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A_dataSets Two artificial data sets

Description

The first artificial dataset is generated by the function :

f1 = function(t)

{ return( 0.8*atan(a*t) + exp(b*(-4-t)+1) + log(c*(4-t)+1) ) }

and the second one by :

f2 = function(t)

{ return( 0.8*atan(a*(4-t)) + exp(b*(-4+t)+1) + log(c*(4+t)+1) ) }

for a, b, c varying uniformly in [0,4] or [0,7].

The matrix dataIn contains the input parameters a, b, c in rows, while the matrices dataOut1
and dataOut2 are filled with the corresponding curves in rows (200 sample points).

Usage

datacf

Format

Matrices with 300 rows, and 3 columns for dataIn, 200 for the others (sample points).

CL_chameleon CHAMELEON clustering

Description

updateDissims auxiliar function to update dissimilarities between one cluster and every other.

chameleon main function to cluster data according to CHAMELEON method, described in the
article of Karypis et al. given in reference.

These two functions should not be called directly. Use gtclusts instead.

Usage

updateDissims(data, dissims, clusts, flags, index, alpha)

chameleon(data, dissims, K, alpha)
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Arguments

data matrix of n vectors in rows ; data[i,] is the i-th m-dimensional vector

dissims matrix of dissimilarities (can be simple L2 distances, or more complicated like
commute-times)

K expected number of clusters

alpha parameter controlling the relative importance of clusters’ connectivity ; usual
values range from 0.5 to 2

clusts the vector of current clusters (something like (1 1 1 2 2 3 1 3 3 4 4)
... describing classes)

flags boolean vector ; flags[i] == TRUE if i is the representative element for
its cluster

index index from which dissimilarities must be computed

Value

An integer vector describing classes (same as kmeans()$cluster field).

References

George Karypis, Eui-Hong Han and Vipin Kumar, CHAMELEON: A Hierarchical Clustering Al-
gorithm Using Dynamic Modeling, in IEEE Computer 32(8): 68-75, 1999

CL_clustering Main clustering function

Description

phclust performs R hierarchical cluster (using hclust()) with Ward linkage, and call cutree() after.

This function should not be called directly. Use the following one instead.

gtclusts main function to cluster data according to any method.

Usage

phclust(dissims, K)

gtclusts(method, data, K, d=min(10, ncol(data)), adn=FALSE, knn=0,
symm=TRUE, weight=FALSE, sigmo=FALSE, alpha=1.0)

Arguments

method the clustering method, to be chosen between “HDC” (k-means based on Hit-
ting Times), “CTH” (Commute-Time Hierarchic), “CTHC” (Commute-Time
CHAMELEON), “CTKM” (Commute-Time k-means), “specH” (“spectral-hierarchical”
clustering), “specKM” (spectral clustering with k-means), “CH” (hierarchical
clustering), “CHC” (CHAMELEON clustering), “PCA” (PCA-k-means from
Chiou and Li ; see references), “KM” (basic k-means)

data matrix of n vectors in rows ; data[i,] is the i-th m-dimensional vector
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dissims matrix of dissimilarities (can be simple L2 distances, or more complicated like
commute-times)

K expected number of clusters
d estimated data dimension (needed only for “ACP” method and when adn is

TRUE). It can be estimated using functions dimest1 or dimest2
adn boolean for adapted point-varying neighborhoods, from Wang et al. article ; in

short, the more linear data is around x, the more x has neighbors
knn fixed number of neighbors at each point ; used only if adn == FALSE. If zero,

a simple heuristic will determine it around sqrt(nrow(data))
symm boolean at TRUE for symmetric similarity matrix (see code. It does not impact

much the result
weight boolean at TRUE for weighted hitting/commute times, like in the article of

Liben-Nowell and Kleinberg
sigmo boolean at TRUE for sigmoid commute-time kernel, like in the article of Yen et

al.
alpha parameter controlling the relative importance of clusters’ connectivity in CHAMELEON

clustering ; usual values range from 0.5 to 2

Details

“Safe” methods are HDC, CTH, CTKM, CH, PCA and KM. Others could output weird results.

The spectral clustering is taken from the article of Ng et al., and adapted to work on a possibly
disconnected graph

adn should not be set when working with small datasets and/or in low dimension (<= 3)

When sigmo is set, the sigmoid commute-time kernel (Yen et al.) is computed with a=1. In the
paper authors say it need manual tuning.

Value

An integer vector describing classes (same as kmeans()$cluster field).

References

J-M. Chiou and P-L. Li, Functional clustering and identifying substructures of longitudinal
data, in Journal of the Royal Statistical Society 69(4): 679-699, 2007

G. Karypis, E.-H. Han and V. Kumar, CHAMELEON: A Hierarchical Clustering Algorithm
Using Dynamic Modeling, in IEEE Computer 32(8): 68-75, 1999

A. Y. Ng, M. Jordan and Y. Weiss, On Spectral Clustering: Analysis and an algorithm, at Ad-
vances in Neural Information Processing Systems, Vancouver, BC, Canada 14: 849-856, 2002

D. Liben-Nowell and J. Kleinberg ; The link-prediction problem for social networks, in Journal
of the American Society for Information Science and Technology 58(7): 1019-1031, 2007

J. Wang, Z. Zhang and H. Zha, Adaptive Manifold Learning, in Advances in Neural Information
Processing Systems 17: 1473-1480, 2005

L. Yen, D. Vanvyve, F. Wouters, F. Fouss, M. Verleysen and M. Saerens, Clustering using a
random-walk based distance measure, at Symposium on Artificial Neural Networks 13: 317-
324, Bruges, Belgium, 2005

L. Yen, F. Fouss, C. Decaestecker, P. Francq and M. Saerens, Graph nodes clustering with the
sigmoid commute-time kernel: A comparative study, in Data \& Knowledge Engineering 68(3):
338-361, 2009
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Examples

#generate a mixture of three gaussian data sets
data = rbind( matrix(rnorm(200,mean=2,sd=0.5),ncol=2),

matrix(rnorm(200,mean=4,sd=0.5),ncol=2),
matrix(rnorm(200,mean=6,sd=0.5),ncol=2) )

#cluster it using k-means
km = gtclusts("KM", data, 3)
#and using Commute-Time Hierarchic clustering
ct = gtclusts("CTH", data, 3, knn=20, symm=FALSE)
#plot results
plotPts(data, cl=km)
plotPts(data, cl=ct)

CL_comparts Comparing partitions (clustering)

Description

checkParts is an assymetric measure of the matching of P relatively to P_ref.

The two next indices are symmetric.

varInfo computes the variation of information index from Meila article.

countPart is a simple counter of matched elements, e.g. the matching level of (1,1,1,2) and
(1,1,2,3) is 2.

Usage

checkParts(P, P_ref)

varInfo(P1, P2)

countPart(P1, P2)

Arguments

P,P_ref,P1,P2
a partition of some data, as outputs by gtclusts ; e.g., (1,1,1,1,2,2,2,2,1,1,3,3,3)

Details

All indices are normalized to lie in the range (0,1).

The checkPartsmethod uses P clusters overlap over P_ref ones to compute an adequation index.
It is quite severe, designed for testing of clustering methods.

