
L1 and L2 Penalized Regression Models

Jelle Goeman

September 17, 2010

Contents

1 Introduction 2

2 Penalized likelihood estimation 2
2.1 the nki70 data . 3
2.2 the penalized function . 3
2.3 choice of lambda . 4
2.4 penfit objects . 4
2.5 standardization . 5
2.6 unpenalized covariates . 6
2.7 factors . 6
2.8 fitting in steps . 6
2.9 a positivity constraint . 8

3 Pretesting 8

4 Cross-validation and optimization 10
4.1 cross-validation . 10
4.2 breslow objects . 11
4.3 profiling the cross-validated log likelihood 12
4.4 optimizing the cross-validated likelihood 14

5 A note on standard errors and confidence intervals 15

1

1 Introduction

This short note explains the use of the penalized package. The package is de-
signed for penalized estimation in generalized linear models. The lasso and
elastic net algorithm that it implements is described in Goeman (2010). Please
cite that paper if you use this package.

The supported models at this moment are linear regression, logistic regres-
sion, poisson regression and the Cox proportional hazards model, but others
are likely to be included in the future. As to penalties, the package allows an
L1 absolute value (“lasso”) penalty (Tibshirani, 1996, 1997), an L2 quadratic
(“ridge”) penalty (Hoerl and Kennard, 1970; Le Cessie and van Houwelingen,
1992; Verweij and Van Houwelingen, 1994), or a combination of the two (the
“naive elastic net” of Zou and Hastie, 2005). The package also includes facilities
for likelihood cross-validation and for optimization of the tuning parameter.

L1 and L2 penalized estimation methods shrink the estimates of the regres-
sion coefficients towards zero relative to the maximum likelihood estimates. The
purpose of this shrinkage is to prevent overfit arising due to either collinearity
of the covariates or high-dimensionality. Although both methods are shrinkage
methods, the effects of L1 and L2 penalization are quite different in practice.
Applying an L2 penalty tends to result in all small but non-zero regression co-
efficients, whereas applying an L1 penalty tends to result in many regression
coefficients shrunk exactly to zero and a few other regression coefficients with
comparatively little shrinkage. Combining L1 and L2 penalties tends to give a
result in between, with fewer regression coefficients set to zero than in a pure L1
setting, and more shrinkage of the other coefficients. The amount of shrinkage
is determined by tuning parameters λ1 and λ2. A value of zero always means
no shrinkage (= maximum likelihood estimation) and a value of infinity means
infinite shrinkage (= setting all regression coefficients to zero). For more details
about the methods, please refer to the above-mentioned papers.

It is important to note that shrinkage methods are generally not invariant
to the relative scaling of the covariates. Before fitting a model, it is prudent to
consider if the covariates already have a natural scaling relative to each other
or whether they should be standardized.

The main algorithm for L1 penalized estimation that used in this package
will be documented in a forthcoming paper. It has been combined with ideas
from Eilers et al. (2001) and Van Houwelingen et al. (2006) for efficient L2
penalized estimation.

2 Penalized likelihood estimation

The basic function of the package is the penalized function, which performs
penalized estimation for fixed values of λ1 and λ2. Its syntax has been loosely
modeled on that of the functions glm (package stats) and coxph (package sur-
vival), but it is slightly more flexible in some respects. Two main input types
are allowed: one using formula objects, one using matrices.

2

2.1 the nki70 data

As example data we use the 70 gene signature of Van ’t Veer et al. (2002) in the
gene expression data set of Van de Vijver et al. (2002).

> library(penalized)

> library(survival)

> data(nki70)

This loads a data.frame with 144 breast cancer patients and 77 covariates.
The first two covariates indicate the survival time and event status (time is in
months), the next five are clinical covariates (diameter of the tumor, lymph node
status, estrogen receptor status, grade of the tumor and age of the patients), and
the other 70 are gene expression measurements of the 70 molecular markers. As
we are interested in survival as an outcome, we also need the survival package.

