
A Vignette for Package Polydect

Zhihua Su

March 27, 2009

1 Background

This package is an implement to the paper “On Jump Detection In Re-
gression Curves Using Local Polynomial Kernel Estimation” by B. Zhang,
Z. Su and P.Qiu.

1.1 Difference Polynomial Kernel Estimation

In the one-dimensional case, we formulate a jump regression model as
follows:

f(x) = g(x) +
p∑

i=1

djI(x > sj), for x ∈ [0, 1],

where g is a continuous function, p is the number of jump points, {sj , j =
1, 2, ..., p} are the jump positions, and {dj , j = 1, 2, ..., p} are the correspond-
ing jump magnitudes.

But in reality, our observations will also contain noises. And here for sim-
plicity, we assume the noises εi’s are independent and identically distributed
random errors with E(εi) = 0 and V ar(εi) = σ2(Xi). But for simplicity,
here we just assume that the noise level for all the design points are the
same. So we have

Yi| Xi = f(Xi) + εi, i = 1, 2, · · · , n,

where Yi’s are data we can observe. And Xi’s, which are called the design
points, are the locations we take observations.

1

One approach to detect jumps is to use a difference polynomial kernel
estimation procedure. This procedure estimate the left limit of a design
point and also the right limit of a design point by a local polynomial kernel
estimator. For an example, if we use a local kernel estimator (polynomial
order equals to 0), the estimator will be:

MDKE(x) =
1

nhn

n∑
i=1

YiK1

(
xi − x

hn

)
− 1

nhn

n∑
i=1

YiK2

(
xi − x

hn

)
where hn is a positive bandwidth parameter, K1 and K2 are two one-sided
kernel functions.

If the design point is a continuous point in the model, then the difference
may expected to be small. However, if it is a jump point, then this different
is expected to be large. And as shown in the paper, as n goes large, the
difference will approach the true jump magnitude for a jump point and
vanish for a continuous points.

Therefore, to detect the jump points, we estimate the variance of our
detector first, then we may compare it with a threshold value, using a signif-
icance level α. For example, the variance for the difference kernel estimator
is 2.4σ2/nhn, so the threshold value will be zα

√
2.4σ2/nhn, given the sig-

nificance level α. If the value of the detector is greater than the threshold
value, we may think that the point is a jump candidate, if not, we may
consider it as a continuous point.

Polynomial estimators with higher order will reduce bias in estimation,
but their variances will increase. In practice, the most commonly used dif-
ference polynomial kernel estimators are kernel and linear estimators (poly-
nomial order equals to 0 and 1 respectively). The paper shows that actually,
we only need polynomial order up to 2 for most of the cases. Polynomials
with higher order will not improve the result of detection a lot, while they
will increase the computing time a lot. More specifically, when the function
is flat, we may use the kernel estimator. When the function has large slope
but not large curvature, we may use the linear estimator, and when we have
a function with large curvature, we may use the quadratic estimator. How-
ever, if we do not have a substantial amount of design points, the quadratic
estimator does not work well either since it has a larger variance. In this
case, use the linear estimator.

2

1.2 Some technical details

1.2.1 Bandwidth and significance level Selection

In order to use the detector, we need to select a bandwidth hn which
decides how many points should be used in estimating the one-sided lim-
its. And also, in order to reduce false detection, we need a significance
level α. Our method is based on the bootstrap procedure described in
Gijbels, I. and Goderniaux, A.-C. (2004). For a given observed dataset
D = {(x1, Y1), (x2, Y2), . . . , (xn, Yn)} and given parameters hn and αn in
(3)–(7), assume that the estimated jumps are Ŝ = {ŝj , j = 1, 2, . . . , Ĵ} and
the estimated jump magnitudes are {d̂j , j = 1, 2, . . . , Ĵ}. The Hausdorff
distance between Ŝ and the set of true jumps S is

dH(S, Ŝ; hn, αn) = max

{
sup
s1∈S

inf
s2∈bS |s1 − s2|, sup

s1∈bS inf
s2∈S

|s1 − s2|

}
.

Bandwidth Selection Procedure

• Step 1: Define new observations

Ỹi = Yi −
bJ∑

j=1

d̂jI(xi > ŝj), for i = 1, 2, . . . , n.

Estimate g by local linear kernel smoothing with bandwidth hest from
data {(xi, Ỹ

∗
i), i = 1, 2, . . . , n}, and the estimator is denoted as ĝ.

Then, define residuals

ε̂i = Yi − ĝ(xi)−
bJ∑

j=1

d̂jI(xi > ŝj), for i = 1, 2, . . . , n.

• Step 2: Obtain B batches of resampled residuals from {ε̂i, i = 1, 2, . . . , n};
each batch has n values. For the b-th batch of resampled residuals,
denoted as {ε̂∗i , i = 1, 2, . . . , n}, define pseudo-data as follows.

Y ∗
i = ĝ(xi) +

bJ∑
j=1

d̂jI(xi > ŝj) + ε̂∗i , for i = 1, 2, . . . , n.

3

• Step 3: Apply the jump detection procedure (3)–(7) with parameters
hn and αn to the b-th pseudo-data, and the set of detected jumps
is denoted as Ŝb. Then, the Hausdorff distance dH(S, Ŝ; hn, αn) is
estimated by

d̂H(S, Ŝ; hn, αn, hest) =
1
B

B∑
b=1

dH(Ŝ, Ŝb; hn, αn, hest),

where dH(Ŝ, Ŝb; hn, αn, hest) denotes the Hausdorff distance between
Ŝ and Ŝb, which depends on parameters hn, αn, and hest.

• Step 4: Parameters hn and αn are approximated by the solution of

min
hn>0

min
αn∈[0,1]

[
min

hest>0
d̂H(S, Ŝ; hn, αn, hest)

]
.

