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1 Parallel and Serial Tempering

Serial tempering (Marinari and Parisi, 1992; Geyer and Thompson, 1995)
runs a Markov chain whose state is (i, x), where i is a positive integer be-
tween 1 and k and x is an element of Rp. The unnormalized density of
the equilibrium distribution is h(i, x). The integer i is called the index of
the component of the mixture, and the integer k is called the number of
components of the mixture. The reason for this terminology is that

h(x) =
k∑

i=1

h(i, x), (1)

which is the unnormalized marginal density of x derived from the unnor-
malized joint density h(i, x) of the equilibrium distribution of the Markov
chain, is a mixture of k component distributions having unnormalized den-
sity h(i, · ) for different i.

Parallel tempering (Geyer, 1991) runs a Markov chain whose state is
(x1, . . . , xk) where each xi is an element of Rp. Thus the state is a vector
whose elements are vectors, which may be thought of as a k×p matrix. The
unnormalized density of the equilibrium distribution is

h(x1, . . . , xk) =
∏
i∈I

h(i, xi). (2)

This joint equilibrium distribution is the product of the marginals h(i, · ) for
different i. This the xi are asymptotically independent in parallel tempering.

2 Sensitivity to Normalization

So long as one is only interested in one of the component distributions
h(i, · ), both parallel and serial tempering do the job. And this job is
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what gives them the name “tempering” by analogy with simulated anneal-
ing (Marinari and Parisi, 1992). The other component distributions only
help in sampling the component of interest. In this job, parallel tempering
is easier to set up because it is insensitive to normalizing constants in the
following sense. Suppose we change the normalization for each component
distribution using

h∗(i, x) = aih(i, x).

This greatly changes the mixture distribution (1) sampled by simulated tem-
pering. We now get

h∗(x) =
k∑

i=1

h∗(i, x) =
k∑

i=1

aih(i, x),

which may be very different from (1), even considered as an unnormalized
density (which it is). But (2), considered as an unnormalized density (which
it is), does not change at all

h∗(x1, . . . , xk) =
k∏

i=1

h∗(i, x)

=
k∏

i=1

aih(i, x)

=

(
k∏

i=1

ai

)(
k∏

i=1

h(i, x)

)

=

(
k∏

i=1

ai

)
h(x1, . . . , xk)

(the normalizing constant changes, but that does not matter for an unnor-
malized density; it still specifies the same probability distribution). All this
is to say that serial tempering is very sensitive to the choices of normalizing
constants of the individual component distributions (the ai in the preceding
discussion) and parallel tempering is totally insensitive to them. Thus par-
allel tempering is easier to set up and get working. Geyer and Thompson
(1995), however, independently invented serial tempering because it worked
for a problem where parallel tempering failed. So for this “tempering” job,
where one is only interested in sampling one component distribution (and
the others are just helpers) parallel tempering is easier to use but serial
tempering works better.
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3 Umbrella Sampling

Sometimes one is actually interested in sampling a particular mixture
distribution having unnormalized density (1). This arises in Bayesian and
frequentist model averaging and for other reasons. An umbrella term for this
application is “umbrella sampling” (Torrie and Valleau, 1977). In this ap-
plication only serial tempering does more than parallel tempering. Parallel
tempering can simulate any directly specified mixture. If

f(i, x) =
h(i, x)∫
h(i, x) dx

are the normalized component distributions and b1, . . . , bk are nonnegative
and sum to one, then

f(x) =
k∑

i=1

bif(i, x)

is a normalized mixture distribution, and parallel tempering can be used to
sample it. However, this “directly specified” mixture is often not of interest
because the individual component normalizing constants

ci =
∫

h(i, x) dx (3)

are unknown. Suppose we are doing Bayesian model averaging and h(i, x)
is the unnormalized posterior density (likelihood times prior). This means
i and x are parameters to the Bayesian; i denotes the model and x de-
notes the within-model parameters. Then the normalizing constants (3) are
unnormalized Bayes factors, which Bayesians use for model comparison.

