
Classes for record linkage of big data sets

Andreas Borg, Murat Sariyar

March 18, 2011

As of version 0.3, the package RecordLinkage includes extensions to overcome
the problem of high memory consumption that arises when processing a large
number of records (i.e. building record pairs out of ≥ 1000 records without
blocking). This is achieved by blockwise creation of comparison patterns instead
of computing and storing the whole set of patterns at once, which was the only
choice in the former version. In addition, an embedded SQLite database is used
through package RSQLite to perform blocking, application of phonetic codes or
string metrics and creation of comparison patterns. This allows to make use of
the efficient data structures (e.g. indexing) implemented in the SQLite engine.

In order to facilitate a tidier design, S4 classes and methods were used to
implement the extensions. In favor of backward compatibility and development
time, plans of a complete transition to S4 were dismissed. Nevertheless, the
existing functions were joined with their new counterparts, resulting in methods
which dispatch on the new S4 as well as on the existing S3 classes. This approach
combines two advantages: First, existing code using the package still works,
second, the new classes and methods offer (nearly) the same interface, i.e. the
necessary function calls for a linkage task differ only slightly. An exception is
getPairs, whose arguments differ from the exisiting version (see man page).

1 Defining data and comparison parameters

The existing S3 class "RecLinkData" is supplemented by the S4 classes "RL-

BigDataLinkage" and "RLBigDataDedup" for linking two datasets and dedupli-
cation of one dataset respectively. Both share the common abstract superclass
"RLBigData".

> library(RecordLinkage)

RecordLinkage library

[c] IMBEI Mainz

> showClass("RLBigData")

Virtual Class "RLBigData" [package "RecordLinkage"]

Slots:

Name: frequencies blockFld excludeFld

Class: numeric list numeric

1

Name: strcmpFld strcmpFun phoneticFld

Class: numeric character numeric

Name: phoneticFun drv con

Class: character DBIDriver DBIConnection

Name: dbFile

Class: character

Known Subclasses: "RLBigDataDedup", "RLBigDataLinkage"

> showClass("RLBigDataDedup")

Class "RLBigDataDedup" [package "RecordLinkage"]

Slots:

Name: data identity frequencies

Class: data.frame factor numeric

Name: blockFld excludeFld strcmpFld

Class: list numeric numeric

Name: strcmpFun phoneticFld phoneticFun

Class: character numeric character

Name: drv con dbFile

Class: DBIDriver DBIConnection character

Extends: "RLBigData"

> showClass("RLBigDataLinkage")

Class "RLBigDataLinkage" [package "RecordLinkage"]

Slots:

Name: data1 data2 identity1

Class: data.frame data.frame factor

Name: identity2 frequencies blockFld

Class: factor numeric list

Name: excludeFld strcmpFld strcmpFun

Class: numeric numeric character

Name: phoneticFld phoneticFun drv

Class: numeric character DBIDriver

Name: con dbFile

2

Class: DBIConnection character

Extends: "RLBigData"

For the two non-virtual classes, the constructor-like function RLBigDataD-

edup and RLBigDataLinkage exist, which correspond to compare.dedup and
compare.linkage for the S3 classes and share most of their arguments. In con-
trast to the latter, these functions do not create the whole set of comparison
patterns but only instantiate an object that holds all the information necessary
to construct these pairs on demand.

The following example shows the basic usage of the constructors, for details
consult their documentation.

> data(RLdata500)

> data(RLdata10000)

> rpairs1 <- RLBigDataDedup(RLdata500, identity = identity.RLdata500,

+ blockfld = list(1, 3), strcmp = 1:4)

> s1 <- 471:500

> s2 <- sample(1:10000, 300)

> identity2 <- c(identity.RLdata500[s1],

+ rep(NaN, length(s2)))

> dataset <- rbind(RLdata500[s1,], RLdata10000[s2,

+])

> rpairs2 <- RLBigDataLinkage(RLdata500,

+ dataset, identity1 = identity.RLdata500,

+ identity2 = identity2, phonetic = 1:4,

+ exclude = "lname_c2")

In order to create comparison patterns, the following backend functions exist,
which are usually not directly executed by the user:

begin Constructs an SQL statement to execute blocking, phonetic code, string
comparison and building comparison patterns and sends this query to the
underlying SQLite database. Takes as argument the object to process.

nextPairs Fetches a block of patterns after the query has been send. Takes as
arguments the object from which to fetch and the maximum number of
comparison patterns to return.

clear Clears the result set after comparison patterns have been fetched. Takes
as argument the object to process.

> rpairs1 <- begin(rpairs1)

> nextPairs(rpairs1, 10)

id1 id2 fname_c1 fname_c2 lname_c1 lname_c2

1 1 8 0.0000000 NA 1.0000000 NA

2 1 64 0.6190476 NA 1.0000000 NA

3 1 141 0.5619048 NA 1.0000000 NA

4 1 185 0.6190476 NA 1.0000000 NA

5 1 217 0.6761905 NA 1.0000000 NA

6 1 248 0.6761905 NA 1.0000000 NA

3

7 1 268 0.6011905 NA 1.0000000 NA

8 1 325 0.3952381 NA 1.0000000 NA

9 1 428 0.5396825 NA 1.0000000 NA

10 1 174 1.0000000 NA 0.4476190 NA

by bm bd is_match

1 0 0 0 0

2 0 1 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

7 0 0 0 0

8 0 0 0 0

9 0 0 0 0

10 0 0 0 0

> clear(rpairs1)

[1] TRUE

2 Supervised classification

The existing function classifySupv was transformed to a S4 method which
handles the old S3 object ("RecLinkData") as well as the new classes. How-
ever, at the moment a classificator can only be trained with an object of class
"RecLinkData".

