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Abstract

This introduction to the R package AdMit is a shorter version of Ardia et al. (2009),
published in the Journal of Statistical Software. The package provides flexible functions to
approximate a certain target distribution and to efficiently generate a sample of random
draws from it, given only a kernel of the target density function. The core algorithm
consists of the function AdMit which fits an adaptive mixture of Student-t distributions to
the density of interest. Then, importance sampling or the independence chain Metropolis-
Hastings algorithm is used to obtain quantities of interest for the target density, using the
fitted mixture as the importance or candidate density. The estimation procedure is fully
automatic and thus avoids the time-consuming and difficult task of tuning a sampling
algorithm. The relevance of the package is shown in an example of a bivariate bimodal
distribution.

Keywords: adaptive mixture, Student-t distributions, importance sampling, independence
chain Metropolis-Hastings algorithm, Bayesian inference, R software.

1. Introduction

In scientific analysis one is usually interested in the effect of one variable, say, education
(= x), on an other variable, say, earned income (= y). In the standard linear regression
model this effect of x on y is assumed constant, i.e., E(y) = βx, with β a constant. The
uncertainty of many estimators of β is usually represented by a symmetric Student-t density
(see, e.g., Heij et al. 2004, Chapter 3). However, in many realistic models the effect of x on
y is a function of several deeper structural parameters. In such cases, the uncertainty of the
estimates of β may be rather non-symmetric. More formally, in a Bayesian procedure, the
target or posterior density may exhibit rather non-elliptical shapes (see, e.g., Hoogerheide
et al. 2007; Hoogerheide and van Dijk 2008b). Hence, in several cases of scientific analysis,
one deals with a target distribution that has very non-elliptical contours and that it is not
a member of a known class of distributions. Therefore, there exists a need for flexible and
efficient simulation methods to approximate such target distributions.

This article illustrates the adaptive mixture of Student-t distributions (AdMit) procedure
(see Hoogerheide 2006; Hoogerheide et al. 2007; Hoogerheide and van Dijk 2008b, for details)
and presents its R implementation (R Development Core Team 2008) with the package AdMit
(Ardia et al. 2008). The AdMit procedure consists of the construction of a mixture of Student-t
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distributions which approximates a target distribution of interest. The fitting procedure relies
only on a kernel of the target density, so that the normalizing constant is not required. In
a second step this approximation is used as an importance function in importance sampling
or as a candidate density in the independence chain Metropolis-Hastings (M-H) algorithm to
estimate characteristics of the target density. The estimation procedure is fully automatic
and thus avoids the difficult task, especially for non-experts, of tuning a sampling algorithm.
The R package AdMit is available from the Comprehensive R Archive Network at http:
//CRAN.R-project.org/package=AdMit.

In a standard case of importance sampling or the independence chain M-H algorithm, the
candidate density is unimodal. If the target distribution is multimodal then some draws
may have huge weights in the importance sampling approach and a second mode may be
completely missed in the M-H strategy. As a consequence, the convergence behavior of these
Monte Carlo integration methods is rather uncertain. Thus, an important problem is the
choice of the importance or candidate density, especially when little is known a priori about
the shape of the target density. For both importance sampling and the independence chain
M-H, it holds that the candidate density should be close to the target density, and it is
especially important that the tails of the candidate should not be thinner than those of the
target.

Hoogerheide (2006) and Hoogerheide et al. (2007) mention several reasons why mixtures of
Student-t distributions are natural candidate densities. First, they can provide an accurate
approximation to a wide variety of target densities, with substantial skewness and high kur-
tosis. Furthermore, they can deal with multi-modality and with non-elliptical shapes due to
asymptotes. Second, this approximation can be constructed in a quick, iterative procedure
and a mixture of Student-t distributions is easy to sample from. Third, the Student-t dis-
tribution has fatter tails than the Normal distribution; especially if one specifies Student-t
distributions with few degrees of freedom, the risk is small that the tails of the candidate are
thinner than those of the target distribution. Finally, Zeevi and Meir (1997) showed that un-
der certain conditions any density function may be approximated to arbitrary accuracy by a
convex combination of basis densities; the mixture of Student-t distributions falls within their
framework. One sufficient condition ensuring the feasibility of the approach is that the target
density function is continuous on a compact domain. It is further allowed that the target
density is not defined on a compact set, but with tails behaving like a Student-t distribution.
Furthermore, it is even allowed that the target tends to infinity at a certain value as long as
the function is square integrable. In practice, a non-expert user sometimes does not know
whether the necessary conditions are satisfied. However, one can check the behaviour of the
relative numerical efficiency as robustness check; if the necessary conditions are not satisfied,
this will tend to zero as the number of draws increases (even if the number of components
in the approximation becomes larger). Obviously, if the provided target density kernel does
not correspond to a proper distribution, the approximation will not converge to a sensible
result. These cases of improper distributions should be discovered before starting a Monte
Carlo simulation.

The R package AdMit consists of three main functions: AdMit, AdMitIS and AdMitMH. The
first one allows the user to fit a mixture of Student-t distributions to a given density through
its kernel function. The next two functions perform importance sampling and independence
chain M-H sampling using the fitted mixture estimated by AdMit as the importance or can-
didate density, respectively. To illustrate the use of the package, we first apply the AdMit

http://CRAN.R-project.org/package=AdMit
http://CRAN.R-project.org/package=AdMit
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methodology to a bivariate bimodal distribution. We describe in detail the use of the func-
tions provided by the package and document the relevance of the methodology to reproduce
the shape of non-elliptical distributions.