1.2.2 Estimating variance

In order to estimate the variance of the detector, we need to estimate
the noise level of the data. For estimating the noise level, we may use the
local linear estimator. Suppose we have two one-sided local linear estimators
MDLK− and MDLK+ for a particular design point, then the variance of the
noise at this point is estimated by

min

{∑
(Yi −MDLK−)2K1(x−xi

hn
)∑

K1(x−xi
hn

)
,

∑
(Yi −MDLK+)2K2(x−xi

hn
)∑

K2(x−xi
hn

)

}

1.2.3 Modification procedure

Since the design points near the true jump points have high probability
to be detected, in order to reduce false detection, we apply the modifica-
tion procedure described in Qiu (1994). The basic idea is that we define a
sequence of jump candidates which are close to each other as a tie, and we
replace a tie by its middle point. More specifically, let us first assume that
ai1 < ai2 < ... < air are the points flagged as jump candidates, then we call
{aij , j = r1, r1 + 1, ..., r2} a tie if

aij+1 − aij ≤ hn, j = r1, r1 + 1, ..., r2 − 1
air1

− air1−1 > hn

air2+1 − air2
> hn

For the jump candidates in a tie, we replace all of them by a new candidate
which is defined by the middle point (air2

+ air1
)/2 of the tie. After this

4

modification, the current candidates consist of two types of points: those do
not belong to any ties and the middle points of all ties.

2 About the package

The package contains the following stuffs:

• The one-sided local polynomial kernel estimators: kernel, linear, quadratic,
cubic. They give the estimation of the difference between the left
and right limits at a certain point. The kernel functions used are the
one-sided kernel function: K1 : y = 1.5(1 − x2), x ∈ (−∞, 0) and
K2 : y = 1.5(1− x2), x ∈ (0,∞).

• The function for selecting bandwidth and significance level using boot-
strap procedure.

• The function to implement the modification procedure described in
Qiu (1994).

• The function for estimating the noise level using one-sided linear kernel
estimators.

• The function to calculate Hausdorff distance.

• Some real data-sets for illustration.

3 An example

Now we use the data of the weekly Dow Jones Industry Average open
price (from September 2000 to August 2002) to demonstrate the usage of
the package. First, we will load the data and let us take a look at the data in
the plot. As shown in the plot, it has the typical characteristic of financial
data, which jumps up and down dramatically during the time. There is a big
jump around the 56th observation, which corresponds to the week following
9.11.

> library(polydect)

> data(DJIA)

> head(DJIA)

Open
1 11219.54

5

2 11221.76
3 11219.54
4 10926.42
5 10847.37
6 10659.06

> attach(DJIA)

> ts.plot(Open, type = "l")

We suppose that the design points are within 0 and 1. Therefore the
design points and other variables are defined as follows:

> n <- length(Open)

> X <- c(1:n)/n

> Y <- Open

> x <- X[floor(0.1 * n):ceiling(0.9 * n)]

To estimate the noise level of the data, we may first specify the band-
width and then use the sigma estimation function. Since here we are mainly
demonstrating the use of the function sig.est, the bandwidth is not chosen
by bootstrap described before and is just picked up based on experience.

> h2 = 0.15

> variance <- sig.est(x, X, Y, h2)

> sigma <- sqrt(variance)

> sigma

[1] 350.7547

As we may notice from the plot that the data has quite large curvature,
therefore, we may use the one-sided local quadratic kernel estimator for
detecting the jumps, and then we will use the modification procedure used
in Qiu (1994) to identify the jump candidates:

> C = sqrt(2 * sigma^2 * 4.44178/n/h2) * qnorm(0.999999995)

> C

[1] 1516.857

> y2 <- numeric(length(x))

> y2 <- m.det2(h2, x, X, Y)

6

●

●

●

●●

●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

0.2 0.4 0.6 0.8

−
20

00
−

10
00

−
50

0
0

50
0

10
00

x

y2

7

> plot(x, y2)

> abline(C, 0)

> tot <- det.jmp(x, abs(y2), h2, C, n)[[1]]

> pos <- det.jmp(x, abs(y2), h2, C, n)[[2]]

> tot

[1] 1

> pos

[1] 0.5278846

The position of the jump position just corresponds to the week after 9.11
which causes a big change in the open price of the stocks.

Here we also did not choose the bandwidth by rigorous bootstrap pro-
cedure, but just by experience. To choose a good bandwidth, we need to
use the function bds. To use the boostrap procedure, there are actually two
bandwidths involved, one for detection and the other for estimating the con-
tinuous part. We may try different combinations of the two, and find a“best”
combination which gives the smallest Hausdorff distance. For example, we
can try combination as follow:

> h = 0.15

> h2 = 0.2

> B = 100

> order = 2

> bds(h, B, h2, X, Y, x, order)

[1] 0.68

Having the bandwith, we may do the jump detection and the modifica-
tion procedure in one step, using the function polydect. But you have to
specify the order:

> h = 0.15

> polydect(h, X, Y, x, 2)

[1] 0.5326923

It gives the same result as we have before.

8

4 Reference

Zhang, B., Su, Z., and Qiu, P. (2009), On Jump Detection In Regression
Curves Using Local Polynomial Kernel Estimation.

Qiu, P. (2005), Image Processing and Jump Regression Analysis, New York:
John Wiley & Sons.

Gijbels, I., and Goderniaux, A.-C. (2004), “Bandwidth selection for change
point estimation in nonparametric regression,”Technometrics, 46, 76–
86.

Qiu, P. (1999), “Comparisons of several local smoothing jump detectors in
one-dimensional nonparametric regression,” The ASA Proceedings of
the Statistical Computing Section, 150–155.

9

