Dynamic LaTeX reports with RSP

Henrik Bengtsson

April 04, 2011

Abstract

An important part of a statistical analysis is to document the analysis and its
results. A common approach is to build up an R script as the the analysis progresses.
This script may generate image files and tables that are later inserted manually into a,
say, LaTeX report. This strategy works alright for small one-off analyzes, whereas for
larger and partly repetitive analyzes an automatic report generator is more suitable.

In this document we will illustrate how a LaTeX document can be extended with
the RSP markup language resulting in a very powerful tool for generating dynamic
reports in R. As we will discover, with RSP it is possible to generate document
constructs that are not possible in Sweave, e.g. looping of a mix of R and LaTeX
blocks. Because RSP is a so called context-indepent markup language, RSP can be
used to produce documents of any text-based format, e.g. plain text, HTML, XML,
SVG, as well as Javascript, R, and Sweave. This document was produced using
RSP-embedded LaTeX.

Keywords: reproducible research, report generator, markup language, LaTeX

This document is under construction.

Contents

1

Compiling RSP-markup documents
1.1 Compiling LaTeX documents with RSP markup

The RSP markup language

2.1 Evaluating code (<h{code}%>)
2.2 Evaluating and embedding code (<%:{code}%>)
2.3 Echoing evaluated code (<%=evalWithEcho({code chunk})%>)
2.4 Inlining values of variables (<%={code}%>)
2.5 Iterating over a mixture of RSP and text blocks

Generating and inserting figures

3.1 Brief on including image files in LaTeX L o o
3.2 Defining a function that creates an image file L oL
3.3 Generating and embedding figures Lo L

Templates - Reusing RSP and text blocks

Preprocessing directives
5.1 Hidden comments (<%--{anything}--%>)

w W

U W w W

S O ot

1 Compiling RSP-markup documents

Before anything else, load the R.rsp package by library("R.rsp").

1.1 Compiling LaTeX documents with RSP markup

Then, in order to compile an LaTeX document with RSP markup (a "LaTeX RSP document”) named
report.tex.rsp into a PDF, do:

rsptex("report.tex.rsp")

This will (i) translate the LaTeX RSP document into a valid R script (report.tex.rsp.R), (ii) run the R
script resulting in a LaTeX document (report.tex), and (iii) compile the LaTeX document into a PDF
(report.pdf).

You can try to compile this document by calling

library("R.rsp")
path <- system.file("doc", package="R.rsp")
rsptex("report.tex.rsp", path=path)

The PDF (report.pdf) will be available in the current directory of R (see getwd()).

2 The RSP markup language

2.1 Evaluating code (<%{code}%>)

The RSP markup <%{code}%> evaluates the code (without inserting it into the document). For instance,

<h

n <- 3

type <- "horse"

%>

evaluates the code such that n == 3 and type == "horse" afterward.

2.2 Evaluating and embedding code (<%:{code}%>)

Just as <%{code}%>, the RSP markup <%:{code}%> also evaluates code, but in addition it also inserts the
code verbatim into the document. For instance,

<%:

n <- 3

type <- "horse"
%>

evaluates the code and insert the following into the output document:

n <- 3
type <- "horse"

Formatting of the inserted code has to be taken care of by LaTeX. For instance, here we have explicitly
wrapped the RSP markup inside a \begin{verbatim}...\end{verbatim} block.

2.3 Echoing evaluated code (<%=evalWithEcho({code chunk})%>)

The evalWithEcho() function allows us to evaluate, embed and echo the output of a code chunk!'. For
example,

<Y%=evalWithEcho ({

n <- 3; # Comments are not displayed
n

print(Sys.time())

type <- "horse"

type

D%

produces

>n <- 3

>n

(11 3

> print(Sys.time())

[1] "2011-04-04 21:49:05 PDT"
> type <- "horse"

> type

[1] "horse"

Note that code is parsed and formatted by the R parser, meaning that indentation, spacing and so on are
not preserved when echoing this way. This is also why comments, semicolons and other code constructs
are dropped from the code.