The outline of the paper is as follows: Section 2 presents the principles of the AdMit algorithm.
Section 3 presents the functions provided by the package with an illustration of a bivariate
non-elliptical distribution. Section 4 concludes.

2. Adaptive mixture of Student-t distributions

The adaptive mixture of Student-t distributions method developed in Hoogerheide (2006)
and Hoogerheide et al. (2007) constructs a mixture of Student-t distributions in order to
approximate a given target density p(θ) where θ ∈ Θ ⊆ Rd. The density of a mixture of
Student-t distributions can be written as:

q(θ) =
H∑
h=1

ηh td(θ |µh,Σh, ν) ,

where ηh (h = 1, . . . ,H) are the mixing probabilities of the Student-t components, 0 6 ηh 6 1
(h = 1, . . . ,H),

∑H
h=1 ηh = 1, and td(θ |µh,Σh, ν) is a d-dimensional Student-t density with

mode vector µh, scale matrix Σh, and ν degrees of freedom:

td(θ |µh,Σh, ν) =
Γ
(
ν+d

2

)
Γ
(
ν
2

)
(πν)d/2

× (det Σh)−1/2

(
1 +

(θ − µh)′Σ−1
h (θ − µh)
ν

)−(ν+d)/2

.

The adaptive mixture approach determines H, ηh, µh and Σh (h = 1, . . . ,H) based on a
kernel function k(θ) of the target density p(θ). It consists of the following steps:

Step 0 – Initial step Compute the mode µ1 and scale Σ1 of the first Student-t distribution
in the mixture as µ1 = arg maxθ∈Θ log k(θ), the mode of the log kernel function, and
Σ1 as minus the Hessian of log k(θ) evaluated at its mode µ1. Then draw a set of Ns

points θ[i] (i = 1, . . . , Ns) from this first stage candidate density q(θ) = td(θ |µ1,Σ1, ν),
with small ν to allow for fat tails.

Comment: In the rest of this paper, we use Student-t distributions with one degrees of
freedom (i.e., ν = 1) since:

1. it enables the method to deal with fat-tailed target distributions;

2. it makes it easier for the iterative procedure to detect modes that are far apart.

After that add components to the mixture, iteratively, by performing the following steps:

Step 1 – Evaluate the distribution of weights Compute the importance sampling weights
w(θ[i]) = k(θ[i])/q(θ[i]) for i = 1, . . . , Ns. In order to determine the number of compo-
nents H of the mixture we make use of a simple diagnostic criterion: the coefficient of
variation, i.e., the standard deviation divided by the mean, of the importance sampling
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weights {w(θ[i]) | i = 1, . . . , Ns}. If the relative change in the coefficient of variation of
the importance sampling weights caused by adding one new Student-t component to
the candidate mixture is small, e.g., less than 10%, then the algorithm stops and the
current mixture q(θ) is the approximation. Otherwise, the algorithm goes to step 2.

Comment: Notice that q(θ) is a proper density, whereas k(θ) is a density kernel. So,
the procedure does not provide an approximation to the kernel k(θ) but provides an
approximation to the density of which k(θ) is a kernel.

Comment: There are several reasons for using the coefficient of variation of the im-
portance sampling weights. First, it is a natural, intuitive measure of quality of the
candidate as an approximation to the target. If the candidate and the target distri-
butions coincide, all importance sampling weights are equal, so that the coefficient of
variation is zero. For a poor candidate that not even roughly approximates the target,
some importance sampling weights are huge while most are (almost) zero, so that the
coefficient of variation is high. The better the candidate approximates the target, the
more evenly the weight is divided among the candidate draws, and the smaller the coef-
ficient of variation of the importance sampling weights. Second, Geweke (1989) argues
that a reasonable objective in the choice of an importance density is the minimization
of:

Ep[w(θ)] =
∫
k(θ)2

q(θ)
dθ =

∫ [
k(θ)
q(θ)

]2

q(θ)dθ = Eq[w(θ)2] ,

or equivalently, the minimization of the coefficient of variation:(
Eq[w(θ)2]− Eq[w(θ)]2

)1/2
Eq[w(θ)]

,

since:

Eq[w(θ)] =
∫
k(θ)
q(θ)

q(θ)dθ =
∫
k(θ)dθ

does not depend on q(θ).

The reason for quoting the coefficient of variation rather than the standard deviation is
that the standard deviation of the scaled weights (i.e., adding up to one) depends on the
number of draws, whereas the standard deviation of the unscaled weights depends on
the scaling constant

∫
k(θ)dθ (i.e., typically the marginal likelihood). The coefficient

of variation of the importance sampling weights, which is equal for scaled and unscaled
weights, reflects the quality of the candidate as an approximation to the target (not
depending on number of draws or

