
Introduction to SamplerCompare

Madeleine B. Thompson
University of Toronto

Abstract

SamplerCompare is an R package for comparing the performance of Markov chain
Monte Carlo samplers. It samples from a collection of distributions with a collection of
MCMC methods over a range of tuning parameters. Then, using log density evaluations
per independent observation as a figure of merit, it generates a grid of plots showing
the results of the simulation. It comes with a collection of predefined distributions and
samplers and provides R and C interfaces for defining additional ones. This document
demonstrates the basics of running simulations, visualizing results, and defining distribu-
tions and samplers in R.

Keywords: MCMC, visualization.

1. Purpose of package

SamplerCompare (Thompson 2010c) is an R (R Development Core Team 2010) package that
allows for automated comparison of Markov chain Monte Carlo (MCMC) methods. It sam-
ples from collections of probability distributions with collections of MCMC samplers with a
range of tuning parameters and presents the results of such simulations graphically. These
comparisons allow researchers to better understand which MCMC methods perform best in
which circumstances.
This document introduces the mechanics of using the SamplerCompare package. For the
mathematical background of the comparisons and analysis of the resulting graphics, see
Thompson (2010a). Other sources of information on SamplerCompare are the R online help
for the package and Thompson (2010b). A list of online help topics and vignettes can be
found by typing:

R> library(help='SamplerCompare')

Vignettes can be read with the vignette command. For example:

R> vignette('glue')

PDF copies can be found in the doc directory of the installed package.

2. Running MCMC simulations

The three central types of objects in SamplerCompare are distributions (which have the class
dist), sampler functions, and simulation results. The function compare.samplers runs a

2 Introduction to SamplerCompare

R function Sampler
multivariate.metropolis.sample Metropolis–Hastings with spherically symmetric

Gaussian proposals
univar.metropolis.sample Metropolis–Hastings with single-coordinate updates
adaptive.metropolis.sample Adaptive Metropolis–Hastings (Roberts and Rosen-

thal 2009)
arms.sample Adaptive Rejection Metropolis (Gilks, Best, and

Tan 1995)
stepout.slice.sample slice sampler with stepping out (Neal 2003, §4)
interval.slice.sample slice sampler without stepping out (Neal 2003, §4)
univar.eigen.sample adaptive slice sampler with univariate steps along

eigenvectors of covariance matrix (Thompson 2011,
ch. 3)

hyperrectangle.sample slice sampler with hypercube for initial slice approx-
imation, shrinkage using gradient (Neal 2003, §5.1)

nograd.hyperrectangle.sample slice sampler with hypercube for initial slice approxi-
mation, shrinkage in all dimensions (Neal 2003, §5.1)

oblique.hyperrect.sample adaptive slice sampler with hyperrectangle for initial
slice approximation (Thompson 2011, ch. 3)

nonadaptive.crumb.sample slice sampler with Gaussian crumbs (Neal 2003,
§5.2)

cov.match.sample covariance-matching slice sampler (Thompson and
Neal 2010, §4)

shrinking.rank.sample shrinking rank slice sampler (Thompson and Neal
2010, §5)

Table 1: Predefined samplers; see the R help for the sampler’s R function for more information
on an individual method.

R symbol Distribution
N2weakcor.dist weakly correlated two-dimensional Gaussian
N4poscor.dist strongly positively correlated four-dimensional Gaussian
N4negcor.dist strongly negatively correlated four-dimensional Gaussian
schools.dist ten-dimensional multilevel model (Gelman, Carlin, Stern,

and Rubin 2004, pp. 138–145)
funnel.dist ten-dimensional distribution with funnel-shaped marginals

(Neal 2003, p. 732)

R function Distributions generated
make.gaussian multivariate Gaussians
make.cone.dist distributions with cone-shaped log density (Roberts and

Rosenthal 2002)
make.multimodal.dist mixtures of standard Gaussians
make.mv.gamma.dist distributions with uncorrelated gamma marginals

Table 2: Predefined distributions and functions that generate distributions; see the R help for
a symbol for more information on an individual distribution or generator.

Madeleine B. Thompson 3

list of samplers on a list of distributions with a set of tuning parameters and returns a data
frame containing simulation results. Sampler functions are assumed to have a single scalar
tuning parameter. If they have more, wrapper functions can represent a single sampler with
a varying tuning parameter as multiple samplers. SamplerCompare comes with a collection
of predefined samplers (listed in table 1) and distributions (listed in table 2).