> set.seed(1)

2.2 the penalized function

The penalized function can be used to fit a penalized prediction model for
prediction of a response. For example, to predict the Estrogen Receptor status
ER for the patients in the nki70 data with the two markers “DIAPH3” and
“NUSAP1” at λ1 = 0 and λ2 = 1, we can say (all are equivalent)

> fit <- penalized(ER, ~DIAPH3 + NUSAP1, data = nki70, lambda2 = 1)

> fit <- penalized(ER, nki70[, 10:11], data = nki70, lambda2 = 1)

> fit <- penalized(ER ~ DIAPH3 + NUSAP1, data = nki70, lambda2 = 1)

The covariates may be specified in the second function argument (penalized)
as a formula object with an open left hand side, as in the first line. Alternatively,
they may be specified as a matrix or data.frame, as in the second line. If, as
here, they are supplied as a data.frame, they are coerced to a matrix.

For consistency with glm and coxph the third option is also allowed, in which
the covariates are included in the first function argument.

The penalized function tries to determine the appropriate generalized linear
model from the response variable. This automatic choice may not always be
appropriate. In such cases the model may be specified explicitly using the model
argument.

For the examples in the rest of this vignette we use the Cox proportional
hazerds model, using the survival time (Surv(time,event)) as the response to
be predicted. This is a Surv object.

> fit <- penalized(Surv(time, event) ~ DIAPH3 + NUSAP1, data = nki70,

lambda2 = 1)

We use attach to avoid specifying the data argument every time.

> attach(nki70)

3

2.3 choice of lambda

It is difficult to say in advance which value of lambda1 or lambda2 to use. The
penalized package offers ways of finding optimal values using cross-validation.
This is explained in Section 4

Note that for small values of lambda1 or lambda2 the algorithm be very
slow, may fail to converge or may run into numerical problems, especially in
high-dimensional data. When this happens, increase the value of lambda1 or
lambda2 .

2.4 penfit objects

The penalized function returns a penfit object, from which useful information
can be extracted. For example, to extract regression coefficients, (martingale)
residuals, individual relative risks and baseline survival curve, write

> residuals(fit)[1:10]

125 127 128 129 130 132 134
-0.1299336 0.7104811 -0.3517060 -0.2083512 -0.4264021 -0.3621108 0.7464918

135 136 137
-0.6172103 0.7367359 -0.4470460

> fitted(fit)[1:10]

125 127 128 129 130 132 134 135
0.4023261 1.0605204 0.8671254 0.6451380 1.3203100 1.1783128 0.7849620 1.3615191

136 137
1.2242175 0.5909803

> basesurv(fit)

A "breslow" object with 1 survival curve and 50 time points.

See help(penfit) for more information on penfit objects and Section 4.2 on
breslow objects.

The coefficients function extracts the named vector of regression coeffi-
cients. It has an extra second argument which that can be used to specify which
coefficients are of interest. Possible values of which are nonzero (the default)
for extracting all non-zero coefficients, all for all coefficients, and penalized
and unpenalized for only the penalized or unpenalized ones.

> coefficients(fit, "all")

DIAPH3 NUSAP1
-0.003347245 1.610876235

To extract the loglikelihood of the fit and the evaluated penalty function,
use

> loglik(fit)

[1] -257.7363

4

> penalty(fit)

L1 L2
0.000000 1.297467

The loglik function gives the loglikelihood without the penalty, and the
penalty function gives the fitted penalty, i.e. for L1 lambda1 times the sum of
the absolute values of the fitted coefficients.

The penfit object can also be used to generate predictions for new data using
the predict function. Pretending that the first three subjects in the nki70 data
are new subjects, we can find their predicted survival curves with either of

> predict(fit, ~DIAPH3 + NUSAP1, data = nki70[1:3,])

A "breslow" object with 3 survival curves and 50 time points.

> predict(fit, nki70[1:3, c("DIAPH3", "NUSAP1")])

A "breslow" object with 3 survival curves and 50 time points.

See Section 4.2 for more on breslow objects. We can get five year survival
predictions by saying

> pred <- predict(fit, nki70[1:3, c("DIAPH3", "NUSAP1")])

> survival(pred, time = 5)

125 127 128
0.8923100 0.7405612 0.7822537

2.5 standardization

If the covariates are not naturally on the same scale, it is advisable to standardize
them. The function argument standardize (default: FALSE) standardizes the
covariates to unit second central moment before applying penalization. This
standardization makes sure that each covariate is affected more or less equally
by the penalization.

The fitted regression coefficients that the function returns have been scaled
back and correspond to the original scale of the covariates. To extract the regres-
sion coefficients of the standardized covariates, use the coefficients function
with standardize = TRUE. This option is also available if the model was not
fitted with standardized covariates, as the covariates are always standardized
internally for numerical stability. To find the weights used by the function, use
weights(fit).