∫
k(θ)dθ). The coefficient of variation is the function

one would minimize if one desires to estimate P(θ ∈ D), where D ⊂ Θ, if the true value
is P(θ ∈ D) = 0.5. Different functions should be minimized for different quantities
of interest. However, it is usually impractical to perform a separate tuning algorithm
for the importance density for each quantity of interest. Fortunately, in practice the
candidate resulting from the minimization of the coefficient of variation performs well
for estimating common quantities of interest such as posterior moments. Hoogerheide
and van Dijk (2008a) propose a different approach for forecasting extreme quantiles
where one substantially improves on the usual strategy by generating relatively far too
many extreme candidate draws.
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Step 2a – Iterate on the number of components Add another Student-t distribution
with density td(θ |µh,Σh, ν) to the mixture with µh = arg maxθ∈Θ logw(θ) and Σh

equal to minus the inverse Hessian of logw(θ). Here, q(θ) denotes the density of the
mixture of (h− 1) Student-t distributions obtained in the previous iteration of the pro-
cedure. An obvious initial value for the maximization procedure for computing µh is
the point θ[i] with the highest weight in the sample {w(θ[i]) | i = 1, . . . , Ns}. The idea
behind this choice is that the new Student-t component should cover a region where
the weights w(θ) are relatively large. The point where the weight function w(θ) attains
its maximum is an obvious choice for µh, while the scale matrix Σh is the covariance
matrix of the local Normal approximation to the distribution with density kernel w(θ)
around the point µh.

Comment: There are several reasons for the use of minus the inverse Hessian of logw(θ)
as the scale matrix for the new component. First, suppose that k(θ) is a posterior
kernel under a flat prior, and that the first candidate distribution would be a uniform
distribution (or a Student-t with a huge scale matrix). Then logw(θ) takes its maximum
likelihood estimator and minus its inverse Hessian is an asymptotically valid estimate
for the maximum likelihood estimator’s covariance matrix. Second, since logw(θ) takes
its maximum at µh, its Hessian is negative definite (unless it is located at a boundary,
in which case we do not use this scale matrix). Therefore, minus the inverse Hessian is
a positive definite matrix that can be used as a covariance or scale matrix. Moreover,
we want to add candidate probability mass to those areas of the parameter space where
w(θ) is relatively high, i.e., where there is relatively little candidate probability mass.
This is the reason for choosing the mode µh of the new candidate component at the
maximum of w(θ). Especially in those directions where w(θ) decreases slowy (i.e.,
moving away from µh) we want to add candidate probability mass also further away
from µh. This is reflected by larger elements of minus the inverse Hessian of logw(θ) at
µh. Note that w(θ) is generally not a kernel of a proper density on Θ. However, we also
do not require this. We only make use of its local behaviour around its maximum at
µh, reflected by minus the inverse Hessian of logw(θ). That is, we specify a Student-t
distribution that locally behaves the same as the ratio w(θ).

Comment: To improve the algorithm’s ability to detect distant modes of a multimodal
target density we consider one additional initial value for the optimization and we use
the point corresponding to the highest value of the weight function among the two
optima as the mode µh of the new component in the candidate mixture.

Step 2b – Optimize the mixing probabilities Choose the probabilities ηh (h = 1, . . . ,H)
in the mixture q(θ) =

∑H
h=1 ηh td(θ |µh,Σh, ν) by minimizing the (squared) coef-

ficient of variation of the importance sampling weights. First, draw Np points θ
[i]
h

(i = 1, . . . , Np) from each component td(θ |µh,Σh, ν) (h = 1 . . . , H). Then, minimize:

E[w(θ)2]/E[w(θ)]2 (1)

with respect to ηh (h = 1, . . . ,H), where:

E[w(θ)m] =
1
Np

Np∑
i=1

H∑
h=1

ηhw(θ[i]
h )m (m = 1, 2) ,
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and:

w(θ[i]
h ) =

k(θ[i]
h )∑H

l=1 ηl td(θ
[i]
h |µl,Σl, ν)

.

Comment: Minimization of (1) is time consuming. The reason is that this concerns the
optimization of a non-linear function of ηh (h = 1, . . . ,H) where H takes the values
2, 3, . . . in the consecutive iterations of the algorithm. Evaluating the function itself
requires already NH evaluations of the kernel and NH2 evaluations of the Student-t
densities. The computation of (analytically evaluated) derivatives of the function with
respect to ηh (h = 1, . . . ,H) takes even more time. One way to reduce the amount of
computing time required for the construction of the approximation is to use different
numbers of draws in different steps. One can use a relatively small sample of Np draws
for the optimization of the mixing probabilities and a large sample of Ns draws in order
to evaluate the quality of the current candidate mixture at each iteration (in the sense
of the coefficient of variation of the corresponding importance sampling weights) and
in order to obtain an initial value for the algorithm that is used to optimize the weight
function (that yields the mode of a new Student-t component in the mixture). Note
that it is not necessary to find the globally optimal values of the mixing probabilities; a
good approximation to the target density is all that is required.

Step 2c – Draw from the mixture Draw a sample of Ns points θ[i] (i = 1, . . . , Ns) from
the new mixture of Student-t distributions, q(θ) =

∑H
h=1 ηh td(θ |µh,Σh, ν), and go to

step 1; in order to draw a point from the density q(θ) first use a draw from the uniform
distribution U(0, 1) to determine which component td(θ |µh,Σh, ν) is chosen, and then
draw from this d-dimensional Student-t distribution.

Comment: It may occur that one is dissatisfied with diagnostics like the coefficient of variation
of the importance sampling weights corresponding to the final candidate density resulting from
the procedure above. In that case the user may start all over again the procedure with a larger
number of points Ns. The idea behind this strategy is that the larger Ns, the easier it is for
the method to detect and approximate the shape of the target density kernel, and to specify
the Student-t distributions of the mixture adequately.

