argument "slices" defines
that we want to graph the relationship at specific values of the two dimensions (predictor and lag).
With var=10 we specify this relationship along lags for a specific value of PM10, i.e. 10 µgr/m3.
This effect is compared to the reference value of 0 µgr/m3, giving the lag-specific effects for a 10-unit
increase. The argument cumul indicates if cumulative effect, previously saved in pred.pm, must be
plotted. The results are shown in Figures 1a-1b. The interpretation is twofold: the curve represents
the increase in risk in each future day following an increase of 10 µgr/m3 in PM10 in a specific day
(forward interpretation), or otherwise the contributions of each past day with the same PM10 increase
to the risk in a specific day (backward interpretation). The plots in Figures 1a-1b suggest that the
initial increase in risk of PM10 is reversed at longer lags. The overall effect for a 10-unit increase in
PM10 over 15 days of lag (i.e. summing all the effects up to the maximum lag), together with its 95%
confidence intervals can be extracted by the objects allRRfit, allRRhigh and allRRlow included in
pred.pm, typing:

> pred.pm$allRRfit["10"]
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0.9997563

> cbind(pred.pm$allRRlow, pred.pm$allRRhigh)["10",]

[1] 0.991687 1.007891

5.3 Example 2: seasonal analysis

The purpose of the second example is to illustrate an analysis where the data are restricted to a specific
season. The main feature of these analysis is that the data are assumed to be composed by multiple
equally-spaced and ordered series of the same season for each year, and do not represent a single
continuous series. In this case, we assess the effect of ozone and temperature on overall mortality up
to 5 and 10 days of lag, respectively, using the same steps already seen in Section 5.2.

First, we create the new data restricting to the summer period (June-September) the dataframe
chicagoNMMAPS:

> chicagoNMMAPSseas <- subset(chicagoNMMAPS, month %in% 6:9)

Again, we first create the cross-basis matrices:

> basis.o3 <- crossbasis(chicagoNMMAPSseas$o3, group=chicagoNMMAPSseas$year,

vartype="hthr", varknots=40.3, lagtype="integer", maxlag=5)

> basis.temp <- crossbasis(chicagoNMMAPSseas$temp, group=chicagoNMMAPSseas$year,

vartype="dthr", varknots=c(15,25), lagtype="strata", lagknots=c(2,6),

maxlag=10)

The argument group indicates the variable which defines multiple series: the function then breaks
the series at the end of each group and replaces the first maxlag rows of the cross-basis matrix in
the following series with NA. Here we make the assumption that the effect of O3 is null up to 40.3
µgr/m3 and then linear, applying an high threshold parameterization. For temperature, we use a
double threshold with the assumption that the effect is linear below 10◦C and above 25◦C, and null
in between. Regarding the lag dimension, we specify an unconstrained function for O3, applying one
parameter for each lag (lagtype="integer") up to a 5 days. For temperature, we define 3 strata
intervals at lag 0-1, 2-5, 6-10. A summary of the choices made for the cross-bases can be shown by the
function summary.crossbasis().

The regression model includes a natural spline for day of the year (with 4 df) in order to describe the
seasonal effect within each year. Apart from that, the estimates and predictions are carried out in the
same way as in Section 5.2. The code is:

> model <- glm(death ~ basis.o3 + basis.temp + ns(doy, 4) + dow,

family=quasipoisson(), chicagoNMMAPSseas)

> pred.o3 <- crosspred(basis.o3, model, at=c(0:65,40.3,50.3))

The values for which the prediction must be computed are specified in at: here we define the integers
from 0 to 65 µgr/m3 (approximately the range of ozone distribution), plus the threshold and the value
50.3 µgr/m3 corresponding to a 10-unit increase above the threshold, which is automatically set as
the reference point for type="hthr" (see ?crossbasis). The vector is automatically ordered. We can
plot the lag-specific effects, similarly to Section 5.2, and also the overall effect of a 10-unit increase in
O3 with 95% confidence intervals. The commands are (results in Figures 2a-2b):
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Figure 2
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> crossplot(pred.o3, "slices", var=50.3, ci="bars",

title="Effects of a 10-unit increase in ozone along lags")