> coefficients(fit)

DIAPH3 NUSAP1
-0.003347245 1.610876235

> coefficients(fit, standardize = TRUE)

DIAPH3 NUSAP1
-0.0007849407 0.4300408953

> weights(fit)

DIAPH3 NUSAP1
0.2345035 0.2669609

5

2.6 unpenalized covariates

In some situations it is desirable that not all covariates are subject to a penalty.
Any additional covariates that should be included in the model without be-
ing penalized can be specified separately. using the third function argument
(unpenalized). For example (the two commands below are equivalent)

> fit <- penalized(Surv(time, event), nki70[, 8:77], ~ER, lambda2 = 1)

> fit <- penalized(Surv(time, event) ~ ER, nki70[, 8:77], lambda2 = 1)

This adds estrogen receptor status as an unpenalized covariate. Note in the
second line that right hand side of the formula object in the response argument
is automatically taken to be the unpenalized argument because the penalized
argument was given by the user.

In linear and logistic regression the intercept is by default never penalized.
The use of an intercept can be suppressed with penalized = 0̃. The intercept
is always removed from the penalized model matrix, unless the penalized model
consists of only an intercept.

It is possible to include an offset term in the model. Use the offset function
in the unpenalized argument, which must then be of formula type. The Cox
model implementation allows strata terms.

2.7 factors

If some of the factors included in the formula object penalized are of type factor ,
these are automatically made into dummy variables, as in glm and coxph, but
in a special way that is more appropriate for penalized regression.

Unordered factors are turned into as many dummy variables as the factor
has levels. This ensures a symmetric treatment of all levels and guarantees that
the fit does not depend on the ordering of the levels. See help(contr.none)
for details.

Ordered factors are turned into dummy variables that code for the differ-
ence between successive levels (one dummy less than the number of levels).
L2 penalization on such factors therefore leads to small successive differences;
L1 penalization leads to ranges of successive levels with identical effects. See
help(contr.diff) for details.

When fitting a model with factors with more than two levels with an L1
penalty, it is advisable to add a small L2 penalty as well in order to speed up
convergence. By varying the L2 penalty it can be checked that the L2 penalty
is not so large that it influences the estimates.

To override the automatic choice of contrasts, use C (package stats).
The response argument may also be also be specified as a factor in a logistic

regression model. In that case, the value levels(response)[1] is treated as a
failure (0), and all other values as a success (1).

2.8 fitting in steps

In some cases it may be interesting to visualize the effect of changing the tuning
parameter lambda1 or lambda2 on the values of the fitted regression coefficients.
This can be done using the function argument steps in combination with the

6

> plotpath(fit, log = "x")

10 5 2 1

−
1

0
1

2
3

lambda1

co
ef

fic
ie

nt

TSPYL5

Contig63649_RC

QSCN6L1

Contig32125_RC

SCUBE2

MMP9

RUNDC1

KNTC2

GPR180RAB6B
ZNF533
RTN4RL1

Contig40831_RC

COL4A2

GPR126

PECI.1

ORC6L

MS4A7

IGFBP5HRASLS

PITRM1

IGFBP5.1

NMU

PRC1

Contig20217_RC

CENPA

EGLN1

ESM1

C20orf46

plotpath function. At this moment, this functionality is only available for
visualizing the effect of lambda1 .

When using the steps argument, the function starts fitting the model at
the maximal value of λ1, that is the smallest value that shrinks all regression
coefficients to zero. From that value it continues fitting the model for steps suc-
cessively decreasing values of λ1 until the specified value of lambda1 is reached.

If the argument steps is supplied to penalized, the function returns a list
of penfit objects. These can be accessed individually or their coefficients can be
plotted using plotpath.

> fit <- penalized(Surv(time, event), nki70[, 8:77], lambda1 = 1,

steps = 50, trace = FALSE)

> plotpath(fit, log = "x")

Following Park and Hastie (2007) it is possible to choose the values of λ1

in such a way that these are the change-points at which the active set changes.
This can be done by setting steps = ”Park”.

> fit <- penalized(Surv(time, event), nki70[, 8:77], lambda1 = 1,

steps = "Park", trace = FALSE)

Note that plotpath plots the unstandardized coefficients by default. Stan-
dardized coefficients can be plotted (even when the model was not fitted with
standardized coefficients) with the standardize argument.