If the region of integration Θ ⊆ Rd is bounded, it may occur in step 2 that w(θ) attains its
maximum at a boundary of the integration region. In this case minus the inverse Hessian of
logw(θ) evaluated at its mode µh may be a very poor scale matrix; in fact this matrix may not
even be positive definite. In such situations, µh and Σh are obtained as the estimated mean
and covariance based on a subset of draws corresponding to a certain percentage of largest
weights. More precisely, µh and Σh are obtained using the sample {θ[i] | i = 1, . . . , Ns} from
q(θ) we already have:

µh =
∑
j∈Jc

w(θ[j])∑
j∈Jc

w(θ[j])
θ[j]

Σh =
∑
j∈Jc

w(θ[j])∑
j∈Jc

w(θ[j])
(θ[j] − µh)(θ[j] − µh)′ ,

(2)

where Jc denotes the set of indices corresponding to the c percents of the largest weights in the
sample {w(θ[i]) | i = 1, . . . , Ns}. Since our aim is to detect regions with too little candidate
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probability mass (e.g., a distant mode), the percentage c is typically a low value, i.e., 5%, 15%
or 30%. Moreover, the estimated Σh can be scaled by a given factor for robustness. Different
percentages and scaling factors could be used together, leading to different coefficients of
variation at each step of the adaptive procedure. The matrix leading to the smallest coefficient
of variation could then be selected as the scale matrix Σh for the new mixture component.

Once the adaptive mixture of Student-t distributions has been fitted to the target density p(θ)
through the kernel function k(θ), the approximation q(θ) is used in importance sampling or in
the independence chain Metropolis-Hastings (M-H) algorithm to obtain quantities of interest
for the target density p(θ) itself.

2.1. Background on importance sampling

Importance sampling, due to Hammersley and Handscomb (1965), was introduced in econo-
metrics and statistics by Kloek and van Dijk (1978). It is based on the following relationship:

Ep
[
g(θ)

]
=
∫
g(θ)p(θ)dθ∫
p(θ)dθ

=
∫
g(θ)w(θ)q(θ)dθ∫
w(θ)q(θ)dθ

=
Eq
[
g(θ)w(θ)

]
Eq
[
w(θ)

] , (3)

where g(θ) is a given (integrable with respect to p) function, w(θ) = k(θ)/q(θ), Ep de-
notes the expectation with respect to the target density p(θ) and Eq denotes the expectation
with respect to the (importance) approximation q(θ). The importance sampling estimator of
Ep
[
g(θ)

]
is then obtained as the sample counter-part of the right-hand side of (3):

ĝ =
∑N

i=1 g(θ[i])w(θ[i])∑N
i=1w(θ[i])

, (4)

where {θ[i] | 1, . . . , N} is a sample of draws from the importance density q(θ). Under certain
conditions (see Geweke 1989), ĝ is a consistent estimator of Ep

[
g(θ)

]
. The choice of the

function g(θ) allows to obtain different quantities of interest for p(θ). For instance, the mean
estimate of p(θ), denoted by θ, is obtained with g(θ) = θ; the covariance matrix estimate is
obtained using g(θ) = (θ − θ)(θ − θ)′; the estimated probability that θ belongs to a domain
D ⊆ Θ using g(θ) = I{θ∈D}, where I{•} denotes the indicator function which is equal to one
if the constraint holds and zero otherwise.

2.2. Background on the independence chain Metropolis-Hastings algorithm

The Metropolis-Hastings (M-H) algorithm is a Markov chain Monte Carlo (MCMC) approach
that has been introduced by Metropolis et al. (1953) and generalized by Hastings (1970).
MCMC methods construct a Markov chain converging to a target distribution p(θ). After a
burn-in period, which is required to make the influence of initial values negligible, draws from
the Markov chain are considered as (correlated) draws from the target distribution itself.

In the independence chain M-H algorithm, a Markov chain of length N is constructed by the
following procedure. First, one chooses a feasible initial state θ[0]. Then, one repeats the
following steps N times (for i = 1, . . . , N). A candidate value θ? is drawn from the candidate
density q(θ?) and a random variable U is drawn from the uniform distribution U(0, 1). Then
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the acceptance probability:

ξ(θ[i−1],θ?) = min

{
w(θ?)
w(θ[i−1])

, 1

}

is computed, where w(θ) = k(θ)/q(θ), k(θ) being a kernel of the target density p(θ). If
U < ξ(θ[i−1],θ?), the transition to the candidate value is accepted, i.e., θ[i] = θ?. Otherwise
the transition is rejected, and the next state is again θ[i] = θ[i−1].

3. Illustration I: the Gelman-Meng distribution

This section presents the functions provided by the R package AdMit with an illustration of a
bivariate bimodal distribution. This distribution belongs to the class of conditionally Normal
distributions proposed by Gelman and Meng (1991) with the property that the joint density
is not Normal. In the notation of the previous section, we have θ = (X1 X2)′.