> crossplot(pred.o3,"overall",label="Ozone", ylim=c(0.9,1.3),

title="Overall effects of ozone over 5 days of lag")

In the first command, the argument ci="bars" states that, differently from the default "area" seen in
Figures 1a-1b, the confidence intervals are represented by bars. In the second command, the argument
type="overall" indicates that the overall effects (summed upon lags) must be plotted, with ylim

defining the range of the y-axis.

Similarly to the previous example, we can extract from pred.o3 the estimated overall effect for a
10-unit increase in ozone above the threshold, together with its 95% confidence intervals:

> pred.o3$allRRfit["50.3"]

50.3

1.069768

> cbind(pred.o3$allRRlow, pred.o3$allRRhigh)["50.3",]

[1] 1.026562 1.114792

The same plots and computation can be applied to the cold and heat effects of temperatures. For
example, we can describe the increase in risk for 1◦C beyond the low or high thresholds. The user can
perform this analysis repeating the steps above.
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5.4 Example 3: a complex DLNM

In the previous examples, the effects of air pollution (PM10 and O3, respectively) were assumed com-
pletely linear or linear above a threshold. This assumption facilitates both the interpretation and
the representation of the association: the dimension of the predictor is never considered, and the lag-
specific or overall effects for a 10-unit increase are easily plotted. In contrast, when considering the
non-linear effects of temperature, we need to adopt a bi-dimensional perspective in order to represent
effects which vary non-linearly along the space of the predictor and lags.

In this last example we specify a more complex DLNM, where the effects are estimated using smooth
non-linear functions for both dimensions . Despite the higher complexity of the relationship, we will
see how the steps required to specify and fit the model and predict the results are exactly the same as
for the simpler models see before in Sections 5.2-5.3, only requiring different plotting choices. The user
can apply the same steps to investigate the effects of temperature in previous examples, and extend
the plots for PM10 and O3. In this case we run a DLNM to investigate the effects of temperature and
PM10 on overall mortality up to lag 30 and 1, respectively.

These are the cross-basis matrices:

> basis.pm <- crossbasis(chicagoNMMAPS$pm10,vartype="lin", lagtype="strata",

cen=F, maxlag=1)

> basis.temp <- crossbasis(chicagoNMMAPS$temp, vartype="bs", vardf=5, vardegree=2,

lagdf=5, cenvalue=21, maxlag=30)

The chosen basis functions for the space of the predictor are a linear function for the effect of PM10

and a quadratic B-spline (vartype="bs") with 5 degrees of freedom for temperature (with varknots

placed by default at equally spaced quantiles in the space of the predictor). The basis for temperature
is centered at 21◦C, which will represent the reference point for the predicted effects. Regarding the
space of lags, we assume a simple lag 0-1 parameterization for PM10 (i.e. a single strata up to lag
1, keeping the default values of lagdf=1), while we define another cubic spline, this time with the
natural constraint (lagtype="ns" by default) for the lag dimension of temperature. For this space,
lagknots are located by default at equally spaced values in the log scale of lags, while the boundary
knots are set to 0 and maxlag. The estimation, prediction and plotting of the effects of temperature
are performed by:

> model <- glm(death ~ basis.pm + basis.temp + ns(time, 7*14) + dow,

family=quasipoisson(), chicagoNMMAPS)

> pred.temp <- crosspred(basis.temp, model, at=-26:33)

> crossplot(pred.temp, label="Temperature",

title="3D graph of temperature effects")

> crossplot(pred.temp, "contour", label="Temperature",

title="Contour graph of temperature effects")