Suppose we would like to compare Adaptive Metropolis (adaptive.metropolis.sample) and
Adaptive Rejection Metropolis (arms.sample) with the tuning parameters 1, 20, and 400 on
two-dimensional Gaussian (make.gaussian) and Gamma (make.mv.gamma.dist) distribu-
tions. We can do this with compare.samplers using the R code:

library('SamplerCompare')
gauss.cor7 <- make.gaussian(mean=c(1,2), rho=0.7)
gamma.shape23 <- make.mv.gamma.dist(shape=c(2,3))
sim.results <- compare.samplers(sample.size=1000,

dists=list(gauss.cor7, gamma.shape23),
samplers=list(adaptive.metropolis.sample,

arms.sample),
tuning=c(1,20,400))

The call to compare.samplers generates the following trace, with one line for each simulation:

Simulation started at 2011-03-21 10:40:34.
Writing results to /var/folders/VU/VUhUDp3zFICqsQOv3aWIFU+++TI/-Tmp-//RtmpDlSeVZ/compare.samplers6058ed8.
N2,rho=0.7 Adaptive Metropolis: 8.77 (7.42,10.5) evals tuning=1; act.y=3.62
N2,rho=0.7 ARMS: 64.4 (40.1,121) evals tuning=1; act.y=1.99
Gamma2 Adaptive Metropolis: 21.1 (16,28.7) evals tuning=1; act.y=13
Gamma2 ARMS: 6.77 (5.92,7.86) evals tuning=1; act.y=1.09
N2,rho=0.7 Adaptive Metropolis: 3.2e+03 (845,Inf) evals tuning=20; act.y=1.6e+03
N2,rho=0.7 ARMS: 54.7 (41.3,72.4) evals tuning=20; act.y=1.7
Gamma2 Adaptive Metropolis: 178 (75.1,2.42e+03) evals tuning=20; act.y=3.93
Gamma2 ARMS: 13.1 (11.4,15.3) evals tuning=20; act.y=0.954
N2,rho=0.7 Adaptive Metropolis: 3.2e+03 (845,Inf) evals tuning=400; act.y=1.6e+03
N2,rho=0.7 ARMS: 133 (113,158) evals tuning=400; act.y=1.72
Gamma2 Adaptive Metropolis: 3.2e+03 (845,Inf) evals tuning=400; act.y=368
Gamma2 ARMS: 16.4 (14.4,18.9) evals tuning=400; act.y=0.741
Simulation finished at 2011-03-21 10:41:04, 30s elapsed.

Each line in the trace has the distribution name, the sampler name, the number of evaluations
per independent observation with 95% confidence interval in parentheses, and the tuning
parameter.

4 Introduction to SamplerCompare

scale tuning parameter

lo
g

de
ns

ity
 e

va
ls

. p
er

 u
nc

or
re

la
te

d
ob

s.
 (

w
ith

 9
5%

 C
I)

101

101.5

102

102.5

103

103.5

101

101.5

102

102.5

103

103.5

Adaptive Metropolis

●

● ●

●

●

●

1 10 10
0

ARMS

●
●

●

●

●
●

1 10 10
0

N
2 (ρ

=
0.7)

Γ
2

Figure 1: A comparison between adaptive Metropolis and ARMS on two-dimensional Gaus-
sians and gammas. See section 3 for more information.

3. Visualizing results

To visualize the results from a simulation, one can use the comparison.plot function. It
has a single required argument, a data frame containing results from compare.samplers, and
returns a ggplot2 (Wickham 2009) plot object. One can call print on this object to view the
plot; it can also be edited with the grid package (Murrell 2005, ch. 5–6). To plot the results
from the previous example, one would type:

R> print(comparison.plot(sim.results))

The results are shown in figure 1.

In this graphic, the columns of plots represent the samplers and the rows of plots represent
the distributions. The vertical axis in each plot is the number of log density evaluations per
independent observation; see the help for ar.act for more information on how this is com-
puted. The horizontal axis is the scalar tuning parameter. The vertical bars are approximate
95% confidence intervals for the figure of merit.

