
INTRODUCTION TO POMP:

INFERENCE FOR PARTIALLY-OBSERVED MARKOV PROCESSES

AARON A. KING, EDWARD L. IONIDES, CARLES BRETÓ, STEPHEN P. ELLNER, AND BRUCE E. KENDALL

Contents

1. Partially-observed Markov processes 1

2. A first example: a discrete-time bivariate autoregressive process. 3

3. Defining a partially observed Markov process in pomp. 3

4. Simulating the model 5

5. Computing likelihood using particle filtering 6

6. Interlude: utility functions for extracting and changing pieces of a pomp object 9

7. Estimating parameters using iterated filtering: mif 10

8. Nonlinear forecasting: nlf 11

9. Trajectory matching: traj.match 12

10. A more complex example: a seasonal epidemic model 14

References 18

1. Partially-observed Markov processes

Partially-observed Markov process models are also known as state-space models or stochastic dynamical
systems. The R package pomp provides facilities for fitting such models to uni- or multi-variate time series,
for simulating them, for assessing model adequacy, and for comparing among models. The methods
implemented in pomp are all “plug-and-play” in the sense that they require only that one be able to
simulate the process portion of the model. This property is desirable because it will typically be the
case that a mechanistic model will not be otherwise amenable to standard statistical analyses, but will
be relatively easy to simulate. Even when one is interested in a model for which one can write down an
explicit likelihood, for example, there are probably models that are “nearby” and equally interesting for
which the likelihood cannot explicitly be written. The price one pays for this flexibility is primarily in
terms of computational expense.

A partially-observed Markov process has two parts. First, there is the true underlying process which is
generating the data. This is typically the thing we are most interested in: our goal is usually to better
understand this process. Specifically, we may have various alternate hypotheses about how this system
functions and we want to see whether time series data can tell us which hypotheses explain the data
better. The challenge, of course, is that the data shed light on the system only indirectly.

Date: September 26, 2010, pomp version 0.33-1.

1

2 KING, IONIDES, BRETÓ, ELLNER, AND KENDALL

pomp assumes that we can translate our hypotheses about the underlying, unobserved process into a
Markov process model: That is, we are willing to assume that the system has a true state process, Xt

that is Markovian. In particular, given any sequence of times t0, t1, . . . , tn, the Markov property allows
us to write

Xtk+1
∼ f(Xtk , θ), (1)

for each k = 1, . . . , n, where f is some density. [In this document, we will be fairly cavalier about abusing
notation, using the letter f to denote a probability distribution function generically, assuming that the
reader will be able to unambiguously tell which probability distribution we’re talking about from the
arguments to f and the context.] That is, we assume that the state at time tk+1 depends only on the
state at time tk and on some parameters θ.

In addition to the state process Xt, there is some measurement or observation process Yt which models
the process by which the data themselves are generated and links the data therefore to the state process.
In particular, we assume that

Yt ∼ f(Xt, θ) (2)

for all times t. That is, that the observations Yt are random variables that depend only on the state at
that time as well as on some parameters.

So, to specify a partially-observed Markov process model, one has to specify a process (unobserved or
state) model and a measurement (observation) model. This seems straightforward enough, but from the
computational point of view, there are actually two aspects to each model that may be important. On
the one hand, one may need to evaluate the probability density of the state-transition Xtk → Xtk+1

,
i.e., to compute f(Xtk+1

|Xtk , θ). On the other hand, one may need to simulate this distribution, i.e., to
draw random samples from the distribution of Xtk+1

| Xtk . Depending on the model and on what one
wants specifically to do, it may be technically easier or harder to do one of these or the other. Likewise,
one may want to simulate, or evaluate the likelihood of, observations Yt. At it’s most basic level pomp
is an infrastructure that allows you to encode your model by specifying some or all of these four basic
components:

rprocess: a simulator of the process model,
dprocess: an evaluator of the process model probability density function,
rmeasure: a simulator of the measurement model, and
dmeasure: an evaluator of the measurement model probability density function.