Let X1 and X2 be two random variables, for which X1 is Normally distributed given X2

and vice versa. Then, the joint distribution, after location and scale transformations in each
variable, can be written as (see Gelman and Meng 1991):

p(x1, x2) ∝ exp
(
−1

2 [Ax2
1x

2
2 + x2

1 + x2
2 − 2Bx1x2 − 2C1x1 − 2C2x2]

)
, (5)

where A, B, C1 and C2 are constants. Equation (5) can be rewritten as:

p(x1, x2) ∝ exp
(
−1

2

[
Ax2

1x
2
2 + (x− µ)′Σ−1(x− µ)

])
,

with:

µ =
(
BC2 + C1

1−B2

BC1 + C2

1−B2

)′
and Σ−1 =

(
1 −B
−B 1

)
,

so the term Ax2
1x

2
2 causes deviations from the bivariate Normal distribution. In what follows,

we consider the symmetric case in which A = 1, B = 0, C1 = C2 = 3.

The core function provided by the R package AdMit is the function AdMit. The arguments
of the function are the following:

AdMit(KERNEL, mu0, Sigma0 = NULL, control = list(), ...)

KERNEL is a kernel function k(θ) of the target density p(θ) on which the approximation is con-
structed. This function must contain the logical argument log. When log = TRUE, the func-
tion KERNEL returns the (natural) logarithm value of the kernel function; this is used for numer-
ical stability. mu0 is the starting value of the first stage optimization µ1 = arg maxθ∈Θ log k(θ);
it is a vector whose length corresponds to the length of the first argument in KERNEL. If one
experiences misconvergence of the first stage optimization, one could first use an alterna-
tive (robust) optimization algorithm and use its output for mu0. For instance, the DEoptim
function provided by the R package DEoptim (Ardia 2007) performs the optimization (mini-
mization) of a function using an evolutionary (genetic) approach. Sigma0 is the (symmetric
positive definite) scale matrix of the first component. If a matrix is provided by the user, then
it is used as the scale matrix of the first component and mu0 is used as the mode of the first
component. control is a list of tuning parameters. The most important parameters are: Ns
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(default: 1e+05), the number of draws used for evaluating the importance sampling weights;
Np (default: 1e+03), the number of draws used for optimizing the mixing probabilities; CVtol
(default: 0.1), the tolerance of the relative change of the coefficient of variation; df (default:
1), the degrees of freedom of the mixture components; Hmax (default: 10), the maximum
number of components of the mixture; IS (default: FALSE), indicates if the scale matrices Σh

should always be estimated by importance sampling as in (2) without first trying to compute
minus the inverse Hessian; ISpercent (default: c(0.05, 0.15, 0.30)), a vector of percent-
ages of largest weights used in the importance sampling approach; ISscale (default: c(1,
0.25, 4)), a vector of scaling factors used to rescale the scale matrix obtained by importance
sampling. Hence, when the argument IS = TRUE, nine scale matrices are constructed by de-
fault and the matrix leading to the smallest coefficient of variation is selected by the adaptive
mixture procedure as Σh. For details on the other control parameters, the reader is referred
to the documentation file of AdMit (by typing ?AdMit). Finally, the last argument of AdMit
is ... which allows the user to pass additional arguments to the function KERNEL. In econo-
metric models for instance, the kernel may depend on a vector of observations y = (y1 · · · yT )′

which can be passed to the function KERNEL via this argument.

For the numerical optimization of the mode µh and the estimation of the scale matrix Σh

(i.e., when the control parameter IS = FALSE), the function optim is used with the option
BFGS (the function nlminb cannot be used since it does not estimate the Hessian matrix
at optimum). If the optimization procedure does not converge, the algorithm automatically
switches to the Nelder-Mead approach which is more robust but slower. If still misconvergence
occurs or if the Hessian matrix at optimum is not symmetric positive definite, the algorithm
automatically switches to the importance sampling approach for this component.

For the numerical optimization of the mixing probabilities ηh (h = 1, . . . ,H), we rely on the
function nlminb (for speed purposes) and apply the optimization on a reparametrized domain.
More precisely, we optimize (H−1) components in R(H−1) instead of H components in [0, 1]H

with the summability constraint
∑H

h=1 ηh. If the optimization process does not converge,
then the algorithm uses the function optim with method Nelder-Mead (or method BFGS for
univariate optimization) which is more robust but slower. If still misconvergence occurs, the
starting value is kept as the output of the procedure. The starting value corresponds to a
mixing probability weightNC for ηh while the probabilities η1, . . . , ηH−1 are the probabilities
of the previous mixture scaled by (1 - weightNC). The control parameter weightNC is set to
0.1 by default, i.e., a 10% probability is assigned to the new mixture component as a starting
value. Finally, note that AdMit uses C and analytically evaluated derivatives to speed up the
numerical optimization.

Let us come back to our bivariate conditionally Normal distribution. First, we need to define
the kernel function in (5). This is achieved as follows:

R> GelmanMeng <- function(x, A = 1, B = 0, C1 = 3, C2 = 3, log = TRUE) {

+ if (is.vector(x))

+ x <- matrix(x, nrow = 1)

+ r <- -0.5 * (A * x[, 1]^2 * x[, 2]^2 + x[, 1]^2 + x[, 2]^2 -

+ 2 * B * x[, 1] * x[, 2] - 2 * C1 * x[, 1] - 2 * C2 *

+ x[, 2])

+ if (!log)

+ r <- exp(r)
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+ as.vector(r)

+ }

Note that the argument log is set to TRUE by default so that the function outputs the (natural)
logarithm of the kernel function. Moreover, the function is vectorized to speed up the compu-
tations. The argument x is therefore a matrix and the function outputs a vector. We strongly
advise the user to implement the kernel function in this fashion. A plot of GelmanMeng may
be obtained as follows:

R> PlotGelmanMeng <- function(x1, x2) {

+ GelmanMeng(cbind(x1, x2), log = FALSE)

+ }

R> x1 <- x2 <- seq(from = -1, to = 6, by = 0.05)

R> z <- outer(x1, x2, FUN = PlotGelmanMeng)

R> image(x1, x2, z, las = 1, col = gray((20:0)/20), cex.axis = 1.1,

+ cex.lab = 1.2, xlab = expression(X[1]), ylab = expression(X[2]))

R> box()

R> abline(a = 0, b = 1, lty = "dotted")

The plot of GelmanMeng is displayed in Figure 1. We notice the bimodal banana shape of the
kernel function.