4. Defining additional samplers

MCMC samplers are specified by functions that have the signature:

sampler(target.dist, x0, sample.size, tuning)

They must also have a name attribute, a length-one character vector. The target.dist
parameter specifies the target distribution; see the R help for make.dist for details on its

Madeleine B. Thompson 5

structure. x0 specifies the start state for the simulation, sample.size specifies the sample
size, and tuning specifies a scalar tuning parameter.

A sampler function should return a list with two elements: X, a matrix of rows of ob-
servations, and evals, a count of the number of times it evaluated the log density (with
target.dist$log.density). If the sampler evaluates the gradient of the log density (with
target.dist$grad.log.density), the list should contain a grads element, indicating the
number of times it did this.

The following code specifies a Metropolis sampler with multivariate proposals:

metropolis.sample <- function(target.dist, x0, sample.size, tuning) {
X <- matrix(nrow=sample.size, ncol=target.dist$ndim)
state <- x0
evals <- 1
state.log.dens <- target.dist$log.density(state)
for (obs in 1:sample.size) {
proposal <- rnorm(target.dist$ndim, state, tuning)
evals <- evals + 1
proposal.log.dens <- target.dist$log.density(proposal)
if (runif(1) < exp(proposal.log.dens-state.log.dens)) {
state <- proposal
state.log.dens <- proposal.log.dens

}
X[obs,] <- state

}
return(list(X=X, evals=evals))

}
attr(metropolis.sample, 'name') <- 'Metropolis'

See the R help for compare.samplers for more information on writing samplers in R. See the
R help for wrap.c.sampler and Thompson (2010b) for more information on writing samplers
in C.

5. Defining additional distributions

make.dist can be used to specify a distribution whose log density is expressed in R. (See the R
help for make.c.dist and Thompson (2010b) for more information on specifying distributions
in C.) Its most important arguments are ndim, name, and log.density. ndim specifies the
dimension of the distribution and name names the distribution. log.density is a function
of one vector argument of length ndim that returns the log density at that point; it should
return -Inf if the point is outside the support of the distribution. The log density does not
need to be normalized.

The following R code defines a Beta(2,3) distribution:

beta23.log.dens <- function(x) ifelse(x<0 | x>1, -Inf, log(x) + 2*log(1-x))
beta23.dist <- make.dist(ndim=1, name='Beta(2,3)',

log.density=beta23.log.dens, mean=2/(2+3))

6 Introduction to SamplerCompare

The optional mean argument to make.dist makes the autocorrelation time computation in
compare.samplers more accurate, so it is advisable to specify it when the mean is known.

6. A final example

Samplers and distributions defined as above can be used directly:

sim <- metropolis.sample(beta23.dist, x0=0.5, sample.size=100, tuning=1)

Or, they can be passed to compare.samplers:

sim.results <- compare.samplers(sample.size=1000,
dists=list(beta23.dist),
samplers=list(metropolis.sample),
tuning=c(0.1,1,10),
trace=FALSE)

print(subset(sim.results,
select=c('dist','sampler','tuning','act','evals','cpu','err')))

The call to print(subset(...)) shows some of the columns of the result object:

dist sampler tuning act evals cpu err
1 Beta(2,3) Metropolis 0.1 18.308804 1.001 7.6e-05 0.009270565
2 Beta(2,3) Metropolis 1.0 6.166051 1.001 6.7e-05 0.027165487
3 Beta(2,3) Metropolis 10.0 230.008586 1.001 7.0e-05 0.036684207

One can see that since the evaluations per iteration (evals) and processor-seconds per itera-
tion (cpu) are similar for each simulation, and the autocorrelation time (act) is lowest for a
tuning parameter of 1.0, that choice would seem to be better than the other two. However,
the plots produced by comparison.plot are easier to interpret when more than a few chains
are run.

7. Limitations

SamplerCompare was created to support my own research; I am releasing it with the hope
that others find it useful. Some current limitations include:

• Distributions are assumed to be continuous and to be of a constant dimension.

• All simulations start at a random point on the unit hypercube.

• Samplers are assumed to have exactly one scalar tuning parameter.

• All samplers in a given invocation of compare.samplers are run with the same simula-
tion length and set of tuning parameters.

• Distributions are defined entirely in terms of their log density; there is no way to specify
that a distribution is unimodal or that a particular parameter is always positive.

Madeleine B. Thompson 7

References

Gelman A, Carlin JB, Stern HS, Rubin DB (2004). Bayesian Data Analysis, Second Edition.
Chapman and Hall/CRC. URL http://www.stat.columbia.edu/~gelman/book/.