> train <- getMinimalTrain(compare.dedup(RLdata500,

+ identity = identity.RLdata500, blockfld = list(1,

+ 3)))

> rpairs1 <- RLBigDataDedup(RLdata500, identity = identity.RLdata500)

> classif <- trainSupv(train, "rpart", minsplit = 2)

> result <- classifySupv(classif, rpairs1)

The result is an object of class "RLResult" which contains the indices of
links and optionally possible links.

> showClass("RLResult")

Class "RLResult" [package "RecordLinkage"]

Slots:

Name: data links possibleLinks

Class: RLBigData matrix matrix

Name: nPairs

Class: numeric

A contingency table can be viewed via getTable, various error measures are
calculated by getErrorMeasures.

4

> getTable(result)

classification

true status N P L

FALSE 124696 0 4

TRUE 2 0 48

> getErrorMeasures(result)

$alpha

[1] 0.04

$beta

[1] 3.207698e-05

$accuracy

[1] 0.999952

$precision

[1] 0.923077

$sensitivity

[1] 0.96

$specificity

[1] 0.999968

$ppv

[1] 0.923077

$npv

[1] 0.999984

3 Weight-based classification

As with "RecLinkData" objects, weight-based classification with "RLBigData*"

classes includes weight calculation and classification based on one or two thresh-
olds, dividing links, non-links and, if desired, possible links. The following ex-
ample applies classification with Epilink (see documentation of epiWeights for
details):

> rpairs1 <- epiWeights(rpairs1)

> result <- epiClassify(rpairs1, 0.5)

> getTable(result)

classification

true status N P L

FALSE 124699 0 1

TRUE 4 0 46

5

By default, the weights for each individual record pair are stored in the
associated database, which speeds up subsequent classification significantly. If
the resulting disk usage is an issue, this behaviuor can be changed as follows:

• In the case of weight calculation with an EM algorithm by calling emWeights

with argument save.weights = FALSE. This results in only 2#attributes

per-pattern weights being stored.

• In the case of Epilink weights, epiWeights can be called directly. In
this case, weights are calculated during classification but are not saved in
memory.

4 Evaluation and results

In addition to getTable and getErrorMeasures, getPairs, which was re-
designed as a versatile S4 method, is an important tool to inspect data and
linkage results. For example, the following code extracts all links with weights
greater or equal than 0.7 from the result set obtained in the last example:

> getPairs(result, min.weight = 0.7, filter.link = "link")

id fname_c1 fname_c2 lname_c1 lname_c2 by bm

1 290 HELGA ELFRIEDE BERGER <NA> 1989 1

2 466 HELGA ELFRIEDE BERGER <NA> 1989 1

3

4 467 ULRIKE NICOLE BECKRR <NA> 1982 8

5 472 ULRIKE NICOLE BECKER <NA> 1982 8

6

7 313 URSULA BIRGIT MUELLRR <NA> 1940 6

8 457 URSULA BIRGIT MUELLER <NA> 1940 6

9

bd is_match Class Weight

1 18

2 28 TRUE L 0.7786012

3

4 4

5 4 TRUE L 0.7293529

6

7 15

8 15 TRUE L 0.7293529

9

A frequent use case is to inspect misclassifed record pairs; for this purpose
two shortcuts are included that call getPairs with appropriate arguments:

> getFalsePos(result)

id fname_c1 fname_c2 lname_c1 lname_c2 by bm

1 388 ANDREA <NA> WEBER <NA> 1945 5

2 408 ANDREA <NA> SCHMIDT <NA> 1945 2

3

6

bd is_match Class Weight

1 20

2 20 FALSE L 0.5067013

3

> getFalseNeg(result)

id fname_c1 fname_c2 lname_c1 lname_c2 by

1 353 INGE <NA> SEIDEL <NA> 1949

2 355 INGEU <NA> SEIDEL <NA> 1949

3

4 285 ERIKA <NA> WEBER <NA> 1995

5 379 ERIKA <NA> WEBER <NA> 1992

6

7 127 KARL <NA> KLEIN <NA> 2002

8 142 KARL <NA> KLEIBN <NA> 2002

9

10 37 HARTMHUT <NA> HOFFMSNN <NA> 1929

11 72 HARTMUT <NA> HOFFMANN <NA> 1929

12

bm bd is_match Class Weight

1 9 4

2 8 4 TRUE N 0.4948059

3

4 2 1

5 2 29 TRUE N 0.4782410

6

7 6 20

8 6 29 TRUE N 0.4692532

9

10 12 29

11 12 29 TRUE N 0.4081096

12

7