Let us now use the function AdMit to find a suitable approximation for the density function
p(θ) whose kernel is (5). We set the seed of the pseudo-random number generator to a given
number and use the starting value mu0 = c(0.0, 0.1) for the first stage optimization. The
result of the function is assigned to the object outAdMit and printed out:

R> set.seed(1234)

R> outAdMit <- AdMit(KERNEL = GelmanMeng, mu0 = c(0, 0.1))

R> print(outAdMit)

$CV
[1] 4.8224 1.3441 0.8892 0.8315

$mit
$mit$p
cmp1 cmp2 cmp3 cmp4

0.4464 0.1308 0.2633 0.1595

$mit$mu
k1 k2

cmp1 0.382 2.61803
cmp2 3.828 0.20337
cmp3 1.762 1.08830
cmp4 2.592 0.06723

$mit$Sigma
k1k1 k1k2 k2k1 k2k2
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Figure 1: Plot of the Gelman and Meng (1991) kernel function.

cmp1 0.2292 -0.40000 -0.40000 1.57082
cmp2 0.8477 -0.08619 -0.08619 0.07277
cmp3 0.2832 -0.10489 -0.10489 0.22971
cmp4 0.7063 -0.18383 -0.18383 0.23474

$mit$df
[1] 1

$summary
H METHOD.mu TIME.mu METHOD.p TIME.p CV

1 1 BFGS 0.01 NONE 0.00 4.8224
2 2 BFGS 0.08 NLMINB 0.04 1.3441
3 3 BFGS 0.16 NLMINB 0.12 0.8892
4 4 BFGS 0.20 NLMINB 0.23 0.8315

The output of the function AdMit is a list. The first component is CV, a vector of length
H which gives the value of the coefficient of variation at each step of the adaptive fitting
procedure. The second component is mit, a list which consists of four components giving in-
formation on the fitted mixture of Student-t distributions: p is a vector of length H of mixing
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probabilities, mu is a H × d matrix whose rows give the modes of the mixture components,
Sigma is a H × d2 matrix whose rows give the scale matrices (in vector form) of the mixture
components and df is the degrees of freedom of the Student-t components. The third com-
ponent of the list returned by AdMit is summary. This is a data frame containing information
on the adaptive fitting procedure: H is the component’s number; METHOD.mu indicates which
algorithm is used to estimate the mode and the scale matrix of the component (i.e., USER,
BFGS, Nelder-Mead or IS); TIME.mu gives the computing time required for this optimization;
METHOD.p gives the method used to optimize the mixing probabilities (i.e., NONE, NLMINB, BFGS
or Nelder-Mead); TIME.p gives the computing time required for this optimization; CV gives
the coefficient of variation of the importance sampling weights. When importance sampling
is used (i.e., IS = TRUE), METHOD.mu is of the type IS 0.05-0.25 indicating in this particular
case, that importance sampling is used with the 5% largest weights and with a scaling factor
of 0.25. Hence, if the control parameters ISpercent and ISscale are vectors of sizes d1

and d2, then d1d2 matrices are considered for each component H, and the matrix leading to
the smallest coefficient of variation is kept as the scale matrix Σh for this component. Time
outputs TIME.mu and TIME.p are provided since it might be useful, as a robustness check,
to see the computing time required for separate ingredients of the fitting procedure, that is
the optimization of the modes and the optimization of the mixing probabilities. A very long
computing time might indicate a numerical failure at some stage of the optimization process.

For the kernel function GelmanMeng, the approximation constructs a mixture of four compo-
nents. The computing time required for the construction of the approximation is 4.4 seconds.
The value of the coefficient of variation decreases from 4.8224 to 0.8315. A plot of the four-
component approximation is displayed in Figure 2. This graph is produced using the function
dMit which returns the density of the mixture given by the output outAdMit$mit:

R> PlotMit <- function(x1, x2, mit) {

+ dMit(cbind(x1, x2), mit = mit, log = FALSE)

+ }

R> z <- outer(x1, x2, FUN = PlotMit, mit = outAdMit$mit)

R> image(x1, x2, z, las = 1, col = gray((20:0)/20), cex.axis = 1.1,

+ cex.lab = 1.2, xlab = expression(X[1]), ylab = expression(X[2]))

R> box()

R> abline(a = 0, b = 1, lty = "dotted")

The plot suggests that the four-component mixture provides a good approximation of the
density function whose kernel is (5).