The 3-D and contour plots obtained by the commands above are represented in Figures 3a-3b. The
plot of the overall effects can be obtained by (result not shown):

> crossplot(pred.temp, "overall", label="Temperature",

title="Overall effects of temperature over 30 days of lag")

More comprehensively, Figure 4 shows the effects by temperature at multiple specific lags (left) and
the effect by lag at multiple specific temperatures (right). The arguments var and lag are used to
define the specific predictor and lag values for which the effects must be computed. These plots can

13



Figure 3

(a)

Temperature
−20

−10
0

10
20

30

La
g

0
5

10

15

20

25

30

R
R

0.95

1.00

1.05

1.10

3D graph of temperature effects

(b)

0.90

0.95

1.00

1.05

1.10

RR

−20 −10 0 10 20 30

0

5

10

15

20

25

30

Contour graph of temperature effects

Temperature

La
gs

Figure 4

−20 −10 0 10 20 30

0.
85

0.
95

1.
05

Lag = 0

Temperature

R
R

−20 −10 0 10 20 30

0.
85

0.
95

1.
05

Lag = 5

Temperature

R
R

−20 −10 0 10 20 30

0.
85

0.
95

1.
05

Lag = 15

Temperature

R
R

−20 −10 0 10 20 30

0.
85

0.
95

1.
05

Lag = 28

Temperature

R
R

0 5 10 15 20 25 30

0.
90

1.
00

1.
10

Temperature = −20

Lag

R
R

0 5 10 15 20 25 30

0.
90

1.
00

1.
10

Temperature = 0

Lag

R
R

0 5 10 15 20 25 30

0.
90

1.
00

1.
10

Temperature = 27

Lag

R
R

0 5 10 15 20 25 30

0.
90

1.
00

1.
10

Temperature = 33

Lag

R
R

14



be imagined as the results of cutting slices on the effect surface shown in Figures 3a-3b at the specific
values of temperature and lags, and provide a detailed overview of the effects surface together with
the related confidence intervals. This plot is carried out by:

> crossplot(pred.temp, "slices", var=c(-20,0,27,33),

lag=c(0,5,15,28), label="Temperature")

6 Conclusions

This document illustrates the functionalities of the dlnm package, providing a detailed overview of the
process to specify and run a DLNM and then to predict and plot its results. The main advantage of
this family of models is to unify many of the previous methods to deal with delayed effects in a unique
framework, also providing more flexible alternatives regarding the shape of the relationships. Section 3
provides a brief summary of the theory underpinning DLNM’s: a more detailed overview has been
published elsewhere (Armstrong, 2006; Gasparrini et al., 2010), together with a complete specification
of the algebra (Gasparrini et al., 2010).

The flexibility is kept when this framework is implemented in the dlnm package: several different
models with an increasing level of complexity can be performed using a simple and general procedure,
as showed in the examples in Section 5. As already explained, this method is not limited to the
examples on the effect of air pollution and temperature on mortality, but can be applied to investigate
the relationship between any predictor and outcomes in time-series data.

The choice of keeping separated the two steps of cross-basis specification and parameters estimation
offers several advantages. First, as illustrated in the example, more than one variable showing delayed
effects can be transformed through cross-basis functions and included in the model. Second, standard
regression commands can be used for estimation, with the default set of diagnostic tools and related
functions. More importantly, this implementation provides an open platform where additional models
specified with different regression commands can be included as well, aiding the development of these
methodology in other contexts or study designs.

The DLNM’s framework introduced here is developed for time series design. The general expression
of the model in allows this methodology to be applied for any family distribution and link function
within generalized linear models (GLM), with extensions to GAM or models based on generalized
estimating equations (GEE). Anyway, the current implementation of of DLNM’s requires single series
of equally-spaced and ordered data. Preliminary tests on the application of the functions included in
the package dlnm in case-control, cohort and longitudinal data are promising. Further development
may lead to a general framework to describe delayed effects, which spans different study designs.
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