The “variation of information” index of Meila is a (mathematical) measure between partitions. This
is actually a nice property ; see article.

Value

A real number between 0 and 1, indicating the matching level between the two partitions.
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References

M. Meila, Comparing Clusterings, Statistics Technical Report 418, University of Washington,
2002

Examples

#comparing the three indices
P = c(1,1,2,2,2,2,2,2,3,3,3,4,4,4,1,1)
P_ref = c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4)
print(checkParts(P, P_ref))
print(varInfo(P, P_ref))
print(countPart(P, P_ref))

CL_findK_Clust Clustering input-output data

Description

findK_gtclusts is a procedure to determine the number of classes (and associate partitioning).

gtclusts_inout calls the previous method one on outputs, and then on each inputs cluster
(main procedure).

Usage

findK_gtclusts(x, y, method, d=min(10, ncol(data)), adn=FALSE, knn=0,
symm=TRUE, weight=FALSE, sigmo=FALSE, alpha=1.0, minszcl=30,
maxcl=Inf, mclass="kNN", taus=0.95, Ns=10, tauc=0.95, Nc=10,
trcv=0.7, nstagn=10)

gtclusts_inout(x, y, method, d=min(10, ncol(data)), redy=TRUE, adn=FALSE,
knn=0, symm=TRUE, weight=FALSE, sigmo=FALSE, alpha=1.0, minszcl=30,
maxcl=Inf, mclass="kNN", taus=0.95, Ns=10, tauc=0.95, Nc=10,
trcv=0.7, verb=TRUE, nstagn=10)

Arguments

x matrix of n input vectors in rows. x[i,] is the i-th p-dimensional input

y matrix of n discretized outputs in rows. y[i,] is the i-th D-dimensional output

method clustering method, to be chosen between “HDC” (k-means based on Hitting
Times), “CTH” (Commute-Time Hierarchic), “CTHC” (Commute-Time CHAMELEON),
“CTKM” (Commute-Time k-means), “specH” (“spectral-hierarchical” cluster-
ing), “specKM” (spectral clustering with k-means), “CH” (hierarchical cluster-
ing), “CHC” (CHAMELEON clustering), “PCA” (ACP-k-means from Chiou
and Li ; see references), “KM” (basic k-means)

d estimated (real) outputs dimensionality (should be far less than D) ; useful only
if one of the following parameters is set: redy,adn,method=="ACP"

redy boolean telling if the outputs should be reduced (with PCA) as a preprocessing
step

adn boolean for adapted point-varying neighborhoods, from Wang et al. article ; in
short, the more linear data is around x, the more x has neighbors
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knn fixed number of neighbors at each point ; used only if adn == FALSE

symm boolean at TRUE for symmetric similarity matrix (see code. It does not impact
much the result

weight boolean at TRUE for weighted hitting/commute times, like in the article of
Liben-Nowell and Kleinberg

sigmo boolean at TRUE for sigmoid commute-time kernel, like in the article of Yen et
al.

alpha parameter controlling the relative importance of clusters’ connectivity in CHAMELEON
clustering ; usual values range from 0.5 to 2

minszcl minimum size for a cluster. This is interesting to not allow too small clusters for
the regression stage ; recommanded values are above 30-50

maxcl maximum number of clusters ; Inf stands for “no limit”, i.e. determined by
stability-prediction loops only

mclass type of classifier to use in the prediction accuracy step ; choice between “kNN”
(k-nearest-neighbors), “ctree” (classification tree), “RDA” (Regularized Discrim-
inant Analysis), “rforest” (random forests), “SVM” (Support Vector Machines).
Only the first two were intensively tested

taus threshold for stability check ; value between 0 (every method accepted) and 1
(only ultra-stable method accepted). Recommanded between 0.6 and 0.9

Ns number of stability runs before averaging results (the higher the better, although
slower..)

tauc threshold for prediction accuracy check (after subsampling) ; value between
0 (every clustering accepted) and 1 (only “well separated” clusters accepted).
Recommanded between 0.6 and 0.9

Nc number of partitions predictions runs before averaging results (same remark as
for Ns above)

trcv fraction of total examples on which a model is trained during cross-validation
procedures.

verb TRUE for printing what is going on. A further release will allow to choose levels
of verbosity.

nstagn number of allowed stages (increasing the number of clusters K) without added
clusters (if minszcl is large enough small clusters may end being merged).

Details

The algorithm works in two main steps :

1. subsample original data in data1 and data2, then cluster both, and measure similarity between
partitions at the intersection using the variation of information index of Meila article.

2. subsample a training set Tr in [1,n] where n is the number of data rows, then subsample a
set S which must contain [1,n] \ Tr. Cluster both sets, and use Tr to predict labels of the
testing set. Finally compare the partitions using simple “matching counter” after renumbering
(with the hungarian algorithm).

Both are repeated Ns, Nc times to get accurate estimators. We stop when these estimators fall
below the thresholds taus, tauc, and return corresponding partition.
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Value

An integer vector describing classes (same as kmeans()$cluster field). The number of clusters
is equal to its maximum value.

References

J-M. Chiou and P-L. Li, Functional clustering and identifying substructures of longitudinal
data, in Journal of the Royal Statistical Society 69(4): 679-699, 2007

G. Karypis, E.-H. Han and V. Kumar, CHAMELEON: A Hierarchical Clustering Algorithm
Using Dynamic Modeling, in IEEE Computer 32(8): 68-75, 1999

A. Y. Ng, M. Jordan and Y. Weiss, On Spectral Clustering: Analysis and an algorithm, at Ad-
vances in Neural Information Processing Systems, Vancouver, BC, Canada 14: 849-856, 2002

D. Liben-Nowell and J. Kleinberg ; The link-prediction problem for social networks, in Journal
of the American Society for Information Science and Technology 58(7): 1019-1031, 2007

M. Meila, Comparing Clusterings, Statistics Technical Report 418, University of Washington,
2002

J. Wang, Z. Zhang and H. Zha, Adaptive Manifold Learning, in Advances in Neural Information
Processing Systems 17: 1473-1480, 2005

L. Yen, D. Vanvyve, F. Wouters, F. Fouss, M. Verleysen and M. Saerens, Clustering using a
random-walk based distance measure, at Symposium on Artificial Neural Networks 13: 317-
324, Bruges, Belgium, 2005

L. Yen, F. Fouss, C. Decaestecker, P. Francq and M. Saerens, Graph nodes clustering with the
sigmoid commute-time kernel: A comparative study, in Data \& Knowledge Engineering 68(3):
338-361, 2009

Examples

#generate a mixture of three gaussian data sets
inData = rbind( matrix(rnorm(200,mean=2,sd=0.5),ncol=2),

matrix(rnorm(200,mean=4,sd=0.5),ncol=2),
matrix(rnorm(200,mean=6,sd=0.5),ncol=2) )

#build artificial corresponding outputs
sPoints = seq(from=0,to=2*pi,by=2*pi/200)
cosFunc = cos(sPoints)
sinFunc = sin(sPoints)
outData = as.matrix(inData[,1]) %*% cosFunc + as.matrix(inData[,2]^2) %*% sinFunc
#partition only outputs using hierarchical clustering
ch = findK_gtclusts(inData, outData, "CH", knn=20, minszcl=50, mclass="kNN",

taus=0.8, Ns=10, tauc=0.8, Nc=10)
#plot result
plotC(outData, cl=ch)
#partition inputs-outputs using Commute-Time Hierarchic clustering
ct = gtclusts_inout(inData, outData, "CTH", knn=20, minszcl=50, mclass="kNN",

taus=0.8, Ns=10, tauc=0.8, Nc=10)
#plot results, inputs then outputs
plotPts(inData, cl=ct)
plotC(outData, cl=ct)
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CL_kmeans k-means like functions

Description

km_dists = k-means based on a distance matrix.

km_PCA = generalization of classical k-means for functional case, by Chiou and Li.