We can also use the mixture information outAdMit$mit to display each of the mixture com-
ponents separately:

R> par(mfrow = c(2, 2))

R> for (h in 1:4) {

+ mith <- list(p = 1, mu = outAdMit$mit$mu[h, , drop = FALSE],

+ Sigma = outAdMit$mit$Sigma[h, , drop = FALSE], df = outAdMit$mit$df)

+ z <- outer(x1, x2, FUN = PlotMit, mit = mith)

+ image(x1, x2, z, las = 1, col = gray((20:0)/20), cex.axis = 1.1,

+ cex.lab = 1.2, xlab = expression(X[1]), ylab = expression(X[2]))

+ box()
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Figure 2: Plot of the four-component Student-t mixture approximation estimated by the
function AdMit.

+ abline(a = 0, b = 1, lty = "dotted")

+ title(main = paste("component nr.", h))

+ }

Plots of the four components are displayed in Figure 3.
Once the adaptive mixture of Student-t distributions is fitted to the density p(θ) using a
kernel k(θ), the approximation q(θ) provided by AdMit is used as the importance sampling
density in importance sampling or as the candidate density in the independence chain M-H
algorithm.
The first function provided by the R package AdMit which allows to find quantities of interest
for the density p(θ) using the output outAdMit$mit of AdMit is the function AdMitIS. This
function performs importance sampling using the mixture approximation as the importance
density (see Section 2.1). The arguments of the function AdMitIS are the following:

AdMitIS(N = 1e+05, KERNEL, G = function(theta){theta}, mit = list(), ...)

N is the number of draws used in importance sampling; KERNEL is a kernel function k(θ) of
the target density p(θ); G is the function g(θ) in (3); mit is a list providing information on
the mixture approximation (i.e., typically the component mit in the output of the AdMit
function); ... allows additional parameters to be passed to the function KERNEL and/or G.
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Figure 3: Student-t components of the four-component mixture approximation estimated by
the function AdMit.

Let us apply the function AdMitIS to the kernel GelmanMeng using the approximation outAdMit$mit:

R> set.seed(1234)

R> outAdMitIS <- AdMitIS(KERNEL = GelmanMeng, mit = outAdMit$mit)

R> print(outAdMitIS)

$ghat
[1] 1.456 1.460

$NSE
[1] 0.004875 0.004905

$RNE
[1] 0.6418 0.6331

The output of the function AdMitIS is a list. The first component is ghat, the importance
sampling estimator of Ep

[
g(θ)

]
in (4). This is a vector whose length corresponds to the

length of the output of the function G. The second component is NSE, a vector containing
the numerical standard errors (i.e., the square root of the variance of the estimates that can
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be expected if the simulations were to be repeated) of the components of ghat. The third
component is RNE, a vector containing the relative numerical efficiencies of the components
of ghat (i.e., the ratio between an estimate of the variance of an estimator based on direct
sampling and the importance sampling estimator’s estimated variance with the same number
of draws). RNE is an indicator of the efficiency of the chosen importance function; if target
and importance densities coincide, RNE equals one, whereas a very poor importance density
will have a RNE close to zero. Both NSE and RNE are estimated by the method given in Geweke
(1989). For estimating Ep[g(θ)] the N candidate draws are approximately as ‘valuable’ as RNE
× N independent draws from the target would be.

The computing time required to perform importance sampling on GelmanMeng using the four-
component mixture outAdMit$mit is 0.7 seconds, where most part of the computing time is re-
quired for the N evaluations of the function KERNEL at the sampled values {θ[i] | i = 1, . . . , N}.
The true values for Ep(X1) and Ep(X2) are 1.459. We notice that the importance sampling
estimates are close to the true values and we note the good efficiency of the estimation.

By default, the function G is function(theta){theta} so that the function outputs a vector
containing the mean estimates for the components of θ. Alternative functions may be provided
by the user to obtain other quantities of interest for p(θ). The only requirement is that the
function outputs a matrix. For instance, to estimate the covariance matrix of θ, we could
define the following function:

R> G.cov <- function(theta, mu) {

+ G.cov_sub <- function(x) (x - mu) %*% t(x - mu)

+ theta <- as.matrix(theta)

+ tmp <- apply(theta, 1, G.cov_sub)

+ if (length(mu) > 1)

+ t(tmp)

+ else as.matrix(tmp)

+ }

Applying the function AdMitIS with G.cov leads to:

R> set.seed(1234)

R> outAdMitIS <- AdMitIS(KERNEL = GelmanMeng, G = G.cov, mit = outAdMit$mit,

+ mu = c(1.459, 1.459))

R> print(outAdMitIS)

$ghat
[1] 1.526 -1.156 -1.156 1.523

$NSE
[1] 0.006495 0.004623 0.004623 0.007359

$RNE
[1] 0.9190 0.7591 0.7591 0.7107

R> V <- matrix(outAdMitIS$ghat, 2, 2)

R> print(V)
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[,1] [,2]
[1,] 1.526 -1.156
[2,] -1.156 1.523

V is the covariance matrix estimate. For this estimation, we have used the real mean values,
i.e., mu = c(1.459, 1.459), so that NSE and RNE of the covariance matrix elements are
correct. In general, those mean values are unknown and we have to resort to the importance
sampling estimates. In this case, the numerical standard errors of the estimated covariance
matrix elements are (generally slightly) downward biased.

