
Special features of phangorn (Version 1.1-2)

Klaus P. Schliep∗

September 20, 2010

1 Introduction

This document illustrates some of the phangorn some specialised features which are
useful but maybe not as wellknown or just not (yet) described elsewhere. This is mainly
interesting for someone who wants to explore different models or set up some simulation
studies. We show how to construct data objects for different character states other than
nucleotides or amino acids or how to set up different models to estimate transition rate.

2 User defined data formats

The vignette Trees describes in detail how to estimate phylogenies from nucleotide or
amino acids.

To better understand how to define our own data type it is useful to know a bit
about the internal representation of phyDat objects. The internal representation of
phyDat object is very similar to factor objects.

As an example we will show here several possibilities to define nucleotide data with
gaps defined as a fifth state. When the number of gaps is low and the are missing at
random this may be not important.

Let assume we have given a matrix where each row contains a character vector of a
taxonomixcal unit:

library(phangorn)

data = matrix(c("r", "a", "y", "g", "g", "a", "c", "-", "c",

"t", "c", "g", "a", "a", "t", "g", "g", "a", "t", "-", "c",

"t", "c", "a", "a", "a", "t", "-", "g", "a", "c", "c", "c",

"t", "?", "g"), dimnames = list(c("t1", "t2", "t3"), NULL),

nrow = 3, byrow = TRUE)

data

∗mailto:kschliep@snv.jussieu.fr

1

mailto:kschliep@snv.jussieu.fr


[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

t1 "r" "a" "y" "g" "g" "a" "c" "-" "c" "t" "c" "g"

t2 "a" "a" "t" "g" "g" "a" "t" "-" "c" "t" "c" "a"

t3 "a" "a" "t" "-" "g" "a" "c" "c" "c" "t" "?" "g"

Normally we would transform this matrix into an phyDat object and gaps are handled
as ambiguious character like ”?”.

gapsdata1 = phyDat(data)

gapsdata1

3 sequences with 12 character and 11 different site patterns.

The states are a c g t

Now we will define a ”USER” defined object and have to supply a vector levels of the
character states for the new data, in our case the for nucleotide states and the gap.
Additional we can define ambigious states which can be any of the states.

gapsdata2 = phyDat(data, type = "USER", levels = c("a", "c",

"g", "t", "-"), ambiguity = c("?", "n"))

gapsdata2

3 sequences with 10 character and 9 different site patterns.

The states are a c g t -

This is not yet what we wanted as two sites of our alignment, which contain the abigious
characters ”r” and ”y”, got deleted. To define ambigious characters like ”r” and ”y”
explicitly we have to supply a contrast matrix similar to contrasts for factors.

contrast = matrix(data = c(1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0,

0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1), ncol = 5, byrow = TRUE)

dimnames(contrast) = list(c("a", "c", "g", "t", "r", "y", "-",

"n", "?"), c("a", "c", "g", "t", "-"))

contrast

a c g t -

a 1 0 0 0 0

c 0 1 0 0 0

g 0 0 1 0 0

t 0 0 0 1 0

r 1 0 1 0 0

y 0 1 0 1 0

- 0 0 0 0 1

n 1 1 1 1 0

? 1 1 1 1 1

2



gapsdata3 = phyDat(data, type = "USER", contrast = contrast)

gapsdata3

3 sequences with 12 character and 11 different site patterns.

The states are a c g t -

Here we defined ”n” as a state which can be any nucleotide but not a gap ”-” and ”?” can
be any state including a gap.

These data can be used in all functions available in phangorn to compute distance
matrices or perform parsimony and maximum likelihood analysis.

3 Estimation of non-standard transition rate matri-

ces

In the last section˜2 we described how to set up user defined data formats. Now we
describe how to estimate transition matrices with pml.

Again for nucleotide data the most common models can be called directly in the
optim.pml function (e.g. ”JC69”, ”HKY”, ”GTR” to name a few). Table 2 lists all the
available nucleotide models, which can estimated directly in optim.pml. For amino acids
several transition matrices are available (”WAG”, ”JTT”, ”Dayhoff” and ”LG”) or can be
estimated with optim.pml, e.g. Mathews et al. (2010) [1] used this function to estimate
a phytochrome amino acid transition matrix.

We will now show how to estimate a rate matrix with different transition (α) and
transversion ratio (β) and a fixed rate to the gap state (γ) - a kind of Kimura two-
parameter model (JC69) for nucleotide data with gaps as fifth state (see table ˜1).

a c g t -
a
c β
g α β
t β α β
- γ γ γ γ

Table 1: Rate matrix K to optimise.