Once you’ve encoded your model, pomp provides a number of algorithms you can use to work with it. In
particular, within pomp, you can:

(1) simulate your model easily, using simulate,
(2) integrate your model’s deterministic skeleton, using trajectory,
(3) estimate the likelihood for any given set of parameters using sequential Monte Carlo, implemented

in pfilter,
(4) find maximum likelihood estimates for parameters using iterated filtering, implemented in mif,
(5) estimate parameters using a simulated quasi maximum likelihood approach called nonlinear fore-

casting and implemented in nlf,
(6) estimate parameters using trajectory matching, as implemented in traj.match,
(7) print and plot data, simulations, and diagnostics for the foregoing algorithms,
(8) build new algorithms for partially observed Markov processes upon the foundations pomp provides,

using the package’s applications programming interface (API).

In this document, we’ll see how all this works using relatively simple examples.

INTRODUCTION TO POMP 3

2. A first example: a discrete-time bivariate autoregressive process.

For simplicity, we’ll begin with a very simple discrete-time model. The plug-and-play methods in pomp

were designed to work on much more complicated models, and for our first example, they’ll be extreme
overkill, but starting with a simple model will help make the implementation of more general models clear.
Our first example will be moreover a model for which plug-and-play methods are not even necessary.
This will allow us to compare the results we obtain with the generalizable plug-and-play methods with
exact results obtainable by the specialized methods appropriate to this particular model. Later we’ll
look at a continuous-time model for which no such special tricks are available.

Consider a two-dimensional AR(1) process with noisy observations. The state process Xt ∈ R2 satisfies

Xt = αXt−1 + σ ξt. (3)

The measurement process is
Yt = β Xt + τ εt. (4)

In these equations, α and and β are 2×2 constant matrices. ξt and εt are mutually-independent families
of i.i.d. bivariate standard normal random variables. σ is a lower-triangular 2 × 2 matrix such that
σσT is the variance-covariance matrix of Xt+1|Xt. We’ll assume that each component of X is measured
independently and with the same error, τ , so that the variance-covariance matrix of Yt|Xt is just τ2

times the identity matrix.

Given a data set, one can for this model obtain exact maximum likelihood estimates of the parameters
using the Kalman filter. We will demonstrate this below. Here, however, for pedagogical reasons, we’ll
approach this model as we would a more complex model for which no such exact estimator is available.

3. Defining a partially observed Markov process in pomp.

In order to fully specify this partially-observed Markov process, we must implement both the process
model (i.e., the unobserved process) and the measurement model (the observation process). As we saw
before, we would like to be able to:

(1) simulate from the process model, i.e., make a random draw from Xt+1 |Xt = x for arbitrary x
and t (rprocess),

(2) compute the probability density function (pdf) of state transitions, i.e., compute f(Xt+1 =
x′ |Xt = x) for arbitrary x, x′, and t (dprocess),

(3) simulate from the measurement model, i.e., make a random draw from Yt |Xt = x for arbitrary
x and t (rmeasure),

(4) compute the measurement model pdf, i.e., f(Yt = y |Xt = x) for arbitrary x, y, and t (dmeasure),
and

(5) compute the deterministic skeleton. In discrete-time, this is the map x 7→ E[Xt+1 |Xt = x] for
arbitrary x.

For this simple model, all this is easy enough. More generally, it will be difficult to do some of these
things. Depending on what we wish to accomplish, however, we may not need all of these capabilities
and in particular, to use any particular one of the algorithms in pomp, we need never specify
all of 1–5. For example, to simulate data, all we need is 1 and 3. To run a particle filter (and hence to
use iterated filtering, mif), one needs 1 and 4. To do MCMC, one needs 2 and 4. Nonlinear forecasting
(nlf) requires 1 and 3. Trajectory matching (traj.match) requires 4 and 5.

Using pomp, the first step is always to construct an object (of class pomp, naturally enough), the key
step of which is to specify functions to do some or all of 1–5, along with data and (optionally) other
information. The package provides several algorithms for fitting the models to the data, for simulating
the models, studying deterministic skeletons, and so on. The documentation (?pomp) spells out the usage
of the pomp constructor, including detailed specifications for all its arguments and a worked example.

4 KING, IONIDES, BRETÓ, ELLNER, AND KENDALL

Let’s see how to implement the AR(1) model in pomp. Here, we’ll take the shortest path to this goal. In
the “advanced topics in pomp” vignette, we show how one can make the codes much more efficient using
compiled native (C or FORTRAN) code.

