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1 Introduction

This note shortly describes how a log-concave density can be estimated and what algo-
rithms are used in the package logcondens. It is by far not intended to give full reference
about the subject, more details can be found in Dümbgen et al. (2007); Dümbgen and
Rufibach (2009); Rufibach (2006, 2007).

2 Log-concave density estimation

A probability density f on the real line is called log–concave if it may be written as

f(x) = exp ϕ(x)

for some concave function ϕ : R → [−∞,∞). Let X1, X2, . . . , Xn be independent
random variables with such a log–concave probability density. The normalized log–
likelihood function is given by

`(ϕ) := n−1
n∑

i=1

ϕ(Xi).

It may happen that due to rounding errors one observes X̃i in place of Xi. In that
case, let x1 < x2 < · · · < xm be the different elements of {X̃1, X̃2, . . . , X̃n} and define
wj := n−1#{i : X̃i = xj}. Then an appropriate surrogate for the normalized log–
likelihood is

`(ϕ) :=
m∑

i=1

wiϕ(xi). (1)

In what follows we consider the functional (1) for arbitrary given points x1 < x2 < · · · <
xm and probability weights w1, w2, . . . , wm > 0, i.e.

∑m
i=1 wi = 1. Suppose that we want

to maximize `(ϕ) over all functions ϕ that are concave and induce a probability density.
This is equivalent to maximizing

L(ϕ) :=
m∑

i=1

wiϕ(xi)−
∫

expϕ(x) dx
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over all concave functions ϕ. From Theorem 3.2.1 in Rufibach (2006) we know that

ϕ̂m := arg min
ϕ concave

L(ϕ)

is piecewise linear on [x1, xm] with knots only in m̂ := {x1, . . . , xm} and ϕ̂m = −∞ on
R\[x1, xm]. Therefore, we can restrict our attention to functions of this type and rewrite
the log-likelihood function as

L(ϕ) = L(ϕ) :=
m∑

j=1

wjϕj −
m−1∑
k=1

∆xk+1J(ϕk, ϕk+1)

with

J(r, s) :=
∫ 1

0
exp

(
(1− t)r + ts

)
dt

for arbitrary r, s,∈ R where we tacitly introduced the following notation: Any continuous
concave function that is piecewise linear with knots only in m̂ can be identified with the
vector ϕ := (ϕ(xj))m

j=1 = (ϕj)m
j=1 ∈ Rm. Likewise, any vector ϕ ∈ Rm defines a function

ϕ via

ϕ(x) :=
(
1− x− xk

∆xk+1

)
ϕk +

x− xk

∆xk+1
ϕk+1 for x ∈ [xk, xk+1], 1 ≤ k < m,

where ∆xk := xk − xk−1. The maximization problem can now be reformulated to

max
ϕ∈Rm

L(ϕ)

under the constraints
∆ϕj

∆xj
− ∆ϕj−1

∆xj−1
≤ 0 for j = 3, . . . ,m .

Standard optimization techniques are now suitable to find this maximum.

3 An active set algorithm

This algorithm maximizes L by alternately going into the ordinary Newton direction
(only as far as the constraints allow) and altering the set of constraints. To find the
Newton direction, the gradient and the Hesse matrix of L are needed and are given
in Dümbgen et al. (2007). In the latter paper, the general framework for active set
algorithms is accounted for in Section 3.
This algorithm is implemented in the function activeSetLogCon.

4 An iterative convex minorant algorithm

To be able to apply such an algorithm, the function L needs to be reparametrized, see
Rufibach (2006, 2007). Define

η =
(
ϕ1,

(∆ϕi

∆xi

)m

i=2

)
,
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the vector of successive slopes of the piecewise linear concave function ϕ. The back-
parametrization is then

ϕ =
(
η1, η1 +

( i∑
j=2

∆xiηi

)m

i=2

)
.

Inserting this new parametrization η into L, the reparametrized log-likelihood function
L becomes

L(η) := L(η(ϕ))

= η1

m∑
i=1

wi +
m∑

i=2

ηi

m∑
i=k

wi∆xi − eη1

m∑
i=2

exp
( i−1∑

k=2

∆xkηk

)exp(∆xiηi)− 1
ηi

.(2)

The point of the reparametrization is, that the optimization problem now writes

max
η∈Rm

L(η)

under the constraints

ηi−1 ≥ ηi for i = 3, . . . ,m .

Now approximate (2) quadratically around a given ηo ∈ Rm by the quadratic function
L̃:

L̃(η) = L̃(η|ηo)
= L(ηo) +∇ηL(ηo)

′(η − ηo) + 2−1(η − ηo)
′W (ηo)(η − ηo)

where ∇ηL is the gradient of L and D some positive definite matrix, which we choose
to be the diagonal matrix that equals the Hesse on the diagonal. For ease of notation,
introduce g := ∇ηL(ηo) and d = diag(D(ηo)). Then rewrite L̃(η) as

L̃(η) = L̃(ηo) +
m∑

i=1

gi(ηi − ηo,i) + 2−1
m∑

i=1

di(ηi − ηo,i)2

= L̃(ηo)− 2−1
m∑

i=1

(gi/wi)2 + 2−1
m∑

i=1

di

(
ηi − (ηo,i − gi/di)

)2

and the maximization problem to solve becomes

max
η2≥···≥ηm

m∑
i=1

di

(
ηi − (ηo,i − gi/di)

)2
.

But this is exactly what a (weighted) pool-adjacent-violaters algorithm delivers (if we
set η1 = ηo,1 − g1/d1).
Using this, one gets a direction where to go in order to increase the likelihood. Supple-
mented by a robustification procedure and an Hermite interpolation as first described
in Dümbgen et al. (2006), such an iterative algorithm is implemented as the function
icmaLogCon.
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Dümbgen, L. and Rufibach, K. (2009). Maximum likelihood estimation of a log-
concave density and its distribution function. Bernoulli 15 40–68.

Rufibach, K. (2006). Log-concave density estimation and bump hunting for I.I.D.
observations. Ph.D. thesis, Universities of Bern and Göttingen.

Rufibach, K. (2007). Computing maximum likelihood estimators of a log-concave
density function. J. Statist. Comp. Sim. 77 561–574.

4