The parameters subs accepts a vector of consecutive integers and one (or more)
element has to be zero (these gets the reference rate of 1).

tree = unroot(rtree(3))

fit = pml(tree, gapsdata3)

fit = optim.pml(fit, optQ = TRUE, subs = c(1, 0, 1, 2, 1, 0,

2, 1, 2, 2), control = pml.control(trace = 0))

fit

3



loglikelihood: -33.03651

unconstrained loglikelihood: -28.43259

Rate matrix:

a c g t -

a 0.000000e+00 1.382019e-08 1.000000e+00 1.382019e-08 0.6898839

c 1.382019e-08 0.000000e+00 1.382019e-08 1.000000e+00 0.6898839

g 1.000000e+00 1.382019e-08 0.000000e+00 1.382019e-08 0.6898839

t 1.382019e-08 1.000000e+00 1.382019e-08 0.000000e+00 0.6898839

- 6.898839e-01 6.898839e-01 6.898839e-01 6.898839e-01 0.0000000

Base frequencies:

0.2 0.2 0.2 0.2 0.2

Here are some conventions how the models are estimated:

If a model is supplied the base frequencies bf and rate matrix Q are optimised accord-
ing to the model (nucleotides) or the adequate rate matrix and frequencies are chosen
(for amino acids). If optQ=TRUE and neither a model or subs are supplied than a
symmetric (optBf=FALSE) or reversible model (optBf=TRUE, i.e. the GTR for nu-
cleotides) is estimated. This can be slow if the there are many character states, e.g. for
amino acids.

4 Generating trees

phangorn has a few functions to generate trees, which may are interesting for simulation
studies. allTrees computes all possible bifurcating tree topologies either rooted or
unrooted for up to 10 taxa (one has to keep in mind that the number of trees is growing
exponentially).

trees = allTrees(5)

par(mfrow = c(3, 5), mar = c(2, 2, 2, 2) - 2)

for (i in 1:15) plot(trees[[i]], cex = 1, type = "u")

rNNI and rSPR generate trees which are a defined number of NNI (nearest neighbor
interchange) or SPR (subtree pruning and regrafting) away.

4



model optQ optBf subs
JC FALSE FALSE c(0, 0, 0, 0, 0, 0)
F81 FALSE TRUE c(0, 0, 0, 0, 0, 0)
K80 TRUE FALSE c(0, 1, 0, 0, 1, 0)
HKY TRUE TRUE c(0, 1, 0, 0, 1, 0)
TrNe TRUE FALSE c(0, 1, 0, 0, 2, 0)
TrN TRUE TRUE c(0, 1, 0, 0, 2, 0)
TPM1 TRUE FALSE c(0, 1, 2, 2, 1, 0)
K81 TRUE FALSE c(0, 1, 2, 2, 1, 0)
TPM1u TRUE TRUE c(0, 1, 2, 2, 1, 0)
TPM2 TRUE FALSE c(1, 2, 1, 0, 2, 0)
TPM2u TRUE TRUE c(1, 2, 1, 0, 2, 0)
TPM3 TRUE FALSE c(1, 2, 0, 1, 2, 0)
TPM3u TRUE TRUE c(1, 2, 0, 1, 2, 0)
TIM1e TRUE FALSE c(0, 1, 2, 2, 3, 0)
TIM1 TRUE TRUE c(0, 1, 2, 2, 3, 0)
TIM2e TRUE FALSE c(1, 2, 1, 0, 3, 0)
TIM2 TRUE TRUE c(1, 2, 1, 0, 3, 0)
TIM3e TRUE FALSE c(1, 2, 0, 1, 3, 0)
TIM3 TRUE TRUE c(1, 2, 0, 1, 3, 0)
TVMe TRUE FALSE c(1, 2, 3, 4, 2, 0)
TVM TRUE TRUE c(1, 2, 3, 4, 2, 0)
SYM TRUE FALSE c(1, 2, 3, 4, 5, 0)
GTR TRUE TRUE c(1, 2, 3, 4, 5, 0)

Table 2: DNA models available in phangorn and how they are defined.

5



t1

t2

t3

t4

t5

t1

t2

t3 t4

t5

t1

t2

t3

t4

t5

t1

t2

t3

t4

t5

t1

t2

t3

t4

t5

t1

t2

t3 t4

t5

t1

t2

t3

t4

t5

t1

t2

t3

t4

t5

t1

t2

t3

t4

t5

t1

t2

t3

t4

t5

t1

t2

t3

t4

t5

t1

t2

t3

t4

t5

t1

t2

t3

t4

t5

t1

t2

t3

t4

t5

t1

t2

t3

t4

t5

Figure 1: all (15) unrooted trees with 5 taxa

6



References

[1] S.˜Mathews, M.D. Clements, and M.A. Beilstein. A duplicate gene rooting of seed
plants and the phylogenetic position of flowering plants. Phil. Trans. R. Soc. B,
365:383–395, 2010.

[2] Emmanuel Paradis. Analysis of Phylogenetics and Evolution with R. Springer, New
York, 2006.

5 Session Information

The version number of R and packages loaded for generating the vignette were:

� R version 2.12.0 Under development (unstable) (2010-06-02 r52179),
x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_US.utf8, LC_NUMERIC=C, LC_TIME=en_US.utf8,
LC_COLLATE=C, LC_MONETARY=C, LC_MESSAGES=en_US.utf8,
LC_PAPER=en_US.utf8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.utf8, LC_IDENTIFICATION=C

� Base packages: base, datasets, grDevices, graphics, methods, stats, utils

� Other packages: ape˜2.5-3, multicore˜0.1-4, phangorn˜1.1-2, quadprog˜1.5-3

� Loaded via a namespace (and not attached): gee˜4.13-15, grid˜2.12.0,
lattice˜0.19-11, nlme˜3.1-96, tools˜2.12.0

7


	Introduction
	User defined data formats
	Estimation of non-standard transition rate matrices
	Generating trees
	Session Information