Usage

km_dists(distm, K, nstart=10, maxiter=100)

km_PCA(data, K, d, simplif=TRUE, maxiter=50)

Arguments

data matrix of n vectors in rows ; data[i,] is the i-th m-dimensional vector

distm matrix of distances (can be simple L2 distances, or more complicated like commute-
times)

K expected number of clusters

d estimated data dimension. It can be estimated using functions dimest1 or
dimest2

simplif boolean at TRUE for simplified algorithm, without leave-one-out SVD’s (actu-
ally very costly)

nstart number of algorithm runs with random initialization

maxiter maximum number of iterations within one algorithm run

Details

The k-means using a distances matrix is exactly the same algorithm as classical k-means, except for
the choice of centroids, which must belong to the dataset.

The PCA-k-means algorithm replaces the centroids by centroids plus local basis functions obtained
by (functional) PCA. The closeness to a cluster is computed relatively to this full system, instead of
a centroid only. Apart from this point, the algorithm is similar to k-means ; but more general. The
simplif argument allows or not a simplification avoiding very costly leave-one-out procedure,
(re)computing local basis after slight data change. It can be switched off without fears for big
enough clusters (say, more then a few dozens).

Value

An integer vector describing classes (same as kmeans()$cluster field).

References

J-M. Chiou and P-L. Li, Functional clustering and identifying substructures of longitudinal
data, in Journal of the Royal Statistical Society 69(4): 679-699, 2007
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Examples

#generate a mixture of three gaussian data set, and compute distances
data = rbind( matrix(rnorm(200,mean=2,sd=0.5),ncol=2),

matrix(rnorm(200,mean=4,sd=0.5),ncol=2),
matrix(rnorm(200,mean=6,sd=0.5),ncol=2) )

dists = as.matrix(dist(data))
#cluster using k-means
km = km_dists(dists, 3)
#plot result
plotPts(data, cl=km)
#and using km_PCA clustering after artificial functional transformation
sPoints = seq(from=0,to=2*pi,by=2*pi/200)
cosFunc = cos(sPoints)
sinFunc = sin(sPoints)
fdata = as.matrix(data[,1]) %*% cosFunc + as.matrix(data[,2]^2) %*% sinFunc
kp = km_PCA(fdata, 3, 2)
#plot result
plotC(fdata, cl=kp)

CL_refining Rearrangement of clusters

Description

reordering changes the clusters numerotation to use all the integers from 1 to K.

fusion_smcl merges clusters until no one has size inferior than minszcl argument.

mergeToK merges clusters given through its arguments until there are exactly K classes.

Usage

reordering(clusts)

fusion_smcl(data, clusts, minszcl)

mergeToK(data, clusts, K)

Arguments

data matrix of n vectors in rows ; data[i,] is the i-th m-dimensional vector

clusts a partition of the data, as outputs by gtclusts ; e.g., (1,1,1,1,2,2,2,2,1,1,3,3,3)

K expected number of clusters

minszcl minimum size of a cluster

Value

An integer vector describing classes (same as kmeans()$cluster field).



CL_spectral 11

Examples

#on an artificial dataset
data = matrix(runif(300),ncol=3)
clusts = gtclusts("KM",data,10)
print(clusts)
#fusion clusters of size >=20
print(reordering(fusion_smcl(data,clusts,20)))
#merge until 3 clusters
print(mergeToK(data,clusts,3))

CL_spectral Spectral clustering

Description

spec_emb embeds data into R^d, using symmetric laplacian (see Ng et al. article).

spec_clust clusters data into K classes using spectral embedding.

These two functions should not be called directly. Use gtclusts instead.

Usage

spec_emb(data, K, d, adn, knn)

spec_clust(method, data, K, d, adn, knn)

Arguments

data matrix of n vectors in rows ; data[i,] is the i-th m-dimensional vector

method the clustering (sub-)method, to be chosen between “specH” (“spectral-hierarchical”
clustering) and “specKM” (spectral clustering with k-means)

K expected number of clusters

d estimated data dimension, e.g. as output by functions dimest1 or dimest2

adn boolean for adapted point-varying neighborhoods, from Wang et al. article ; in
short, the more linear data is around x, the more x has neighbors

knn fixed number of neighbors at each point ; used only if adn == FALSE

Details

The spec_clust procedures works also for disconnected graphs by merging connected compo-
nents (if more than K), or subdivising largest clusters when K is bigger than the number of connected
components.

Value

spec_emb returns a matrix embedding the data in rows.

spec_clust returns an integer vector describing classes (same as kmeans()$cluster field).
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References

A. Y. Ng, M. Jordan and Y. Weiss, On Spectral Clustering: Analysis and an algorithm, at Ad-
vances in Neural Information Processing Systems, Vancouver, BC, Canada 14: 849-856, 2002

J. Wang, Z. Zhang and H. Zha, Adaptive Manifold Learning, in Advances in Neural Information
Processing Systems 17: 1473-1480, 2005

CR_classification Building a classifier

Description

learnClassif builds a classifier object (see code for details).

optimParams_classif optimize parameters for the chosen method.

These two methods should not be called directly. Using the specific technique inside its own pack-
age is a better idea.

Usage

learnClassif(x, y, method, params)

optimParams_classif(x, y, method, knn, trcv)

Arguments

x matrix of n input vectors in rows. x[i,] is the i-th p-dimensional input

y matrix of n outputs in rows. y[i,] is the i-th m-dimensional output

method classification method, to be chosen between “kNN” (k-nearest-neighbors), “ctree”
(classification trees), “RDA” (Regularized Discriminant Analysis), “rforest” (ran-
dom forests), “SVM” (Support Vector Machines)

params vector of parameters for the chosen method

knn fixed number of neighbors at each point to build the training set in cross-validation
procedure

trcv fraction of total examples on which a model is trained during cross-validation
procedure.

Value

learnClassif returns a classifier object (internal specifications).

optimParams_classif returns a vector of optimized parameters for the chosen method.
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CR_knnlpca Prediction for no-dimensionality-reduction-methods

Description

knnPredict and lpcaPredict predict the response(s) for the given input(s), using fkNN
and lPCA models.

These functions should not be called directly. Use predictRegress instead.