7

2.9 a positivity constraint

In some applications it is natural to restrict all estimated regression coefficients
to be positive. Such a positivity constraint is an alternative type of constrained
estimation that is easily combined with L1 and L2 penalization in the algorithm
implemented in the penalized package.

To add a positivity restriction to the regression coefficients of all penalized
covariates, set the function argument positive to TRUE (the default is FALSE).
Note that it is not strictly necessary to also include an L1 or L2 penalty; the
model can also be fitted with only a positivity constraint.

> fit <- penalized(Surv(time, event), nki70[, 8:77], positive = TRUE)

> coefficients(fit)

Contig63649_RC AA555029_RC ALDH4A1 QSCN6L1 FGF18
0.56883350 1.19479968 0.78893478 1.13549561 0.21511238

Contig32125_RC BBC3 RP5.860F19.3 OXCT1 MMP9
5.19060693 0.32578805 0.09279051 1.08253778 0.90786251

RUNDC1 ECT2 WISP1 MTDH Contig40831_RC
4.31995520 1.96799708 0.11182254 0.20738967 0.08058631

COL4A2 FBXO31 ORC6L RFC4 CDCA7
2.19059076 1.04830672 1.75330155 0.39074008 0.44076424

C9orf30 IGFBP5.1 PRC1 CENPA NM_004702
0.59695825 2.48990214 1.77488012 0.57635421 0.56779362

ESM1
1.63222843

3 Pretesting

Before fitting a penalized regression model it can be worthwhile to test the global
null hypothesis of no association between any of the predictor variables and the
response. A package that can do this is, and which ties very closely to the penal-
ized package is the globaltest package, available from www.bioconductor.org.
The package can be installed using the bioconductor install script

> source("http://bioconductor.org/biocLite.R")

> biocLite("globaltest")

The interface of globaltest is very similar to the interface of penalized . To
test for any evidence of association in the nki70 data, say

> library(globaltest)

> gt(Surv(time, event), nki70[, 8:77])

p-value Statistic Expected Std.dev #Cov
1 0.0076 2.95 0.694 0.93 70

The resulting p-value can be interpreted as a global indicator of predictive
ability. Data sets that have a significant test result almost always have a an
optimal lambda value smaller than infinity.

See the vignette of the globaltest package for details.

8

> fit <- penalized(Surv(time, event), nki70[, 8:77], positive = TRUE,

steps = 50)

> plotpath(fit)

6 4 2 0

0
1

2
3

4
5

lambda1

co
ef

fic
ie

nt

Contig63649_RC

NUSAP1

AA555029_RC

ALDH4A1

QSCN6L1

FGF18

Contig32125_RC

BBC3

RP5.860F19.3

OXCT1
MMP9

RUNDC1

ECT2

WISP1
MTDH
Contig40831_RC

COL4A2

FBXO31

ORC6L

RFC4CDCA7
C9orf30

IGFBP5

IGFBP5.1

PRC1

CENPANM_004702

ESM1

9

4 Cross-validation and optimization

Cross-validation can be used to assess the predictive quality of the penalized
prediction model or to compare the predictive ability of different values of the
tuning parameter.

The penalized package uses likelihood cross-validation for all models. Like-
lihood cross-validation has some advantages over other optimization criteria: it
tends to be a continuous function of the tuning parameter; it can be defined in
a general way for almost any model, and it does not require calculation the ef-
fective dimension of a model, which is problematic in L1 penalized models. For
the Cox proportional hazards model, the package uses cross-validated log partial
likelihood (Verweij and Van Houwelingen, 1993), which is a natural extension
of the cross-validated log likelihood to the Cox model.

Five functions are available for calculating the cross-validated log likelihood
and for optimizing the cross-validated log likelihood with respect to the tuning
parameters. They have largely the same arguments. See help(cvl) for an
overview.

4.1 cross-validation

The function cvl calculates the cross-validated log likelihood for fixed values of
λ1 and λ2.

It accepts the same arguments as penalized (except steps: see profL1 be-
low) as well as the fold argument. This will usually be a single number k to
indicate k-fold cross-validation. In that case, the allocation of the subjects to
the folds is random. Alternatively, the precise allocation of the subjects into
the folds can be specified by giving fold as a vector of the length of the number
of subjects with values form 1 to k, each indicating the fold allocation of the
corresponding subject. The default is to do leave-one-out cross-validation.