First, we write a function that implements the process model simulator. This is a function that will
simulate a single step (t→ t+ 1) of the unobserved process (3).

require(pomp)

ou2.proc.sim <- function (x, t, params, delta.t, ...) {

xi <- rnorm(n=2,mean=0,sd=1) # noise terms

xnew <- c(

params["alpha.1"]*x["x1"]+params["alpha.3"]*x["x2"]+

params["sigma.1"]*xi[1],

params["alpha.2"]*x["x1"]+params["alpha.4"]*x["x2"]+

params["sigma.2"]*xi[1]+params["sigma.3"]*xi[2]

)

names(xnew) <- c("x1","x2")

xnew

}

The translation from the mathematical description (3) to the simulator is straightforward. When this
function is called, the argument x contains the state at time t. The parameters (including the matrix α
and the process noise s.d. matrix σ) are passed in the argument params. Notice that these arguments
are named numeric vectors and that the output must be named numeric vector. In fact, the names of
the output vector (here xnew) must be the same as those of the input vector x. The algorithms in pomp

all make heavy use of the names attributes of vectors and matrices. The argument delta.t tells how
big the time-step is. In this case, our time-step will be 1 unit: we’ll see below how that gets specified.

Next, we’ll implement a simulator for the observation process (4).

ou2.meas.sim <- function (x, t, params, ...) {

y <- rnorm(n=2,mean=x[c("x1","x2")],sd=params["tau"])

names(y) <- c("y1","y2")

y

}

Again the translation is straightforward. When this function is called, the unobserved states at time t

will be in the named numeric vector x and the parameters in params as before. The function returns a
named numeric vector that represents a single draw from the observation process (4).

INTRODUCTION TO POMP 5

4. Simulating the model

With the two functions above, we already have all we need to simulate the entire model. The first step
is to construct an R object of class pomp which will serve as a container to hold the model and data.
This is done with a call to pomp:

ou2 <- pomp(

data=data.frame(

time=1:100,

y1=NA,

y2=NA

),

times="time",

rprocess=discrete.time.sim(

step.fun=ou2.proc.sim

),

rmeasure=ou2.meas.sim,

t0=0

)

The first argument (data) specifies a data-frame that holds the data and the times at which the data
were observed. Since this is a toy problem, we have no data. In a moment, however, we’ll simulate
some data so we can explore pomp’s various methods for fitting models to data. The second argument
(times) specifies which of the columns of data is the time variable. The third argument (rprocess)
specifies that the process model simulator will be in discrete-time, one step at a time. The function
discrete.time.sim belongs to the package pomp. It takes the argument step.fun, which specifies the
particular function that actually takes the step. The step is assumed to be a unit interval of time. The
argument rmeasure specifies the measurement model simulator function. t0 fixes t0 for this model; here
we have chosen this to be one time unit before the first observation.

Before we can simulate the model, we need to settle on some parameter values. We do this by specifying
a named numeric vector that contains at least all the parameters needed by the functions ou.proc.sim
and ou.meas.sim. The parameter vector needs to specify the initial conditions X(t0) = x0 as well.

theta <- c(

alpha.1=0.8, alpha.2=-0.5, alpha.3=0.3, alpha.4=0.9,

sigma.1=3, sigma.2=-0.5, sigma.3=2,

tau=1,

x1.0=-3, x2.0=4

)

In terms of the mathematical formulation of the model (Eqs. 3–4), we have

α =

(
α1 α3

α2 α4

)
σ =

(
σ1 0
σ2 σ3

)
β =

(
1 0
0 1

)
X(0) =

(
−3

4

)
.

The initial conditions are specified by the x1.0 and x2.0 elements. Here, the fact that the names
end in “.0” is significant. This is the default operation of pomp: it is possible to parameterize the initial
conditions in an arbitrary way using the optional initializer argument to pomp: see the documentation
(?pomp) for details.

Now we can simulate the model:

ou2 <- simulate(ou2,params=theta)

6 KING, IONIDES, BRETÓ, ELLNER, AND KENDALL

−
10

−
5

0
5

10

y1

−
10

0
5

10

0 20 40 60 80 100

y2

time

ou2

Figure 1. Simulated data and unobserved states from the Ornstein-Uhlenbeck process
(Eqs. 3–4). This displays the results of the command plot(ou2).