Gilks WR, Best NG, Tan KKC (1995). “Adaptive Rejection Metropolis Sampling within Gibbs
Sampling.” Applied Statistics, 44(4), 455–472. URL http://www.jstor.org/stable/
2986138.

Murrell P (2005). R Graphics. Chapman and Hall/CRC. URL http://www.stat.auckland.
ac.nz/~paul/RGraphics/rgraphics.html.

Neal RM (2003). “Slice sampling.” Annals of Statistics, 31, 705–767. URL http:
//projecteuclid.org/getRecord?id=euclid.aos/1056562461.

R Development Core Team (2010). R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
http://www.R-project.org.

Roberts GO, Rosenthal JS (2002). “The Polar Slice Sampler.” Stochastic Models, 18(2),
257–280. URL http://www.informaworld.com/openurl?genre=article&issn=1532%
2d6349&volume=18&issue=2&spage=257.

Roberts GO, Rosenthal JS (2009). “Examples of Adaptive MCMC.” Journal of Computational
and Graphical Statistics, 18(2), 349–367. URL http://pubs.amstat.org/doi/abs/10.
1198/jcgs.2009.06134.

Thompson MB (2010a). “Graphical Comparison of MCMC Performance.” Technical Report
1010, Dept. of Statistics, University of Toronto. ArXiv:1011.4457v1 [stat.CO], URL http:
//arxiv.org/abs/1011.4457.

Thompson MB (2010b). “R/C Glue in SamplerCompare.” URL http://cran.r-project.
org/web/packages/SamplerCompare/vignettes/glue.pdf.

Thompson MB (2010c). SamplerCompare: A framework for comparing the performance of
MCMC samplers. URL http://cran.r-project.org/web/packages/SamplerCompare/
index.html.

Thompson MB (2011). Slice Sampling with Multivariate Steps. Ph.D. thesis, University of
Toronto. Forthcoming.

Thompson MB, Neal RM (2010). “Covariance-Adaptive Slice Sampling.” Technical Report
1002, Dept. of Statistics, University of Toronto. ArXiv:1003.3201v1 [stat.CO], URL http:
//www.cs.toronto.edu/~radford/cass.abstract.html.

Wickham H (2009). ggplot2: Elegant Graphics for Data Analysis. Springer. URL http:
//had.co.nz/ggplot2/book.

http://www.stat.columbia.edu/~gelman/book/
http://www.jstor.org/stable/2986138
http://www.jstor.org/stable/2986138
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
http://projecteuclid.org/getRecord?id=euclid.aos/1056562461
http://projecteuclid.org/getRecord?id=euclid.aos/1056562461
http://www.R-project.org
http://www.informaworld.com/openurl?genre=article&issn=1532%2d6349&volume=18&issue=2&spage=257
http://www.informaworld.com/openurl?genre=article&issn=1532%2d6349&volume=18&issue=2&spage=257
http://pubs.amstat.org/doi/abs/10.1198/jcgs.2009.06134
http://pubs.amstat.org/doi/abs/10.1198/jcgs.2009.06134
http://arxiv.org/abs/1011.4457
http://arxiv.org/abs/1011.4457
http://cran.r-project.org/web/packages/SamplerCompare/vignettes/glue.pdf
http://cran.r-project.org/web/packages/SamplerCompare/vignettes/glue.pdf
http://cran.r-project.org/web/packages/SamplerCompare/index.html
http://cran.r-project.org/web/packages/SamplerCompare/index.html
http://www.cs.toronto.edu/~radford/cass.abstract.html
http://www.cs.toronto.edu/~radford/cass.abstract.html
http://had.co.nz/ggplot2/book
http://had.co.nz/ggplot2/book

8 Introduction to SamplerCompare

Affiliation:

Madeleine B. Thompson
Dept. of Statistics, University of Toronto
100 St. George Street Room 6022
Toronto, Ontario, M5S 3G3, Canada
E-mail: mthompson@utstat.toronto.edu
URL: http://www.utstat.toronto.edu/mthompson

mailto:mthompson@utstat.toronto.edu
http://www.utstat.toronto.edu/mthompson

	Purpose of package
	Running MCMC simulations
	Visualizing results
	Defining additional samplers
	Defining additional distributions
	A final example
	Limitations

