
Importing text

Paul Murrell
The University of Auckland

September 20, 2010

This vignette concentrates on the issue of importing text from an external
graphics image (which has much more sophisticated support in the grImport
package as of version 0.6).

Figure 1 shows a very simple image that contains text. This is a PostScript
file called hello.ps, which just displays the word “hello”.

hello
Figure 1: A simple image that contains text.

Importing text as paths

The default approach for importing text is to convert all characters into paths
and stroke (draw the outline of) the paths. The following R code traces the
simple text image shown in Figure 1, reads the resulting RGML file into R, and
draws it. The image drawn by R is shown in Figure 2.

R> library(grImport)

R> PostScriptTrace("hello.ps", "hello.xml")

R> hello <- readPicture("hello.xml")

R> grid.picture(hello)

A small improvement can be gained by using a thinner line to draw the text
outline and it is possible to improve the smoothness of the character outlines
via the setflat argument when tracing the original image. The following code
provides an example, with the result shown in Figure 3.

1



Figure 2: The simple image from Figure 1 after default tracing, importing, and
rendering by grImport.

Figure 3: The simple image from Figure 1 after smoother tracing, normal im-
porting, and rendering with a thin line. Compare the smoothness of the ‘o’ in
this image with the rougher ‘o’ in Figure 2.

R> PostScriptTrace("hello.ps", "hello-smooth.xml", setflat=0.5)

R> helloSmooth <- readPicture("hello-smooth.xml")

R> grid.picture(helloSmooth, use.gc=FALSE, gp=gpar(lwd=1))

The characters are drawn as outlines by default because the character shapes
are complex polygons that R cannot necessarily render correctly. It is possible to
instruct grImport to use a simple algorithm that attempts to fill the characters
(basically fill the first path in the character using the text colour then fill the
remaining paths in the character using another “background” colour). This ap-
proach is controlled via the fillText and bgText arguments to grid.picture
(technically, they are arguments passed to the grobify function). The bgText
argument is either a single colour, or a named vector of colours; in the lat-
ter case, a different background colour can be specified for different characters
(e.g., "white" to fill the hole in an ‘o’, but "black" to fill the dot in an ‘i’).
The following code draws the smoothly-traced simple text image by filling the
character paths (see Figure 4).

R> grid.picture(helloSmooth, fillText=TRUE)

This simple filling algorithm will not work with all characters and all fonts
and it will not work if the background for the rendered image is supposed to be
transparent. Nevertheless, the result in Figure 4 has the nice property that it
is very close to the original text. If there is a small amount of large text in an
image, this approach may produce the best result.

However, it is important to note that filling the paths of characters is not the
same thing as drawing text using fonts (e.g., fonts contain “hinting” information
for drawing at small sizes), so for an image that contains lots of small text, this

2



Figure 4: The simple image from Figure 1 after smoother tracing, normal im-
porting, and rendering by filling the character paths.

hello
Figure 5: The simple image from Figure 1 after tracing as text and normal
importing and rendering. The dotted boxes indicate the bounding boxes for the
characters in the original text.

approach is probably not the best idea. If case space is an issue, tracing text as
character paths will also produce a large RGML file.

Importing text as text

The alternative to converting text to a set of character paths is to simply record
the text as a character value, plus its location and size. This is achieved via
the charpath argument to PostScriptTrace and the result is rendered as text
by grImport. The following code does this for the simple text image and the
result is shown in Figure 5.

R> PostScriptTrace("hello.ps", "helloText.xml", charpath=FALSE)

R> helloText <- readPicture("helloText.xml")

R> grid.picture(helloText)

This result is not as nice as the result from tracing the text as paths. How-
ever, it does have the benefit that it is drawing the text using fonts. This means
that, although it does not look exactly like the original text, it will look cleaner
and clearer than the filling-paths approach from the previous section, especially
at small sizes, plus we do not have to worry about things like getting the central
hole in an ‘o’ the right colour. The rendering will also probably be faster if that
is an issue.