Now ou2 is identical to what it was before, but the data that were there before have been replaced by
simulated data. The parameters (theta) at which the simulations were performed have also been saved
internally to ou2. We can plot the simulated data via

plot(ou2,variables=c("y1","y2"))

Fig. 1 shows the results of this operation.

5. Computing likelihood using particle filtering

Since some parameter estimation algorithms in the pomp package only require simulations of the full
process, we are already in a position to use them. At present, the only such algorithm is nonlinear fore-
casting (nlf). In the near future, probe-matching algorithms that require only rprocess and rmeasure

will be included in the package. If we want to work with likelihood-based methods, however, we will
need to be able to compute the likelihood of the data Yt given the states Xt. To implement this in pomp,
we write another function:

INTRODUCTION TO POMP 7

ou2.meas.dens <- function (y, x, t, params, log, ...) {

f <- sum(

dnorm(

x=y[c("y1","y2")],

mean=x[c("x1","x2")],

sd=params["tau"],

log=TRUE

),

na.rm=TRUE

)

if (log) f else exp(f)

}

This function computes the likelihood of the observation y at time t given the states x and the parameters
params. Here, the named vector y contains data at a single timepoint (t) and x contains a single
realization of the unobserved process at the same time. The extra argument log specifies whether
likelihood or log-likelihood is desired.

To incorporate this into the pomp object, we’ll make another call to pomp, giving our new function to the
dmeasure argument:

dat <- as(ou2,"data.frame")

theta <- coef(ou2)

ou2 <- pomp(

data=dat[c("time","y1","y2")],

times="time",

rprocess=discrete.time.sim(ou2.proc.sim),

rmeasure=ou2.meas.sim,

dmeasure=ou2.meas.dens,

t0=0

)

coef(ou2) <- theta

Note that we’ve first extracted the data from our old ou2 and set up the new one with the same data
and parameters. The calls to coef and coef<- in the lines above make sure the parameters have the
same values they had before.

To compute the likelihood of the data, we can use the function pfilter. This runs a plain vanilla particle
filter (AKA sequential Monte Carlo) algorithm and results in an unbiased estimate of the likelihood. See
Arulampalam et al. (2002) for an excellent tutorial on particle filtering. To do this, we must decide
how many concurrrent realizations (particles) to use: the larger the number of particles, the smaller the
Monte Carlo error but the greater the computational effort. Let’s run pfilter with 1000 particles and
evaluate the likelihood at the true parameters:

pf <- pfilter(ou2,params=theta,Np=1000)

loglik.truth <- pf$loglik

loglik.truth

[1] -479.4467

Since the true parameters (i.e., the parameters that generated the data) are stored within the pomp

object ou2 and can be extracted by the coef function, we could have done

pf <- pfilter(ou2,params=coef(ou2),Np=1000)

8 KING, IONIDES, BRETÓ, ELLNER, AND KENDALL

Box 1 Implementation of the Kalman filter for the AR(1) process.

require(mvtnorm)

kalman.filter <- function (y, x0, a, b, sigma, tau) {

n <- nrow(y)

ntimes <- ncol(y)

sigma.sq <- sigma%*%t(sigma)

tau.sq <- tau%*%t(tau)

inv.tau.sq <- solve(tau.sq)

cond.loglik <- numeric(ntimes)

filter.mean <- matrix(0,n,ntimes)

pred.mean <- matrix(0,n,ntimes)

pred.var <- array(0,dim=c(n,n,ntimes))

m <- x0

v <- diag(0,n)

for (k in seq_len(ntimes)) {

pred.mean[,k] <- M <- a%*%m

pred.var[,,k] <- V <- a%*%v%*%t(a)+sigma.sq

q <- b%*%V%*%t(b)+tau.sq

r <- y[,k]-b%*%M

cond.loglik[k] <- dmvnorm(x=y[,k],mean=as.numeric(b%*%M),sigma=q,log=TRUE)

q <- t(b)%*%inv.tau.sq%*%b+solve(V)

v <- solve(q)

filter.mean[,k] <- m <- v%*%(t(b)%*%inv.tau.sq%*%y[,k]+solve(V,M))