The function cvl returns a names list with four elements:

cvl the cross-validated log likelihood.

fold the fold allocation used; this may serve as input to a next call to cvl to
ensure comparability.

predictions the predictions made on each left-out subject. The format de-
pends on the model used. In logistic regression this is just a vector of
probabilities. In the Cox model this is a collection of predicted survival
curves (a breslow object). In the linear model this is a collection of pre-
dicted means and predicted standard deviations (the latter are the maxi-
mum penalized likelihood estimates of σ2).

fullfit the fit on the full data (a penfit object)

> fit <- cvl(Surv(time, event), nki70[, 8:77], lambda1 = 1, fold = 10)

> fit$cvl

[1] -256.4273

> fit$fullfit

10

Penalized cox regression object
70 regression coefficients of which 28 are non-zero

Loglikelihood = -214.92
L1 penalty = 24.29771 at lambda1 = 1

> fit <- cvl(Surv(time, event), nki70[, 8:77], lambda1 = 2, fold = fit$fold)

4.2 breslow objects

The breslow class is defined in the penalized package to store estimated survival
curves. They are used for the predictions in cross-validation and for the baseline
survival estimated in the penalized function. See help(breslow) for details.

> fit$predictions

A "breslow" object with 144 survival curves and 51 time points.

> time(fit$predictions)

[1] 0.0000000 0.3531828 0.6488706 0.9363276 0.9609856 1.2101300
[7] 1.3880903 1.5003422 1.6098563 1.6125941 1.7166324 1.7330595
[13] 1.9466119 1.9657769 1.9739904 2.2231348 2.2970568 2.3353867
[19] 2.3408624 2.6146475 2.6803559 2.6967830 2.8117728 2.8528405
[25] 3.1211499 3.2197125 3.4195756 3.4387406 3.6550308 3.9151266
[31] 4.2190281 4.4462697 4.6214921 4.6625599 4.9719370 5.1170431
[37] 6.5653662 6.9952088 8.1286790 8.3039014 8.5284052 8.5612594
[43] 8.9253936 8.9883641 9.9986311 11.2114990 11.7399042 12.4654346
[49] 14.0123203 17.4209446 17.6591376

> as.data.frame(basesurv(fit$fullfit))[1:10,]

survival time
1 1.0000000 0.0000000
2 0.9947948 0.3531828
3 0.9895787 0.6488706
4 0.9842225 0.9363276
5 0.9788527 0.9609856
6 0.9733970 1.2101300
7 0.9678684 1.3880903
8 0.9622905 1.5003422
9 0.9566938 1.6098563
10 0.9509489 1.6125941

> plot(fit$predictions)

We can easily extract the 5 year cross-validated survival probabilities

> survival(fit$predictions, 5)[1:10]

1 2 3 4 5 6 7 8
0.9262637 0.7871270 0.9037205 0.8940526 0.7460306 0.7476359 0.5469568 0.5707301

9 10
0.7625189 0.6623369

11

> plot(fit$predictions)

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

su
rv

iv
al

 p
ro

ba
bi

lit
y

4.3 profiling the cross-validated log likelihood

The functions profL1 and profL2 can be used to examine the effect of the
parameters λ1 and λ2 on the cross-validated log likelihood. The profL1 function
can be used to vary λ1 while keeping λ2 fixed, vice versa for profL2.

The minimum and maximum values between which the cross-validated log
likelihood is to be profiled can be given as minlambda1 and maxlambda1 or
minlambda2 and maxlambda2 , respectively. The default value of minlambda1
and minlambda2 is at zero. The default value of maxlambda1 is at the maximal
value of λ1, that is the smallest value that shrinks all regression coefficients to
zero. There is no default for maxlambda2 .

The number of steps between the minimal and maximal values can be given
in the steps argument (default 100). These steps are equally spaced if the
argument log is FALSE or equally spaced on the log scale if the argument log
is TRUE. Note that the default value of log differs between profL1 (FALSE) and
profL2 (TRUE). If log is TRUE, minlambda1 or minlambda2 must be given by the
user as the default value is not usable.