Usage

knnPredict(x_train, y_train, x, knn)

lpcaPredict(x_train, y_train, x, knn, stzouts=TRUE)

Arguments

x_train matrix of n training input vectors in rows. x_train[i,] is the i-th p-dimensional
training input

y_train matrix of n training outputs in rows. y_train[i,] is the i-th m-dimensional
output

x matrix (or vector) of q testing input vectors in rows. x[i,] is the i-th p-
dimensional testing input

knn fixed number of neighbors at each point

stzouts boolean at TRUE for standardize outputs y_train (after internal dimensional-
ity reduction)

Value

A matrix of predictions, in same format as y_train.

CR_planExp Extract training set

Description

xtr_plan1 and xtr_plan2 extract a training set from n samples.

Usage

xtr_plan1(data, knn, trcv)

xtr_plan2(data, knn, trcv)
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Arguments

data matrix of n vectors in rows. data[i,] is the i-th m-dimensional vector

knn fixed number of neighbors at each point to build the training set in cross-validation
procedure

trcv fraction of total examples on which a model is trained during cross-validation
procedure.

Details

xtr_plan1 searches for the maximum local variance points. xtr_plan2 searches for the max-
imum local density points.

Value

An integer vector giving the indices of the selected plan.

Examples

#generate a mixture of three gaussian data set
data = rbind( matrix(rnorm(200,mean=2,sd=0.5),ncol=2),

matrix(rnorm(200,mean=4,sd=0.5),ncol=2),
matrix(rnorm(200,mean=6,sd=0.5),ncol=2) )

#extract a plan of type 1
x1 = xtr_plan1(data, 20, 0.7)
cols = rep(1,300) ; cols[x1] = 2
plotPts(data,cl=cols)
#extract a plan of type 2
x2 = xtr_plan2(data, 20, 0.7)
cols = rep(1,300) ; cols[x2] = 2
plotPts(data,cl=cols)

CR_regression Statistical learning (regression)

Description

learnRegress builds a regression object (see code for details).

optimParams_regress optimize parameters for the chosen method.

These two methods should not be called directly. Using the specific technique inside its own pack-
age is a better idea.

Usage

learnRegress(x, y, method, params, stred)

optimParams_regress(x, y, method, knn, trcv, verb)
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Arguments

x matrix of n input vectors in rows. x[i,] is the i-th p-dimensional input

y matrix of n outputs in rows. y[i,] is the i-th m-dimensional output

method regression method, to be chosen between “PPR” (Projection Pursuit Regres-
sion), “rforest” (random forests), “BRT” (boosting of regression trees), “kNN,
fkNN” (Nadaraya-Watson, after dimensionality reduction or not), “lPCA” (local
PCA regression, without dimensionality reduction), “GP” (gaussian processes),
“SVR” (Support Vector Regression)

params vector of parameters for the chosen method

stred boolean at TRUE for standardize outputs y

knn fixed number of neighbors at each point to build the training set in cross-validation
procedure

trcv fraction of total examples on which a model is trained during cross-validation
procedure.

verb TRUE for printing what is going on.

Value

learnRegress returns a regression object (internal specifications).

optimParams_regress returns a vector of optimized parameters for the chosen method.

M_errors Empirical error estimators

Description

fperrors estimates the error of a model on a specific testing set. It computes MSE errors indica-
tors, by comparing predictions to real curves.

Usage

fperrors(ypred, yreal, mntrain)

Arguments

ypred matrix of the predicted functions in rows (D sample points / columns)

yreal matrix of the expected functions (same format as ypred above)

mntrain mean curve of training outputs

Value

A list with MSE values for the model, and the constant estimator (equals to the training mean). The
corresponding attributes are named respectively “MSE” and “pvar”.
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Examples

#get the first artificial dataset and build a standard model of it
#using 250 training samples
data(datacf)
trainInds = sample(1:300, 250)
m = fmetam(dataIn[trainInds,],dataOut1[trainInds,],d=3,wcl=FALSE,mdim="linear")
#get the predicted curves and errors
pred = predict.modelcf(m, dataIn[-trainInds,])
errs = fperrors(pred,dataOut1[-trainInds,],colMeans(dataOut1[trainInds,]))
#plot the MSE and Q2 error curves
plot(errs$MSE, type="l", ylim=c(0,1), ylab="MSE")
plot(1-errs$MSE/errs$pvar, type="l", ylim=c(0,1), ylab="Q2")

M_printPlot Printing and plotting utilitiy functions

Description

plotC plots a matrix of curves (in rows).

plotPts plots a set of 2D points given by the column numbers in a matrix.

print.modelcf prints some relevant parameters of a constructed model (as output by fmetam).

Usage

plotC(data, cl=rep(1,nrow(data)), rg=c(min(data),max(data)), ...)

plotPts(data, cols=c(1,2), cl=rep(1,nrow(data)), ...)

## S3 method for class 'modelcf':
print(x, ...)

Arguments

data matrix of n vectors (“or functions”) in rows ; data[i,] is the i-th m-dimensional
vector

cl an integer vector with R colors to be applied to each row

rg the range on y axis in case of functions drawing

cols the two selected columns in case of points plotting

x a model as output by fmetam

... any other relevant graphical parameter(s)

Examples

#plot first artificial dataset
data(datacf)
plotC(dataOut1)
#generate a mixture of three gaussian data set
data = rbind( matrix(rnorm(200,mean=2,sd=0.5),ncol=2),

matrix(rnorm(200,mean=4,sd=0.5),ncol=2),
matrix(rnorm(200,mean=6,sd=0.5),ncol=2) )
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#cluster it using k-means
km = gtclusts("KM", data, 3)
#plot result
plotPts(data, cl=km)

RD_dimension Dimension estimation

Description

locdim1 estimates the local dimension at some point (a row of the distance matrix).

dimest1 estimates the intrinsic dimension of data, following the algorithm of Farahmand et al.

dimest2 uses the RML graph to estimate dimension through its simplices as indicated by Lin et
al. (this is really slow).

Usage

locdim1(x, knn)

dimest1(data, knn)

dimest2(data, knnmin, knnmax, tsoft=0.1)

Arguments

data matrix of n vectors in rows ; data[i,] is the i-th m-dimensional vector

x a row of the distance matrix computed from data

knn fixed number of neighbors at each point

knnmin minimum number of neighbors at each point

knnmax maximum number of neighbors at each point

tsoft tolerance factor for the visibility graph computation (between 0 and 1 ; should
be close to 0)

Value

An integer equals to the estimated dimension.

References

A. M. Farahmand, C. Szepesvari and J-Y. Audibert, Manifold-adaptive dimension estimation, at
24th International Conference on Machine Learning 227: 265-272, 2007

T. Lin, H. Zha and S. U. Lee, Riemannian Manifold Learning for Nonlinear Dimensionality
Reduction, at European Conference on Computer Vision, Graz, Austria 9: 44-55, 2006
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Examples

#generate a swissroll dataset
n = 300 ; h = 3
phi = runif(n, min=0, max=2*pi)
z = runif(n, min=0, max=h)
sw = cbind( phi*cos(phi), phi*sin(phi), z )

#estimate dimension
print(dimest1(sw, 20))
## Not run: print(dimest2(sw, 15, 25)) #WARNING: very very slow!