}

list(

pred.mean=pred.mean,

pred.var=pred.var,

filter.mean=filter.mean,

cond.loglik=cond.loglik,

loglik=sum(cond.loglik)

)

}

or even just

pf <- pfilter(ou2,Np=1000)

since the parameters are stored in the pomp object ou2. Now let’s compute the log likelihood at a different
point in parameter space:

theta.true <- coef(ou2)

theta.guess <- theta.true

theta.guess[c("alpha.2","alpha.3","tau")] <- 1.5*theta.true[c("alpha.2","alpha.3","tau")]

pf <- pfilter(ou2,params=theta.guess,Np=1000)

loglik.guess <- pf$loglik

As we mentioned before, for this particular example, we can compute the likelihood exactly using the
Kalman filter, using this as a check on the validity of the particle filtering algorithm. An implementation
of the Kalman filter is given in Box 1. Let’s run the Kalman filter on the example data we generated
above:

y <- data.array(ou2)

a <- matrix(theta.guess[c('alpha.1','alpha.2','alpha.3','alpha.4')],nrow=2,ncol=2)

INTRODUCTION TO POMP 9

b <- diag(1,2) ## b is the identity matrix

sigma <- matrix(

c(

theta.guess['sigma.1'],0,
theta.guess['sigma.2'],theta.guess['sigma.3']
),

nrow=2,ncol=2,byrow=T

)

tau <- diag(theta.guess['tau'],2,2)
x0 <- init.state(ou2)

kf <- kalman.filter(y,x0,a,b,sigma,tau)

In this case, the Kalman filter gives us a log likelihood of -497.07, while the particle filter with 1000
particles gives -498.16. Since the particle filter gives an unbiased estimate of the likelihood, the difference
is due to Monte Carlo error in the particle filter. One can reduce this error by using a larger number of
particles and/or by re-running pfilter multiple times and averaging the resulting estimated likelihoods.
The latter approach has the advantage of allowing one to estimate the Monte Carlo error itself.

6. Interlude: utility functions for extracting and changing pieces of a pomp object

The pomp package provides a number of functions to extract or change pieces of a pomp-class object. One
can read the documentation on all of these by doing class?pomp and methods?pomp. For example, as
we’ve already seen, one can coerce a pomp object to a data frame:

as(ou2,'data.frame')

and if we print a pomp object, the resulting data frame is what is shown, together with the call that
created the pomp object. One can access the data and the observation times using

data.array(ou2)

time(ou2)

The observation times can be changed using

time(ou2) <- 1:10

or

ou2 <- window(ou2,start=1,end=10)

One can respectively view and change the zero-time by

timezero(ou2)

timezero(ou2) <- -10

and can respectively view and change the zero-time together with the observation times by doing, for
example

time(ou2,t0=TRUE)

time(ou2,t0=T) <- seq(from=0,to=10,by=1)

One can read and change model parameters using, e.g.,

coef(ou2)

coef(ou2,c("sigma.1","sigma.2")) <- c(1,0)

10 KING, IONIDES, BRETÓ, ELLNER, AND KENDALL

7. Estimating parameters using iterated filtering: mif

Iterated filtering is a technique for maximizing the likelihood obtained by filtering. In pomp, the particle
filter is used as a basis for iterated filtering. Iterated filtering is implemented in the mif function.

The key idea of iterated filtering is to replace the model we are interested in fitting—which has time-
invariant parameters—with a model that is just the same except that its parameters take a random walk
in time. As the intensity of this random walk approaches zero, the modified model approaches the original
model. Adding additional variability in this way has three positive effects: (i) it smooths the likelihood
surface, which makes optimization easier, (ii) it combats particle depletion, the fundamental difficulty
associated with the particle filter, and (iii) the additional variability can be exploited to estimate of
the gradient of the (smoothed) likelihood surface with no more computation than is required to estimate
of the value of the likelihood. Iterated filtering exploits these effects to optimize the likelihood in a
computationally efficient manner. As the filtering is iterated, the additional variability is decreased
according to a cooling schedule. The cooling schedule can be adjusted in mif, as can the intensity of the
parameter-space random walk and the other algorithm parameters. See the documentation (?mif) for
details.