2.4 Inlining values of variables (</={code}%>)

The RSP markup <%={code}%> evaluates the code (without inserting it into the document) and inserts the
character representation? of the returned object. For instance,

There are <%=n}%> red <J=typelk>s

would produce the string "There are 3 red horses’. If inlining multiple values, they are all pasted together
without any separator. For example,

The letters of the alphabet are ’<Y%=LETTERSY>’

produces 'The letters the alphabet are ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’. To separate the ele-
ments with commas, use <%=paste (LETTERS, collapse=", ")%>. Alternatively, use <%=hpaste (LETTERS) %>
to output ’A, B, C, ..., 2’3

1fcode chunk} must be a complete and valid R expression, because evalWithEcho () is a function call.
2The character representation of an object x is what as.character (x) gives.
3The hpaste () function of R.utils provides "human-readable” pasting of vectors.

2.5 Iterating over a mixture of RSP and text blocks

A useful feature of RSP is that it is possible to use RSP constructs that span multiple code and text blocks.
For instance, the following will iterate over a set of text and RSP blocks:

The <J=n <- length(letters)’%> letters in the English alphabet are:
<% for (i in 1:n) { %>

<h=letters[il%>/<%=LETTERS[i]%><}%=if(i < n) ", "%>
<h } h>.

which generates:*: "The 26 letters in the English alphabet are: a/A, b/B, ¢/C, d/D, ¢/E, f/F, g/G, h/H,
i/1,j/J, k/K, 1/L, m/M, n/N, o/O, p/P, q/Q, /R, s/S, t/T, w/U, v/V, w/W, x/X, y/Y, 2/Z .

A more complex example is where one wish to generate a report on human genomic data across all of
the 24 chromosomes and where the same type of analysis should be repeated for each chromosome. With
RSP markup, this can be achieved by an outer loop over chromosomes:

<% for (chromosome in 1:24) { %>
\section{Chromosome <%=chromosome’>}

A mix of RSP and text blocks constituting
the analysis of the current chromosome.

<% } # for (chromosome ...) %>

Note that there exist no corresponding markup in Sweave. Instead, contrary to RSP, Sweave requires
the each code chunk contains a complete R expression. This means that, in terms of the above example,
in Sweave it is not possible to begin a for loop in one code chunk and end it in a succeeding one. This has
to do with the fundamentally different way RSP and Sweave documents are processed.

3 Generating and inserting figures

Since the above RSP markups are powerful enough, there is no need for a specific markup for figures. This
section shows how to create and embed image files into the final document.

3.1 Brief on including image files in LaTeX

When insert a figure in LaTeX, it is recommended to do so without specifying neither the path nor the
filename extension of the image file, e.g. \includegraphics{MyFigure}. In order for this to work, one
must specify the ”image search path”, e.g.

\graphicspath{{figures/}{figures/external/}}

which is preferably added to the beginning of the LaTeX file. This tells LaTeX to search for image files in
directory figures/ as well as directory figures/external/. Moreover, when leaving out the filename extension,
LaTeX will automatically search for image files with different filename extensions, e.g. *.png, *.eps, and
*.pdf.

40f course, in this particular case, the above for-loop can be replaced by paste(letters, LETTERS,
sep="/", collapse=", ").

3.2 Defining a function that creates an image file

The devEval() function of the R.utils package is useful for creating an image file from a set of plot com-
mands. For instance, devEval("png", name="myFigure", width=840, aspectRatio=0.6, { curve(dnorm,
from=-5, to=+5) }) will create a PNG file named myFigure.png displaying the Guassian density distri-
bution and that is 840 pixels wide and 0.6*840=>504 pixels high. Moreover, (by default) devEval() writes
the image file to the figures/ directory. For more information, see help("devEval").

To spare ourselves from having to repeat the same arguments each time an image is created, we define
the following custom function for creating PNG image files with a certain default dimension (840 by 840
since the default aspect ratio is 1) and default graphical parameters (see help("par")):

Use greater objects by default

setOption("devNew/args/par", list(cex=2, 1lwd=2));

toPNG <- function(name, ..., width=840) {

devEval (type="png", width=width, name=name, ..., force=TRUE)$fullname;
}

This function creates a PNG file based on a set of plot commands and returns the so called fullname of
the image file. The fullname of an image file is the filename without the filename extension.
The following code creates a PNG image file 'figures/MyFigure,yeah,cool.png’ and returns "MyFigure,yeah,cool":

toPNG("MyFigure,yeah,cool", aspectRatio=0.6, {
curve (dnorm, from=-5, to=+5);

b

3.3 Generating and embedding figures

02 03 04

dnorm (x)

0.0 0.1

Figure 1: This figure was generated and inserted into the LaTeX document by RSP-
embedded markup.