RD_GCEM Global Coordination of Exponential Maps

Description

GCEM embeds data in the d-dimensional space using a mixing of the Local PCA Manifold Learning
method from the Zhan et al. article, and the Riemannian Manifold Learning method from the Lin
et al. article.

GCEM_rec inverses the above procedure, reconstructing a curve (or any high dimensional vector)
from its low-dimensional representation.

Usage

GCEM(data, d, adn=FALSE, knn=0, alpha=0.5, tsoft=0.1,
thlvl=0.3, hdth=0)

GCEM_rec(GCout, newEmb)

Arguments

data matrix of n vectors in rows ; data[i,] is the i-th m-dimensional vector

d estimated data dimension. It can be estimated using functions dimest1 or
dimest2

adn boolean for adapted point-varying neighborhoods, from Wang et al. article ; in
short, the more linear data is around x, the more x has neighbors

knn fixed number of neighbors at each point (used only if adn==FALSE). If zero, a
simple heuristic will determine it around sqrt(nrow(data))

alpha fraction of overlapping elements when building the traversal sequence of neigh-
borhoods

tsoft tolerance factor for the visibility graph computation (between 0 and 1 ; should
be close to 0)

thlvl fraction of total elements of data to be embedded using the initial local basis

hdth “hard” threshold, same as above parameter but integer. It defines the maximum
level of elements in the Dijkstra graph which will be embedded using the initial
local basis. If zero, only thlvl is considered

GCout an object as output by GCEM function

newEmb a new embedding from which the high dimensional object has to be estimated
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Details

The algorithm works exactly as LPcaML algorithm, but the local PCA coordinates are replaced by
“local” RML coordinates. It is very experimental, and currently does not work as well as expected.

Value

A list with the embedding in $embed, and some technical parameters for reconstruction.

References

T. Lin, H. Zha and S. U. Lee, Riemannian Manifold Learning for Nonlinear Dimensionality
Reduction, at European Conference on Computer Vision, Graz, Austria 9: 44-55, 2006

J. Wang, Z. Zhang and H. Zha, Adaptive Manifold Learning, in Advances in Neural Information
Processing Systems 17: 1473-1480, 2005

Y. Zhan, J. Yin, G. Zhang and En Zhu, Incremental Manifold Learning Algorithm Using PCA
on Overlapping Local Neighborhoods for Dimensionality Reduction, at 3rd International Sym-
posium on Advances in Computation and Intelligence 5370: 406-415, 2008

Examples

#generate a swissroll dataset
n = 300 ; h = 3
phi = runif(n, min=0, max=2*pi)
z = runif(n, min=0, max=h)
#::set colors
rSize = 64
r = rainbow(rSize)
cols = r[pmin(floor((rSize/(2.0*pi))*phi)+1,rSize)]
#end set colors::
sw = cbind( phi*cos(phi), phi*sin(phi), z )

#launch algorithm and visualize result
emb = GCEM(sw, 2, alpha=0.7)$embed
plotPts(emb, cl=cols)

RD_LPcaML Local PCA Manifold Learning

Description

LPcaML embeds data in the d-dimensional space using the Local PCA Manifold Learning method
from the Zhan et al. article.

LPcaML_rec inverses the above procedure, reconstructing a curve (or any high dimensional vec-
tor) from its low-dimensional representation.

Usage

LPcaML(data, d, adn=FALSE, knn=0, alpha=0.5)

LPcaML_rec(LPout, newEmb)
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Arguments

data matrix of n vectors in rows ; data[i,] is the i-th m-dimensional vector
d estimated data dimension. It can be estimated using functions dimest1 or

dimest2

adn boolean for adapted point-varying neighborhoods, from Wang et al. article ; in
short, the more linear data is around x, the more x has neighbors

knn fixed number of neighbors at each point (used only if adn==FALSE). If zero, a
simple heuristic will determine it around sqrt(nrow(data))

alpha fraction of overlapping elements when building the traversal sequence of neigh-
borhoods

LPout an object as output by LPcaML function
newEmb a new embedding from which the high dimensional object has to be estimated

Details

The algorithm works in two main steps :

1. A traversal sequence of (overlapping) local neighborhoods is constructed, and a simple PCA
is computed in each neighborhood.

2. The reduced coordinates are then computed step by step, by optimizing an affine transforma-
tion matrix on the overlap between two neighborhoods.

The reconstruction function LPcaML_rec first find the right neighborhood, then apply inverse
affine transformation. For better explanations, see the article.

Value

A list with the embedding in $embed, and some technical parameters for reconstruction.

References

J. Wang, Z. Zhang and H. Zha, Adaptive Manifold Learning, in Advances in Neural Information
Processing Systems 17: 1473-1480, 2005

Y. Zhan, J. Yin, G. Zhang and En Zhu, Incremental Manifold Learning Algorithm Using PCA
on Overlapping Local Neighborhoods for Dimensionality Reduction, at 3rd International Sym-
posium on Advances in Computation and Intelligence 5370: 406-415, 2008

Examples

#generate a swissroll dataset
n = 300 ; h = 3
phi = runif(n, min=0, max=2*pi)
z = runif(n, min=0, max=h)
#::set colors
rSize = 64
r = rainbow(rSize)
cols = r[pmin(floor((rSize/(2.0*pi))*phi)+1,rSize)]
#end set colors::
sw = cbind( phi*cos(phi), phi*sin(phi), z )

#launch algorithm and visualize result
emb = LPcaML(sw, 2, alpha=0.7)$embed
plotPts(emb, cl=cols)
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RD_orthBasis Around orthonormal bases

Description

basisMostVar selects the sub-basis of most variable coefficients.

genFourier generates the Fourier basis on an interval.

getMedElem returns the functional median based on L2 norm.

simpleWavBasis returns the wavelet basis expansion corresponding “best” to some dataset.

All these methods should not be used directly. Use the following one instead.

linEmb performs decomposition onto an orthonormal basis amoung functional PCA, wavelets
(any filter), Fourier and B-spline basis.

linear_rec performs linear reconstruction based on coefficients.

Usage

basisMostVar(basis, data, nbCoefs)

genFourier(data, nbCoefs, withVar=TRUE)

getMedElem(data)

simpleWavBasis(data, lvl, filt)

linEmb(data, dim, linbt="PCA", filt="haar", wvar=TRUE)

Arguments

basis orthonormal functions (written as vectors) in rows

data matrix of n functions (written as vectors) in rows ; data[i,] is the i-th D-
dimensional function

nbCoefs,dim desired number of coefficients ; corresponds to basis resolution, reduced d-
dimensionality

withVar,wvar boolean telling if we should select the sub-basis with most variable coefficients

lvl the desired level (depth) in case of wavelets basis

filt the desired filter in case of wavelets basis ; choice between EXTREMAL PHASE
(daublet): “haar”, “dX” where X belongs to (4, 6, 8, 10, 12, 14, 16, 18, 20);
LEAST ASYMMETRIC (symmlet): “sX” where X belongs to (4, 6, 8, 10, 12,
14, 16, 18, 20); BEST LOCALIZED: “lX” where X belongs to (2, 4, 6, 14, 18,
20); COIFLET: “cX” where X belongs to (6, 12, 18, 24, 30)

linbt the type of (linear) orthonormal basis ; “PCA” for functional PCA, “wav” for
wavelets basis, “four” for Fourier basis and “bsp” for B-spline basis
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Value

linEmb returns a list L, with L$embed = matrix of d-dimensional embeddings in rows, L$basis =
matrix of orthonormal functions (in rows).

basisMostVar, genFourier and simpleWavBasis return a matrix of orthonormal func-
tions in rows.

getMedElem returns the functional median as a vector (like a row of any output matrix just above).

linear_rec performs linear reconstruction based on coefficients.