Let’s use iterated filtering to obtain an approximate MLE for the data in ou2. We’ll initiate the algorithm
at theta.guess and just estmate the parameters α1, α4, and τ along with the initial conditions:

mf <- replicate(

n=3,

mif(

ou2,

Nmif=120,

start=theta.guess,

pars=c('alpha.2','alpha.3','tau'),
ivps=c('x1.0','x2.0'),
rw.sd=c(

x1.0=5,x2.0=5,

alpha.2=0.02,alpha.3=0.02,tau=0.05

),

Np=1000,

var.factor=4,

ic.lag=10,

cooling.factor=0.97,

max.fail=10

)

)

fitted.pars <- c("alpha.2","alpha.3","tau","x1.0","x2.0")

pf <- lapply(mf,pfilter)

loglik.mle <- log(mean(exp(480+sapply(pf,function(x)x$loglik))))-480

loglik.mle.sd <- sd(sapply(pf,function(x)x$loglik))

theta.mle <- apply(sapply(mf,coef),1,mean)

guess mle truth

alpha.2 -0.75 -0.533 -0.5

alpha.3 0.45 0.274 0.3

tau 1.50 1.080 1.0

x1.0 -3.00 -2.790 -3.0

x2.0 4.00 5.910 4.0

loglik -498.20 -478.900 -479.4

INTRODUCTION TO POMP 11

−
49

0
−

48
0

lo
gL

−
0.

7
−

0.
5

α 2
0.

20
0.

30
0.

40
α 3

0 20 40 60 80 100 120

0.
4

0.
8

1.
2

MIF iteration

τ

Figure 2. Convergence plots can be used to help diagnose convergence of the iterated
filtering algorithm. This shows part of the output of compare.mif(mf).

8. Nonlinear forecasting: nlf

To be added.

12 KING, IONIDES, BRETÓ, ELLNER, AND KENDALL

9. Trajectory matching: traj.match

The idea behind trajectory matching is a simple one. One attempts to fit a deterministic dynamical
trajectory to the data. This is tantamount to assuming that all the stochasticity in the system is in the
measurement process. In pomp, the trajectory is computed using the trajectory function, which in turn
uses the skeleton slot of the pomp object. The skeleton slot should be filled with the deterministic
skeleton of the process model. In the discrete-time case, this is the map

x 7→ E [Xt+1 | Xt = x, θ] .

In the continuous-time case, this is the vectorfield

x 7→ lim
∆t→ 0

E
[
Xt+∆t −Xt

∆t

∣∣∣ Xt = x, θ

]
.

Our discrete-time bivariate autoregressive process has the deterministic skeleton

x 7→ αx, (5)

which can be implemented in the R function

ou2.skel <- function (x, t, params, ...) {

xnew <- c(

params["alpha.1"]*x["x1"]+params["alpha.3"]*x["x2"],

params["alpha.2"]*x["x1"]+params["alpha.4"]*x["x2"]

)

names(xnew) <- c("x1","x2")

xnew

}

We can incorporate the deterministic skeleton into a new pomp object in the same way as before:

dat <- subset(as(ou2,"data.frame"),time<=60)

theta <- coef(ou2)

new.ou2 <- pomp(

data=dat[c("time","y1","y2")],

times="time",

rprocess=discrete.time.sim(ou2.proc.sim),

rmeasure=ou2.meas.sim,

dmeasure=ou2.meas.dens,

skeleton.map=ou2.skel,

t0=0

)

coef(new.ou2) <- theta

coef(new.ou2,c("sigma.1","sigma.2","sigma.3","tau")) <- c(0,0,0,0.5)

new.ou2 <- simulate(new.ou2,seed=88737400L)

Note that we have turned off the process noise in new.ou2 (next to last line) so that trajectory matching
is actually formally appropriate for this model.