By default, the profiling is stopped prematurely when the cross-validated log
likelihood drops below the cross-validated log likelihood of the null model with
all penalized regression coefficients equal to zero. This is done because it avoids
lengthy calculations at small values of λ when the models are most likely not
interesting. The automatic stopping can be controlled using the option minsteps
(default steps/2). The algorithm only considers early stopping after it has done
at least minsteps steps. Setting minsteps equal to steps cancels the automatic

12

> plot(fit1$lambda, fit1$cvl, type = "l")

1 2 3 4 5 6

−
26

4
−

26
3

−
26

2
−

26
1

−
26

0
−

25
9

fit1$lambda

fit
1$

cv
l

stopping.
The functions profL1 and profL2 return a named list with the same elements

as returned by cvl, but each of cvl, predictions, fullfit is now a vector or
a list (as appropriate) as multiple cross-validated likelihoods were calculated.
An additional vector lambda is returned which lists the values of λ1 or λ2 at
which the cross-validated likelihood was calculated.

The allocation of the subjects into cross-validation folds is done only once,
so that all cross-validated likelihoods are calculated using the same allocation.
This makes the cross-validated log likelihoods more comparable. As in cvl the
allocation is returned in fold.

It is also possible in these functions to set fold = 1. This will cause no cross-
validation to be performed, but will let only the full data fits be calculated. This
can be used in a similar way to the use of the penalized function with its steps
argument, only with more flexibility.

> fit1 <- profL1(Surv(time, event), nki70[, 50:70], fold = 10)

> plot(fit1$lambda, fit1$cvl, type = "l")

> fit2 <- profL2(Surv(time, event), nki70[, 50:70], fold = fit1$fold,

minl = 0.01, maxl = 1000)

> plot(fit2$lambda, fit2$cvl, type = "l", log = "x")

The plotpath function can again be used to visualize the effect of the tuning
parameter on the regression coefficients.

> plotpath(fit2$fullfit, log = "x")

13

> plot(fit2$lambda, fit2$cvl, type = "l", log = "x")

5e−01 5e+00 5e+01 5e+02

−
26

4
−

26
2

−
26

0
−

25
8

fit2$lambda

fit
2$

cv
l

4.4 optimizing the cross-validated likelihood

Often we are not interested in the whole profile of the cross-validated likelihood,
but only in the optimum. The functions optL1 and optL2 can be used to find
the optimal value of λ1 or λ2.

The algorithm used for the optimization is the Brent algorithm for minimiza-
tion without derivatives (Brent, 1973, see also help(optimize)). When using
this algorithm, it is important to realize that this algorithm is guaranteed to
work only for unimodal functions and that it may converge to a local maximum.
This is especially relevant for L1 optimization, as the cross-validated likelihood
as a function of λ1 very often has several local maxima. It is recommended only
to use optL1 in combination with profL1 to prevent convergence to the wrong
optimum. The cross-validated likelihood as a function of λ2, on the other hand,
is far better behaved and practically never has local maxima. The function
optL2 can safely be used even without combining it with profL2.

The functions optL1 and optL2 take the same arguments as cvl, and some
additional ones.

The arguments minlambda1 and maxlambda1 , and minlambda2 and
maxlambda2 can be used to specify the range between which the cross-validated
log likelihood is to be optimized. Both arguments can be left out in both func-
tions, but supplying them can improve convergence speed. In optL1, the pa-
rameter range can be use to ensure that the function converges to the right
maximum. In optL2 the user can also supply only one of minlambda2 and
maxlambda2 to give the algorithm advance information of the order of mag-

14

> plotpath(fit2$fullfit, log = "x")

1e+03 1e+02 1e+01 1e+00

−
2

−
1

0
1

2

lambda2

co
ef

fic
ie

nt

STK32B

DCK

FBXO31

GPR126SLC2A3

PECI.1

ORC6L
RFC4

CDCA7

LOC643008

MS4A7

MCM6

AP2B1

C9orf30

IGFBP5

HRASLS

PITRM1

IGFBP5.1

NMU

PALM2.AKAP2

LGP2

nitude of λ2. In this case, the algorithm will search for an optimum around
minlambda2 or maxlambda2 .

The functions optL1 and optL2 return a named list just as cvl, with an
additional element lambda which returns the optimum found. The returned
cvl, predictions, fullfit all relate to the optimal λ found.

> opt1 <- optL1(Surv(time, event), nki70[, 50:70], fold = fit1$fold)

> opt1$lambda

[1] 2.086035

> opt1$cvl

[1] -258.4657

> opt2 <- optL2(Surv(time, event), nki70[, 50:70], fold = fit2$fold)

5 A note on standard errors and confidence in-
tervals

It is a very natural question to ask for standard errors of regression coefficients
or other estimated quantities. In principle such standard errors can easily be
calculated, e.g. using the bootstrap.