References

Functional PCA: J. Ramsay and B. W. Silverman, Functional Data Analysis, Springer 2005

Wavelets basis R package used is wmtsa available here http://cran.r-project.org/web/
packages/wmtsa/index.html

Examples

#generate a \dQuote{triginometric} functional dataset
cosFunc = cos( seq( from=0,to=2*pi,by=2*pi/200 ) )
sinFunc = sin( seq( from=0,to=2*pi,by=2*pi/200 ) )
coefs = matrix( runif(200),ncol=2 )
fdata = coefs %*% rbind(cosFunc, sinFunc)
#plot the two first Fourier functions
four = linEmb(fdata, 2, "four")
plotC(four$basis)
#output the three first PCA functions
fpca = linEmb(fdata, 3, "PCA")
plotC(fpca$basis)

RD_redDim Dimensionality reduction and associate reconstruction

Description

nlin_redDim nlin_redDim is a generic method for dimensionality reduction.

nlin_adaptRec is a generic method for reconstruction.

For internal use only ; use specific methods directly if you need.

Usage

nlin_redDim(method, data, d, adn, knn, alpha, knnmin, knnmax,
tsoft, thlvl, hdth)

nlin_adaptRec(method, embobj, newEmb)

http://cran.r-project.org/web/packages/wmtsa/index.html
http://cran.r-project.org/web/packages/wmtsa/index.html
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Arguments

method the dimensionality reduction method (to be) used

data matrix of n vectors in rows ; data[i,] is the i-th m-dimensional vector

d estimated data dimension. It can be estimated using functions dimest1 or
dimest2

adn boolean for adapted point-varying neighborhoods, from Wang et al. article ; in
short, the more linear data is around x, the more x has neighbors

knn fixed number of neighbors at each point (used only if adn==FALSE). If zero, a
simple heuristic will determine it around sqrt(nrow(data))

alpha fraction of overlapping elements when building the traversal sequence of neigh-
borhoods

knnmin minimum number of neighbors at each point

knnmax maximum number of neighbors at each point

tsoft tolerance factor for the visibility graph computation (between 0 and 1 ; should
be close to 0)

thlvl fraction of total elements of data to be embedded using the initial local basis

hdth “hard” threshold, same as above parameter but integer. It defines the maximum
level of elements in the Dijkstra graph which will be embedded using the initial
local basis. If zero, only thlvl is considered

embobj an object as outputs by RML, LPcaML or GCEM functions

newEmb a new embedding from which the high dimensional object has to be estimated

Value

A list with the embedding in $embed, and some technical parameters for reconstruction.

References

T. Lin, H. Zha and S. U. Lee, Riemannian Manifold Learning for Nonlinear Dimensionality
Reduction, at European Conference on Computer Vision, Graz, Austria 9: 44-55, 2006

J. Wang, Z. Zhang and H. Zha, Adaptive Manifold Learning, in Advances in Neural Information
Processing Systems 17: 1473-1480, 2005

Y. Zhan, J. Yin, G. Zhang and En Zhu, Incremental Manifold Learning Algorithm Using PCA
on Overlapping Local Neighborhoods for Dimensionality Reduction, at 3rd International Sym-
posium on Advances in Computation and Intelligence 5370: 406-415, 2008

RD_RML Riemannian Manifold Learning

Description

RML embeds data in the d-dimensional space using the Riemannian Manifold Learning method
from the Lin et al. article.

RML_rec inverses the above procedure, reconstructing a curve (or any high dimensional vector)
from its low-dimensional representation.
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Usage

RML(data, d, adn=FALSE, knnmin=0, knnmax=0, tsoft=0.1,
thlvl=0.3, hdth=0)

RML_rec(RLout, newEmb)

Arguments

data matrix of n vectors in rows ; data[i,] is the i-th m-dimensional vector

d estimated data dimension. It can be estimated using functions dimest1 or
dimest2

adn boolean for adapted point-varying neighborhoods, from Wang et al. article ; in
short, the more linear data is around x, the more x has neighbors

knnmin minimum number of neighbors at each point

knnmax maximum number of neighbors at each point

tsoft tolerance factor for the visibility graph computation (between 0 and 1 ; should
be close to 0)

thlvl fraction of total elements of data to be embedded using the initial local basis

hdth “hard” threshold, same as above parameter but integer. It defines the maximum
level of elements in the Dijkstra graph which will be embedded using the initial
local basis. If zero, only thlvl is considered

RLout an object as output by RML function

newEmb a new embedding from which the high dimensional object has to be estimated

Details

The algorithm works in two main steps :

1. An origin vector y0 is determined, and its neighbors are embedded by projection onto a local
tangent basis.

2. For further away elements y, we first find the predecessor yp of y on a shortest path from y0,
and the yp neighbors written yi1,...,yik. The core idea then is to preserve (as much as
possible) angles y-yp-yij to get the embedding z.

The reconstruction function RML_rec does exactly the same thing but from low-dimensional space
to high-dimensional one. For better explanations, see the article.

Value

A list with the embedding in $embed, and some technical parameters for reconstruction.

References

T. Lin, H. Zha and S. U. Lee, Riemannian Manifold Learning for Nonlinear Dimensionality
Reduction, at European Conference on Computer Vision, Graz, Austria 9: 44-55, 2006

J. Wang, Z. Zhang and H. Zha, Adaptive Manifold Learning, in Advances in Neural Information
Processing Systems 17: 1473-1480, 2005
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Examples

#generate a swissroll dataset
n = 300 ; h = 3
phi = runif(n, min=0, max=2*pi)
z = runif(n, min=0, max=h)
#::set colors
rSize = 64
r = rainbow(rSize)
cols = r[pmin(floor((rSize/(2.0*pi))*phi)+1,rSize)]
#end set colors::
sw = cbind( phi*cos(phi), phi*sin(phi), z )

#launch algorithm and visualize result
emb = RML(sw, 2, knnmin=15, knnmax=30)$embed
plotPts(emb, cl=cols)

Z_mixpred Mixing functional models

Description

Functions to define a mixture of already created models.

getcoefc returns a curve matching the maximums given by user (to facilitate models mixing).

mixpredf takes several models as arguments, and mix them after calling predict.modelcf.
This allows to benefit from different kinds of models.