With this setup, it is possible to create and embed a figure with the following tidy markup:

\includegraphics{<%=toPNG(name="MyFigure,yeah,cool", aspectRatio=0.6, {
curve (dnorm, from=-5, to=+5);

P>}

After the RSP code has been processed, and the image file has been created, the above simply produces
the following markup in the generated LaTeX document:

\includegraphics{MyFigure,yeah,cool}

4 Templates - Reusing RSP and text blocks

Sometimes the very similar paragraphs of text, tables, or figures are used throughout a document with
only minor differences. Instead of cut’n’pasting the same pieces of RSP and code to other places in the
document, it is more robust and much easier to setup a template which is then reused in place. Because
of the nature of RSP, setting up a template is as simple as wrapping the mixture of RSP and code blocks
in a function definition. For example, assume you wish to reuse the following RSP and R blocks multiple
times:

The sum of $x=<J=hpaste(l:n, abbreviate="\\ldots")%>$ is <V=sum(1l:n)%>.
Then place it in a function definition:

<% myTemplate <- function(m, ...) { %>
The sum of $x=<J=hpaste(l:n, abbreviate="\\ldots")%>$ is <V=sum(1:n)%>.<Y%--—-%>
<% } # myTemplate() %>

We use a trailing (empty) RSP comment (<%----%>) to escape the following newline. Also, note that there
is no limitation in how many RSP and text blocks you can use. After having defined the template, it can
be reused any number of times by simply calling it as a function:

<% myTemplate(n=3) %>

which produces 'The sum of x = 1,2,3 is 6.”. Without the trailing RSP comment, the final document
would contain a whitespace after the period and before the closing single-quote. A template can also be
used within for loops. For example:

\begin{itemize}
<% for (ii in c(3,5,10,100)) { %>
\item <% myTemplate(n=ii) %>
<% } # for (ii ...) %>
\end{itemize}
produces:
e The sum of x =1,2,3 is 6.
e The sum of x =1,2,3,4,5 is 15.
e The sumof x =1,2,3,...,10 is 55.
e The sum of x =1,2,3,...,100 is 5050.

5 Preprocessing directives

When an RSP-embedded document processed, it is first preprocessed before it is translated into an R script.
During this step it is possible to modify the document by removing parts of it and inserting new pieces
to it. For instance, by using the RSP hidden comments, multiple lines of the document can be silently
dropped.

5.1 Hidden comments (<%--{anything}--%>)

The RSP markup <%--{anything}--%> will be treated as a comment that can contain anything (but
-=%>), which will not be translated and not part of the output, i.e. it will immediately be dropped. RSP
comments are useful for excluding large sections of an RSP document. It is useful to understand that RSP
comments are greedy, that is, anything between (and including) the <%-- and the first following —=%> will
be dropped, which means that they cannot be nested. For example,

<%-- This is an RSP comment that will be dropped --%>

You can write a paragraph and drop a large portion of it using
RSP comments, <%-- All the below will be dropped

There are <J=n),> red <)=typel’>s

<%-- and this --%> but they must not be nested --%>, because then
the output will be like this.

produces

You can write a paragraph and drop a large portion of it using
RSP comments, but they must not be nested --%>, because then
the output will be like this.

Moreover, RSP comments are special in the sense that if (and only if) the remainder of the line following
the comment consists of only whitespace symbols, then they are also dropped, including the newline. Thus,
an <%----%> at the end of a line will prevent a newline from being inserted.

Appendix

Session information
e R version 2.13.0 beta (2011-04-03 r55281), x86_64-pc-mingw32

e Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,
LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

e Base packages: base, datasets, grDevices, graphics, methods, stats, utils

e Other packages: R.methodsS3 1.2.1, R.oo 1.8.0, R.rsp 0.4.9, R.utils 1.7.4

This report was automatically generated using rsptex() of the R.rsp package. Total processing time
(excluding RSP-to-R translation) was 0.39 seconds.