The function i 7→ ci is the unnormalized density of the marginal distri-
bution of the random variable i derived from the joint distribution h(i, x),
which is the equilibrium distribution of the Markov chain. It is therefore
estimated, up to a constant of proportionality, by the marginal distribution
of i. Thus serial tempering, unlike parallel tempering, provides simple and
direct estimates of Bayes factors and other normalizing constants.

4 Update Mechanisms

Traditionally, tempering makes two kinds of elementary updates, one
changes only x in serial tempering or one xi in parallel tempering. We call
them within-component updates, and will use normal random walk Metropo-
lis updates analogous to those used by the metrop function. The other kind
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changes i in serial tempering or swaps xi and xj in parallel tempering. We
call them jump/swap updates (jump in serial tempering, swap in parallel
tempering).

4.1 Serial Tempering

The combined update is a 50-50 mixture of within-component elementary
updates and jump updates. Suppose the current state is (i, x). A within-
component update proposes x∗ which is normally distributed centered at x.
Then Metropolis rejection of the proposal is done with Metropolis ratio

h(i, x∗)
h(i, x)

This is valid because the proposal is symmetric by symmetry of the normal
distribution. A jump update proposes i∗, which is chosen uniformly at
random from the “neighbors” of i (the neighbor relation is specified by a
user-supplied logical matrix). This proposal need not be symmetric, because
i and i∗ need not have the same number of neighbors. Write n(i) and
n(i∗) for these neighbor counts. Then the probability of proposing i∗ when
the current state is i is 1/n(i), and the probability of proposing i when
the current state is i∗ is 1/n(i∗). Hence the appropriate Hastings ratio for
Metropolis-Hastings rejection is

h(i∗, x)/n(i∗)
h(i, x)/n(i)

=
h(i∗, x)
h(i, x)

· n(i)
n(i∗)

4.2 Parallel Tempering

The combined update is a 50-50 mixture of within-component elementary
updates and swap updates. Suppose the current state is (x1, . . . , xk). A
within-component chooses i uniformly at random in {1, . . . , k}, and then
proposes x∗i which is normally distributed centered at xi. Then Metropolis
rejection of the proposal is done with Metropolis ratio

h(i, x∗i )
h(i, xi)

This is valid because the proposal is symmetric by symmetry of the normal
distribution. A swap update chooses i uniformly at random in {1, . . . , k}
and then j, which is chosen uniformly at random from the neighbors of
i. This proposal is automatically symmetric, because a swap move is its

4



own inverse. Hence the appropriate Hastings ratio for Metropolis-Hastings
rejection is

h(i, xj)h(j, xi)
h(i, xi)h(j, xj)

5 Acceptance Rates

Metropolis-Hastings acceptance rates are not comparable to Metropolis
acceptance rates. For serial tempering

E

{
1 ∧ h(i∗, x)

h(i, x)
· n(i)
n(i∗)

}
6= E

{
1 ∧ h(i∗, x)

h(i, x)

}
where the expectations are taken with respect to (i, x) having the equilib-
rium distribution of the Markov chain and the conditional distribution of i∗

given i being uniform over neighbors of i. For parallel tempering,

E

{
1 ∧ h(i, xj)h(j, xi)

h(i, xi)h(j, xj)
· n(i)
n(j)

}
6= E

{
1 ∧ h(i, xj)h(j, xi)

h(i, xi)h(j, xj)

}
where the expectations are taken with respect to (x1, . . . , xk) having the
equilibrium distribution of the Markov chain, (i, j) being independent of
(x1, . . . , xk), the marginal distribution of i being uniform on {1, . . . , k}, and
the conditional distribution of j given i being uniform over neighbors of i.

Thus we need to report rates going both ways, for example, for serial
tempering, when i = 1 and i∗ = 2 as well as when i = 2 and i∗ = 1. And
similarly for parallel tempering.
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