The pomp function traj.match calls the optimizer optim to minimize the discrepancy between the
trajectory and the data. The discrepancy is measured using the dmeasure function from the pomp

object. Fig. 3 shows the results of this fit.

tm <- traj.match(

new.ou2,

start=coef(new.ou2),

est=c("alpha.2","alpha.3","tau","x1.0","x2.0"),

INTRODUCTION TO POMP 13

−
2

−
1

0
1

2
3

y 1

0 10 20 30 40 50 60

−
2

0
2

4

time

y 2

Figure 3. Illustration of trajectory matching. The points show data simulated from
new.ou2, which has no process noise but only measurement error. The solid line shows
the trajectory of the best-fitting model, obtained using traj.match.

method="Nelder-Mead",

maxit=1000,

reltol=1e-8

)

14 KING, IONIDES, BRETÓ, ELLNER, AND KENDALL

10. A more complex example: a seasonal epidemic model

The SIR model is a mainstay of theoretical epidemiology. It has the deterministic skeleton

dS

dt
= µ (N − S) + β(t)

I

N
S

dI

dt
= β(t)

I

N
S − γ I − µ I

dR

dt
= γ I − µR

Here N = S + I + R is the (constant) population size and β is a time-dependent contact rate. We’ll
assume that the contact rate is periodic and implement it as a covariate. As an additional wrinkle, we’ll
assume that the rate of the infection process β I/N is perturbed by white noise.

As in the earlier example, we need to write a function that will simulate the process. We can use
gillespie.sim to implement this using the exact stochastic simulation algorithm of Gillespie (1977).
This will be quite slow and inefficient, however, so we’ll use the so-called“tau-leap”algorithm, one version
of which is implemented in pomp using Euler-multinomial processes. Before we do this, we’ll first define
the basis functions that will be used for the seasonality. It is convenient to use periodic B-splines for
this purpose. The following codes set up this basis.

tbasis <- seq(0,25,by=1/52)

basis <- periodic.bspline.basis(tbasis,nbasis=3)

colnames(basis) <- paste("seas",1:3,sep='')

Now we’ll define the process model simulator. Since we have covariates now, our function will have one
additional argument, covars, which will contain the value of each covariate at time t, established using
linear interpolation if necessary.

sir.proc.sim <- function (x, t, params, covars, delta.t, ...) {

params <- exp(params)

with(

as.list(c(x,params,covars)),

{

beta <- exp(sum(log(c(beta1,beta2,beta3))*c(seas1,seas2,seas3)))

beta.var <- beta.sd^2

dW <- if (beta.var>0)

rgamma(n=1,shape=delta.t/beta.var,scale=beta.var)

else

delta.t

foi <- (iota+beta*I*dW/delta.t)/pop

trans <- c(

rpois(n=1,lambda=mu*pop*delta.t),

reulermultinom(n=1,size=S,rate=c(foi,mu),dt=delta.t),

reulermultinom(n=1,size=I,rate=c(gamma,mu),dt=delta.t),

reulermultinom(n=1,size=R,rate=c(mu),dt=delta.t)

)

c(

S=S+trans[1]-trans[2]-trans[3],

I=I+trans[2]-trans[4]-trans[5],

R=R+trans[4]-trans[6],

cases=cases+trans[4],

W=if (beta.sd>0) W+(dW-delta.t)/beta.sd else W

)

INTRODUCTION TO POMP 15

}

)

}

Let’s look at this definition in a bit of detail. We will be log-transforming the parameters: the first line
untransforms them. Here, we use with to make the codes a bit easier to read. The variable beta will
be the transmission rate: the time-dependence of this rate is parameterized using the basis functions,
the current values have been passed via the covars argument. The next lines make a draw, dW, from a
Gamma random variable which will model environmental stochasticity as white noise in the transmission
process (Bretó et al., 2009; He et al., 2010). The next line computes the force of infection, foi. trans

is next filled with random draws of all the transitions between the S, I, and R compartments. Births
are modeled using a Poisson distribution, the number of births is stored in trans[1]. Individuals leave
the S class through either death or infection: trans[2] will contain the number infected, trans[3] the
number dead. The number leaving the I and R classes are handled similarly. See the documentation on
reulermultinom for a more thorough explanation of how this function works. Finally, a named vector
is returned that contains the new values of the state variables, each of which is the old value, adjusted
by the transitions. Note that the state variable cases accumulates the number of I→R transitions and
W accumulates the (standardized) white noise.