15

Still, this package deliberately does not provide them. The reason for this
is that standard errors are not very meaningful for strongly biased estimates
such as arise from penalized estimation methods. Penalized estimation is a
procedure that reduces the variance of estimators by introducing substantial
bias. The bias of each estimator is therefore a major component of its mean
squared error, whereas its variance may contribute only a small part.

Unfortunately, in most applications of penalized regression it is impossible
to obtain a sufficiently precise estimate of the bias. Any bootstrap-based cal-
culations can only give an assessment of the variance of the estimates. Reliable
estimates of the bias are only available if reliable unbiased estimates are avail-
able, which is typically not the case in situations in which penalized estimates
are used.

Reporting a standard error of a penalized estimate therefore tells only part
of the story. It can give a mistaken impression of great precision, completely
ignoring the inaccuracy caused by the bias. It is certainly a mistake to make
confidence statements that are only based on an assessment of the variance of
the estimates, such as bootstrap-based confidence intervals do.

Reliable confidence intervals around the penalized estimates can be obtained
in the case of low dimensional models using the standard generalized linear
model theory as implemented in lm, glm and coxph. Methods for construct-
ing reliable confidence intervals in the high-dimensional situation are, to my
knowledge, not available.

References

Brent, R. P. (1973). Algorithms for Minimization without Derivatives. Englewood Cliffs: Prentice-

Hall.

Eilers, P., J. Boer, G. van Ommen, and J. C. van Houwelingen (2001). Classification of microarray

data with penalized logistic regression. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R.

Dougherty (Eds.), Proceedings of SPIE, Volume 4266, pp. 187–198.

Goeman, J. J. (2010). L1 penalized estimation in the cox proportional hazards model. Biometrical

Journal 52(1), 70–84.

Hoerl, A. E. and R. W. Kennard (1970). Ridge regression: biased estimation for nonorthogonal

problems. Technometrics 12(1), 55–67.

Le Cessie, S. and J. C. van Houwelingen (1992). Ridge estimators in logistic regression. Applied

Statistics 41(1), 191–201.

Park, M. Y. and T. Hastie (2007). l1-regularized path algorithm for generailized linear models.

Journal of the Royal Statistical Society, Series B 69(4), 659–677.

Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal

Statistical Society Series B-Methodological 58(1), 267–288.

Tibshirani, R. (1997). The LASSO method for variable selection in the Cox model. Statistics in

Medicine 16(4), 385–395.

Van de Vijver, M. J., Y. D. He, L. J. van ’t Veer, H. Dai, A. A. M. Hart, D. W. Voskuil, G. J.

Schreiber, J. L. Peterse, C. Roberts, M. J. Marton, M. Parrish, D. Atsma, A. Witteveen, A. Glas,

L. Delahaye, T. van der Velde, H. Bartelink, S. Rodenhuis, E. T. Rutgers, S. H. Friend, and

R. Bernards (2002). A gene-expression signature as a predictor of survival in breast cancer. New

England Journal of Medicine 347(25), 1999–2009.

Van Houwelingen, J. C., T. Bruinsma, A. A. M. Hart, L. J. van ’t Veer, and L. F. A. Wes-

sels (2006). Cross-validated Cox regression on microarray gene expression data. Statistics in

Medicine 25(18), 3201–3216.

16

Van ’t Veer, L. J., H. Y. Dai, M. J. van de Vijver, Y. D. D. He, A. A. M. Hart, M. Mao, H. L. Peterse,

K. van der Kooy, M. J. Marton, A. T. Witteveen, G. J. Schreiber, R. M. Kerkhoven, C. Roberts,

P. S. Linsley, R. Bernards, and S. H. Friend (2002). Gene expression profiling predicts clinical

outcome of breast cancer. Nature 415(6871), 530–536.

Verweij, P. J. M. and H. C. Van Houwelingen (1993). Cross-validation in survival analysis. Statistics

in Medicine 12(24), 2305–2314.

Verweij, P. J. M. and H. C. Van Houwelingen (1994). Penalized likelihood in cox regression. Statistics

in Medicine 13(23-24), 2427–2436.

Zou, H. and T. Hastie (2005). Regularization and variable selection via the elastic net. Journal of

the Royal Statistical Society Series B-Statistical Methodology 67, 301–320.

17