The function cov2cor can be used to obtain the correlation matrix corresponding to the
covariance matrix:

R> cov2cor(V)

[,1] [,2]
[1,] 1.0000 -0.7585
[2,] -0.7585 1.0000

The second function provided by the R package AdMit which allows to find quantities of
interest for the target density p(θ) using the output outAdMit$mit of AdMit is the function
AdMitMH. This function uses the mixture approximation as the candidate density in the inde-
pendence chain M-H algorithm (see Section 2.2). The arguments of the function AdMitMH are
the following:

AdMitMH(N = 1e+05, KERNEL, mit = list(), ...)

N is the length of the MCMC sequence of draws; KERNEL is a kernel function k(θ) of the
target density p(θ); mit is a list providing information on the mixture approximation (i.e.,
traditionally the component mit in the output of the function AdMit); ... allows additional
parameters to be passed to the function KERNEL.

Let us apply the function AdMitMH to the kernel GelmanMeng using the approximation outAdMit$mit:

R> set.seed(1234)

R> outAdMitMH <- AdMitMH(KERNEL = GelmanMeng, mit = outAdMit$mit)

R> print(outAdMitMH)

$draws
k1 k2

1 5.524e-01 1.596e+00
2 5.524e-01 1.596e+00
3 9.788e-01 1.128e+00
4 9.788e-01 1.128e+00
5 1.847e+00 9.608e-01
6 1.942e+00 8.797e-01
7 1.942e+00 8.797e-01
8 1.942e+00 8.797e-01
9 6.315e+00 -5.155e-02
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10 6.315e+00 -5.155e-02
11 9.495e-01 2.084e+00
12 5.073e-01 1.694e+00
13 1.215e-01 9.191e-01
14 1.215e-01 9.191e-01
15 2.865e-01 3.328e+00
16 2.865e-01 3.328e+00
17 2.865e-01 3.328e+00
18 3.118e-01 1.994e+00
19 3.118e-01 1.994e+00
20 3.118e-01 1.994e+00
[getOption("max.print") est atteint -- 99980 lignes omises ]]

$accept
[1] 0.5276

The output of the function AdMitMH is a list of two components. The first component is
draws, a N × d matrix containing draws from the target density p(θ) in its rows. The second
component is accept, the acceptance rate of the independence chain M-H algorithm.

In our example, the computing time required to generate a MCMC chain of size N = 1e+05
(i.e., the default value) takes 0.8 seconds. Note that as for the function AdMitIS, the most
important part of the computing time is required for evaluations of the KERNEL function.
Part of the AdMitMH function is implemented in C in order to accelerate the generation of
the MCMC output. The rather high acceptance rate above 50% suggests that the mixture
approximates the target density quite well.

The R package coda (Plummer et al. 2008) can be used to check the convergence of the
MCMC chain and obtain quantities of interest for p(θ). Here, for simplicity, we discard the
first 1’000 draws as a burn-in sample and transform the output outAdMitMH$draws in a mcmc
object using the function as.mcmc provided by coda. A summary of the MCMC chain can be
obtained using summary:

R> draws <- as.mcmc(outAdMitMH$draws[1001:1e+05, ])

R> colnames(draws) <- c("X1", "X2")

R> summary(draws)$stat

Mean SD Naive SE Time-series SE
X1 1.460 1.237 0.003933 0.005683
X2 1.457 1.235 0.003926 0.006154

We note that the mean estimates are close to the values obtained with the function AdMitIS.
The relative numerical efficiency can be computed from the output of the function summary
by dividing the square of the (robust) numerical standard error of the mean estimates (i.e.,
Time-series SE) by the square of the naive estimator of the numerical standard error (i.e.,
Naive SE):

R> summary(draws)$stat[, 3]^2/summary(draws)$stat[, 4]^2
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X1 X2
0.4789 0.4070

These relative numerical efficiencies reflect the good quality of the candidate density in the
independence chain M-H algorithm.

Finally, note that for more flexibility, the functions AdMitIS and AdMitMH require the argu-
ments N and KERNEL. Therefore, the number of sampled values N in importance sampling or in
the independence chain M-H algorithm can be different from the number of draws Ns used to
fit the Student-t mixture approximation. In addition, the same mixture approximation can
be used for different kernel functions. This can be useful, typically in Bayesian times series
econometrics, to update a joint posterior distribution with the arrival of new observations.
In this case, the previous mixture approximation (i.e., fitted on a kernel function which is
based on T observations) can be used as the candidate density to approximate the updated
joint posterior density which accounts for the new observations (i.e., whose kernel function is
based on T + k observations where k > 1).

4. Concluding remarks

This paper presented the R package AdMit which provides functions to approximate and
sample from a certain target distribution given only a kernel of the target density function.
The estimation procedure is fully automatic and thus avoids the time-consuming and difficult
task of tuning a sampling algorithm. The relevance of the package has been shown in an
example of a bivariate bimodal distribution.

Interested reader are referred to Ardia et al. (2009) for a more complete description of the
R package AdMit. In particular, we show the relevance of the AdMit procedure through the
Bayesian estimation of a mixture of ARCH model fitted to foreign exchange log-returns data.
The methodology is compared to standard cases of importance sampling and the Metropolis-
Hastings algorithm using a naive candidate and with the Griddy-Gibbs approach. Both for
investigating means and tails of the joint posterior distribution the adaptive approach is
preferable.

We believe that this approach may be applicable in many fields of research and hope that
the R package AdMit will be fruitful for many researchers like econometricians or applied
statisticians.

Finally, if you use R or AdMit, please cite the software in publications.
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