Now we’re ready to construct the pomp object.

pomp(

data=data.frame(

time=seq(1/52,4,by=1/52),

reports=NA

),

times="time",

t0=0,

tcovar=tbasis,

covar=basis,

rprocess=euler.sim(

step.fun=sir.proc.sim,

delta.t=1/52/20

),

measurement.model=reports~binom(size=cases,prob=exp(rho)),

zeronames=c("cases"),

initializer=function(params, t0, comp.names, ...){

p <- exp(params)

snames <- c("S","I","R","cases","W")

fracs <- p[paste(comp.names,"0",sep=".")]

x0 <- numeric(length(snames))

names(x0) <- snames

x0[comp.names] <- round(p['pop']*fracs/sum(fracs))
x0

},

comp.names=c("S","I","R")

) -> sir

The specification of data, times, and t0 should be familiar. The covariates are specified using the
arguments tcovar and covar. We use euler.sim to specify the process simulator (rprocess). We
are approximating the continuous-time process using an Euler simulator with a time-step of 1/20 of a
week. Both rmeasure and dmeasure can be specified at once using the measurement.model argument.

16 KING, IONIDES, BRETÓ, ELLNER, AND KENDALL

Here, we model the observation process using a binomial process, where the reporting rate, rho, is the
probability that a case is reported.

As we noted before, the state variable cases accumulates the number of cases (i.e., the number of I→R
transitions). However, the data are not the cumulative number of cases, but the number of cases that
have occurred since the last report. Specifying cases in the zeronames argument has the effect of
re-setting the state variable cases to zero after each observation.

Finally, in this example, we do not use the default parameterization of the initial states. Instead, we
specify a custom initializer argument. We want instead to parameterize the initial states in terms
of the fractions of the total population contained in each compartment. In particular, as we see in the
initializer argument to pomp, we normalize so that the sum of S.0, I.0, and R.0 is 1, then multiply
by the initial population size, and then round to the nearest whole number. Note that the initializer we
have specified needs an argument comp.names (the names of the S, I, and R state variables). This is set
in the last line. More generally, one can give any number or kind of additional arguments to pomp: they
will be passed to the initializer, rprocess, dprocess, rmeasure, dmeasure, and skeleton functions,
if these exist. This feature aids in the writing of customized pomp objects.

Now we’ll simulate data using the parameters

theta <- c(

gamma=26,mu=1/50,iota=10,

beta1=1200,beta2=1500,beta3=900,

beta.sd=1e-2,

pop=5e5,

rho=0.6,

S.0=26/1200,I.0=0.001,R.0=1-0.001-26/1200

)

sir <- simulate(sir,nsim=1,params=log(theta),seed=329348545L)

Figure 4 shows the simulated data and state variable trajectories.

INTRODUCTION TO POMP 17

0
10

0
20

0
30

0

re
po

rt
s

90
00

11
00

0
13

00
0

15
00

0

S

0
20

0
60

0
10

00

0 1 2 3 4

I

time

48
50

00
48

80
00

49
10

00

R

0
20

0
40

0
60

0

ca
se

s

−
2.

0
−

1.
0

0.
0

0.
5

0 1 2 3 4

W

time

sir

Figure 4. Results of plot(sir).

18 KING, IONIDES, BRETÓ, ELLNER, AND KENDALL

References

M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A Tutorial on Particle Filters for Online
Nonlinear, Non-Gaussian Bayesian Tracking. IEEE Transactions on Signal Processing 50:174 – 188
(2002).

C. Bretó, D. He, E. L. Ionides, and A. A. King. Time series analysis via mechanistic models. Annals of
Applied Statistics 3:319–348 (2009).

D. T. Gillespie. Exact Stochastic Simulation of Coupled Chemical Reactions. Journal of Physical
Chemistry 81:2340–2361 (1977).

D. He, E. L. Ionides, and A. A. King. Plug-and-play inference for disease dynamics: measles in large
and small populations as a case study. Journal of the Royal Society Interface 7:271–283 (2010).

A. A. King, Departments of Ecology & Evolutionary Biology and Mathematics, University of Michigan, Ann

Arbor, Michigan 48109-1048 USA

E-mail address: kingaa at umich dot edu

URL: http://pomp.r-forge.r-project.org