Usage

getcoefc(D, inds, maxs=c(), rgs=c())

mixpredf(mods, coefs, x, verb = FALSE)

Arguments

D outputs dimensionality (usually a few hundreds)

inds (strictly) positive integer vector of desired local maximums locations

maxs positive real vector of desired local maximums amplitudes

rgs minimum number of neighbors at each point

mods a list of modelcf models, outputs of fmetam

coefs a list of curves (same length as training outputs), which are taken as mixture
coefficients (see details below)

x matrix of n testing input vectors in rows ; x[i,] is the i-th m-dimensional
testing input vector

verb TRUE for printing what is going on. A further release will allow to choose levels
ov verbosity.
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Details

getcoefc outputs a piecewise constant function, which locally constant parts are centered around
indices given in inds. The (integer) width of each locally constant part is given by the rgs vector
argument ; if not provided, the width is taken constant, equals to the maximum value which avoid
overlapping. maxs indicates the amplitude of each local maximum (piecewise constant), and will
equals (1,1,1,1,...) if not provided.

Value

getcoefc returns a sampled curve (with D values).

mixpredf returns a model prediction (matrix with curves in rows) ; same output format as
predict.modelcf.

Examples

#get the first artificial dataset and build three different models of it
#using 250 training samples
data(datacf)
trainInds = sample(1:300, 250)
m1 = fmetam(dataIn[trainInds,], dataOut1[trainInds,], d=3, wcl=FALSE,

mdim="linear")
m2 = fmetam(dataIn[trainInds,], dataOut1[trainInds,], d=3, wcl=FALSE,

mdim="RML", knnmin=15, knnmax=25)
m3 = fmetam(dataIn[trainInds,], dataOut1[trainInds,], d=3, wcl=FALSE,

mreg="fkNN")
#mix the three, giving \dQuote{first third} weight to the first,
#\dQuote{second third} weight to the second
#and \dQuote{third third} weight to the third one
mix = mixpredf(list(m1,m2,m3), list(c(rep(1,66),rep(0,134)),

c(rep(0,66),rep(1,67),rep(0,67)),c(rep(0,133),rep(1,67))),
dataIn[-trainInds,], verb=TRUE)

#plot the (L1) error between real and predicted curves
plotC(dataOut1[-trainInds,] - mix)

Z_modelcf package modelcf

Description

This package contains a generic way to build surrogate models of physical computer codes, when
inputs are vectors (in R^p) and outputs (continuous) curves from [a,b] to R. The curves are dis-
cretized on a finite grid t1,...,tD.

See Also

fmetam, predict.modelcf, mixpredf, nfoldcv.
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Z_modeling Build and validate the functional outputs model

Description

fmetam_1cl is a subroutine to do the dimensionality reduction step. Internal use only.

fmetam is the main method to build a model, using clustering and dimensionality reduction.

nfoldcv builds and tests several models with fixed parameters and ramdomly generated training
sets (cross-validation).

Usage

fmetam_1cl(x, y, d, mdim, adnRD, knnRD, linbt, filt, wvar, alpha,
knnmin, knnmax, tsoft, thlvl, hdth, mreg, ppts, stred, trcv, verb)

fmetam(x, y, d=0, mclust="CTH", mclass="kNN", redy=TRUE, adnCC=TRUE,
knnCC=0, wcl=TRUE, symm=FALSE, weight=TRUE, sigmo=FALSE, alphaCL=1.0,
minszcl=30, maxcl=Inf, taus=0.95, Ns=10, tauc=0.95, Nc=10,
mdim="linear", adnRD=FALSE, knnRD=0, linbt="PCA", filt="haar",
wvar=TRUE, alphaRD=0.5, knnmin=0, knnmax=0, tsoft=0.1, thlvl=0.3,
hdth=0, mreg="PPR", ppts=FALSE, stred=TRUE, trcv = 0.7, verb = TRUE)

nfoldcv(x, y, d=0, mclust="CTH", mclass="kNN", redy=TRUE, adnCC=TRUE,
knnCC=0, wcl=TRUE, symm=FALSE, weight=TRUE, sigmo=FALSE, alphaCL=1.0,
minszcl=30, maxcl=Inf, taus=0.95, Ns=10, tauc=0.95, Nc=10,
mdim="linear", adnRD=FALSE, knnRD=0, linbt="PCA", filt="haar",
wvar=TRUE, alphaRD=0.5, knnmin=0, knnmax=0, tsoft=0.1, thlvl=0.3,
hdth=0, mreg="PPR", ppts=FALSE, stred=TRUE, trcv = 0.7,
loo = FALSE, nfold=100, nhold=10, verb = TRUE, plotc=TRUE)

Arguments

x matrix of n input vectors in rows, given as a R matrix or filename. x[i,] is the
i-th p-dimensional input

y matrix of n discretized outputs in rows, given as a R matrix or filename. y[i,]
is the i-th D-dimensional output

d estimated (real) outputs dimensionality (should be far less than D) ; useful only
if one of the following parameters is set: redy,adn,method=="ACP"

mdim the dimensionality reduction method (to be) used : choice between “linear” for
orthonormal basis, “RML” for Riemannian Manifold Learning, “LPcaML” for
Local PCA Manifold Learning and “GCEM” for Global Coordination of Expo-
nential Maps

adnRD boolean for adapted point-varying neighborhoods in dimensionality reduction,
from Wang et al. article ; in short, the more linear data is around x, the more x
has neighbors

knnRD fixed number of neighbors at each point for dimensionality reduction (used
only if adnRD==FALSE). If zero, a simple heuristic will determine it around
sqrt(nrow(data))
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linbt the type of (linear) orthonormal basis ; “PCA” for functional PCA, “wav” for
wavelets basis, “four” for Fourier basis and “bsp” for B-spline basis

filt the desired filter in case of wavelets basis ; choice between EXTREMAL PHASE
(daublet): “haar”, “dX” where X belongs to (4, 6, 8, 10, 12, 14, 16, 18, 20);
LEAST ASYMMETRIC (symmlet): “sX” where X belongs to (4, 6, 8, 10, 12,
14, 16, 18, 20); BEST LOCALIZED: “lX” where X belongs to (2, 4, 6, 14, 18,
20); COIFLET: “cX” where X belongs to (6, 12, 18, 24, 30)

wvar boolean telling if we should select the sub-basis with most variable coefficients
alpha,alphaRD

fraction of overlapping elements when building the traversal sequence of neigh-
borhoods

knnmin minimum number of neighbors at each point

knnmax maximum number of neighbors at each point

tsoft tolerance factor for the visibility graph computation (between 0 and 1 ; should
be close to 0)

thlvl fraction of total elements of data to be embedded using the initial local basis

hdth “hard” threshold, same as above parameter but integer. It defines the maximum
level of elements in the Dijkstra graph which will be embedded using the initial
local basis. If zero, only thlvl is considered

mreg regression method to use ; choice between between “PPR” (Projection Pursuit
Regression), “rforest” (random forests), “BRT” (boosting of regression trees),
“kNN, fkNN” (Nadaraya-Watson, after dimensionality reduction or not), “lPCA”
(local PCA regression, without dimensionality reduction), “GP” (gaussian pro-
cesses), “SVR” (Support Vector Regression)

ppts TRUE for pointwise regression

stred TRUE for standardized outputs

trcv fraction of total examples on which a model is trained during cross-validation
procedures