The major difference between Figure 5 and the original image is the font. The
default text font in R graphics is a sans-serif font (Helvetica in this document),
while the font in the original image is (serif) Times Roman. One thing that
we can do is at least make the font a lot closer to the original by selecting a

3



hello
Figure 6: The simple image from Figure 1 after tracing as text, normal import-
ing, and rendering with a Times Roman font. The dotted boxes indicate the
bounding boxes for the characters in the original text.

hello
Figure 7: The simple image from Figure 1 after tracing as text, normal import-
ing, and rendering using the original text height to choose the font size. The
dotted boxes indicate the bounding boxes for the characters in the original text.

serif font for drawing text. This is what the following code does and the result
should match up much better (it matches up very well in this PDF document
because the default serif font for the PDF device is Times Roman; see Figure
6).

R> grid.picture(helloText, gp=gpar(fontfamily="serif"))

Note that, although Figure 6 looks very much like Figure 4, they are actually
quite different; the former is drawing the text “hello”using a Times Roman font,
while the latter is drawing a set of character paths.

Drawing with the same font as the original text is not always going to be
possible. It may be difficult to determine what the original font is (though see
later) and the original font may not be available (it may not be installed on the
computer where R is doing the drawing). In such cases, we have to make do
with the fonts at our disposal and the main problem that we face is determining
the font size to use for drawing text.

Going back to Figure 5 (i.e., the original text drawn with the wrong font),
this shows the default behaviour for drawing text with grImport, which is to
choose a font size so that the text will end up the same width as the original
text.

An alternative is to choose a font size based on the font size used in the
original text. This is done via the sizeByWidth argument, as shown in the
following code and Figure 7.

R> grid.picture(helloText, sizeByWidth=FALSE)

4



hello
Figure 8: The simple image from Figure 1 after tracing as text, normal im-
porting, and rendering by positioning each character based on the individual
character locations in the original text (and using the original text height to
choose the font size). The dotted boxes indicate the bounding boxes for the
characters in the original text.

It is important to note that font size (usually expressed as a number of
“points”, e.g., 10pt) is actually only an indication of the size of the characters in
a font. As Figure 7 shows, the characters from a 10pt Helvetica font are actually
larger than the same characters from a 10pt Times Roman font (the font that
was used in the original text).

In this particular example, the result of choosing font size based on the font
size of the original text is worse than choosing font size based on the width of
the original text. However, when an image contains several pieces of text at
the same font size, this approach will at least reproduce those text elements at
the same size as each other (even if neither their heights nor their widths are
completely faithful to the original image).

A further piece of fine tuning can be applied when tracing the original image.
The charpos argument to PostScriptTrace() can be used to specify that text
is recorded as individual characters, each with its own location. When combined
with choosing font size based on the original font size, this may produce a better
result than drawing the entire piece of text. The following code shows how to
perform this sort of tracing and Figure 8 shows the result. The overall width of
the result is much closer to the original text width, at the cost of some unusual
spacing between characters.

R> PostScriptTrace("hello.ps", "helloChar.xml",

+ charpath=FALSE, charpos=TRUE)

R> helloChar <- readPicture("helloChar.xml")

R> grid.picture(helloChar, sizeByWidth=FALSE)

It is also possible to trace the original text as individual characters, each
with their own locations, but to size by the width of the original characters.
However, this is unlikely to produce a very useful result because the font size
will probably vary for individual characters within a single piece of text. For
completeness, the following code and Figure 9 demonstrate this approach.

R> grid.picture(helloChar)

5



hello
Figure 9: The simple image from Figure 1 after tracing as text, normal im-
porting, and rendering by positioning each character based on the individual
character locations in the original text (and using the width of the original
characters to choose the font size). The dotted boxes indicate the bounding
boxes for the characters in the original text.

Implementation Details

The following information is recorded for each piece of text:

string: the text itself (even if the text is being traced as character paths);

x, y: (bottom-left) location of the text;

width and height: width and height of the text, though the latter is based
on the font size (in points) not the phyical height of the text;

angle: angle of rotation (degrees anti-clockwise from the positive x-axis);

bbox: tight bounding box for the text, which will depend on the characters in
the text, not just on the font;

fontName: the name of the font (and depending on the font there may also be
one or both of fontFamilyName and fontFullName).

The font name information is not read into R, but it is recorded in the RGML
file, so could be parsed to attempt to extract. for example, the font face (italic
or bold) for text elements of an image.

6