mclust clustering method, to be chosen between “HDC” (k-means based on Hitting
Times), “CTH” (Commute-Time Hierarchic), “CTHC” (Commute-Time CHAMELEON),
“CTKM” (Commute-Time k-means), “specH” (“spectral-hierarchical” cluster-
ing), “specKM” (spectral clustering with k-means), “CH” (hierarchical cluster-
ing), “CHC” (CHAMELEON clustering), “PCA” (ACP-k-means from Chiou
and Li ; see references), “KM” (basic k-means)

mclass type of classifier to use in the prediction accuracy step ; choice between “kNN”
(k-nearest-neighbors), “ctree” (classification tree), “RDA” (Regularized Discrim-
inant Analysis), “rforest” (random forests), “SVM” (Support Vector Machines).
Only the first two were intensively tested

redy boolean telling if the outputs should be reduced (with PCA) as a preprocessing
step

adnCC boolean for adapted point-varying neighborhoods in clustering, from Wang et
al. article ; in short, the more linear data is around x, the more x has neighbors

knnCC fixed number of neighbors at each point in clustering ; used only if adnCL ==
FALSE

wcl FALSE for disable clustering step ; can be useful for comparison purposes

symm boolean at TRUE for symmetric similarity matrix (see code. It does not impact
much the result
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weight boolean at TRUE for weighted hitting/commute times, like in the article of
Liben-Nowell and Kleinberg

sigmo boolean at TRUE for sigmoid commute-time kernel, like in the article of Yen et
al.

alphaCL parameter controlling the relative importance of clusters’ connectivity in CHAMELEON
clustering ; usual values range from 0.5 to 2

minszcl minimum size for a cluster. This is interesting to not allow too small clusters for
the regression stage ; recommanded values are above 30-50

maxcl maximum number of clusters ; Inf stands for “no limit”, i.e. determined by
stability-prediction loops only

taus threshold for stability check ; value between 0 (every method accepted) and 1
(only ultra-stable method accepted). Recommanded between 0.6 and 0.9

Ns number of stability runs before averaging results (the higher the better, although
slower..)

tauc threshold for prediction accuracy check (after subsampling) ; value between
0 (every clustering accepted) and 1 (only “well separated” clusters accepted).
Recommanded between 0.6 and 0.9

Nc number of partitions predictions runs before averaging results (same remark as
for Ns above)

loo TRUE for leave-one-out cross-validation

nfold number of cross-validation loops to run

nhold number of curves to hold in the training step for cross-validation

verb TRUE for printing what is going on. A further release will allow to choose levels
of verbosity

plotc TRUE for plotting current Q2 curves at each step

Details

If coded argument is left unspecified (0), it will be estimated using Farahmand et al. algorithm.

The algorithm in fmetam works in three main steps :

1. Optional clustering of intputs-outputs.

2. Dimensionality reduction in each outputs cluster.

3. Statistical learning "inputs –> reduced coordinates".

The predict.modelcf function then computes the associated reconstruction "recuced coordi-
nates –> curves".

Value

fmetam_1cl and fmetam return a list of relevant parameters for internal use.

nfoldcv returns a list with the following attributes:

• curves = predicted curves (only in leave-one-out mode);

• MSE = (average) mean squares error curve for the model chosen;

• stMSE = corresponding standard deviation;

• pvar = (average) mean squares error curve for the training mean model;



30 Z_modeling

• stvar = corresponding standard deviation;

• Q2 = Q2 error curve (should be above 0 and close to 1);

• stQ2 = corresponding standard deviation;

• ssclust = measure of clusters’ sizes homogeneity (>=0, should be as small as possible);

• snclust = histogram vector of the number of clusters found over the runs; e.g., (0,0,32,78,0,...,0)
means 78 runs with 4 clusters and 32 runs with 3 clusters.

NOTE: standard deviations cannot be accurate if nfold parameter is too small. Value around 100
or above is recommended.
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Examples

data(datacf)
#plot curves of the dataset
plotC(dataOut1)
plotC(dataOut2)

#build a standard model of the first dataset using 250 training samples
trainInds = sample(1:300, 250)
m = fmetam(dataIn[trainInds,],dataOut1[trainInds,],d=3,wcl=FALSE,mdim="linear")
# print the model
print(m)
#get the predicted curves
pred = predict.modelcf(m, dataIn[-trainInds,])
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#get and plot error estimators
errs = fperrors(pred,dataOut1[-trainInds,],colMeans(dataOut1[trainInds,]))
plot(errs$MSE, type="l", ylim=c(0,1), ylab="MSE")
plot(1-errs$MSE/errs$pvar, type="l", ylim=c(0,1), ylab="Q2")

# run cross validation for the second dataset
nf = nfoldcv(dataIn,dataOut2,d=3,wcl=FALSE,mdim="linear",plotc=FALSE)
# plot MSE +/- standard deviation
rg = range(nf$MSE-nf$stMSE,nf$MSE+nf$stMSE)
plot(nf$MSE-nf$stMSE,type="l",lwd=3,col=4,ylim=rg); par(new=TRUE)
plot(nf$MSE+nf$stMSE,type="l",lwd=3,col=4,ylim=rg); par(new=TRUE)
plot(nf$MSE,type="l",lwd=3,col=1,ylim=rg)
# plot Q2 +/- standard deviation
rg = c(-0.5, 1.5)
plot(nf$Q2-nf$stQ2,type="l",lwd=3,col=4,ylim=rg); par(new=TRUE)
plot(nf$Q2+nf$stQ2,type="l",lwd=3,col=4,ylim=rg); par(new=TRUE)
plot(nf$Q2,type="l",lwd=3,ylim=rg)

Z_predict Predictions for some models

Description

predictClassif estimates the label of an object x.

predictRegress estimates the output y for an input x.

These two last functions should not be used directly. Prefer calling specific methods from some R
package.

predict.modelcf estimates the output curve y for an input vector x, using a model built by the
fmetam function.

Usage

predictRegress(model,newIn_s)

predictClassif(model,newIns)

## S3 method for class 'modelcf':
predict(object, x, verb = FALSE, ...)

Arguments

model a classification or regression model, as output by learnClassif or learnRegress
newIn_s, newIns

a matrix of (testing) input vectors in rows

object a modelcf model, output of fmetam

x a matrix of n input vectors in rows, which can be given as a R matrix or a text
file. x[i,] is the i-th p-dimensional input.

verb TRUE for printing what is going on. A further release will allow to choose levels
of verbosity

... unused (for compatibility with generic method predict)



32 Z_predict

Value

predictClassif (resp. predictRegress) returns a vector of integer (resp. real) values.

predict.modelcf return a matrix of curves in rows, one for each testing example.

Examples

#get the first artificial dataset and build a standard model of it
#using 250 training samples
data(datacf)
trainInds = sample(1:300, 250)
m = fmetam(dataIn[trainInds,],dataOut1[trainInds,],d=3,wcl=FALSE,mdim="linear")
#get the predicted curves
pred = predict.modelcf(m, dataIn[-trainInds,])
#plot the (L1) error between real and predicted curves
plotC(dataOut1[-trainInds,] - pred)
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