
1 TSdbi Functions

In R, the functions in this package are made available with

> library("TSdbi")

The TSdbi package provides the common parts of an interface to time series
databases. To use this package it is necessary to also have one of the database
specific packages, such as TShistQuote, TSMySQL, TSSQLite, TSPostgreSQL,
TSodbc, TSfame, or TSpadi. More extensive vignette examples, which will be
interesting from a user’s perspective, are provided in each of those packages.
(The vignettes are similar, but do not build without one of the database specific
packages.) The documentation below is intended for an administrator who needs
to set up an SQL version of the database.

The TSdbi interface works with some databases that are not SQL, but for
SQL databases the instructions below, and the examples in the database specific
packages, provide details for setting up the backend database server tables.

2 Administration: Database Table Setup

The instructions to build SQL tables using R are given in the file CreateTa-
bles.TSsql distributed in TSdbi/inst/TSsql/ and for simple examples such as
illustrated in the database specific packages it is adequate to simply

source(system.file(”TSsql/CreateTables.TSsql”, package=”TSdbi”)).
Below the plain SQL instruction are shown. In a few places MySQL specific

commands are used, but the equivalent for other SQL variants should be fairly
clear to someone familiar with the SQL variant. The plain SQL instruction
below can be executed in a standalone client, such as mysql, which might be
convenient when bulk loading data. (Example makefiles for bulk loading data
might eventually be available from the author.)

The database tables are shown in the Table below. The Meta table is used for
storing meta data about series, such as a description and longer documentation,
and also includes an indication of what table the series data is stored in. To
retrieve series it is not necessary to know which table the series is in, since this
can be found on the Meta table. Putting data on the database may require
specifying the table, if it cannot be determined from the R representation of the
series.

In addition, there will be tables ”vintages” and ”panels” if those features are
used. The tables can be set up with the following commands. (Please note
that this documentation is not automatically maintained, and could become
out-of-date. The instructions in the file TSsql/CreateTables.TSsql are tested
automatically, and thus guaranteed to be current.)

DROP TABLE IF EXISTS Meta;

create table Meta (

1



Table 1: Data Tables

Table Contents
Meta meta data and index to series data tables
A annual data
Q quarterly data
M monthly data
S semiannual data
W weekly data
D daily data
B business data
U minutely data
I irregular data with a date
T irregular data with a date and time

id VARCHAR(40) NOT NULL,

tbl CHAR(1),

refperiod VARCHAR(10) default NULL,

description TEXT,

documentation TEXT,

PRIMARY KEY (id)

);

DROP TABLE IF EXISTS A;

create table A (

id VARCHAR(40),

year INT,

v double DEFAULT NULL

);

DROP TABLE IF EXISTS B;

create table B (

id VARCHAR(40),

date DATE,

period INT,

v double DEFAULT NULL

);

DROP TABLE IF EXISTS D;

create table D (

id VARCHAR(40),

2



date DATE,

period INT,

v double DEFAULT NULL

);

DROP TABLE IF EXISTS M;

create table M (

id VARCHAR(40),

year INT,

period INT,

v double DEFAULT NULL

);

DROP TABLE IF EXISTS U;

create table U (

id VARCHAR(40),

date DATETIME,

tz VARCHAR(4), #not tested

period INT,

v double DEFAULT NULL

);

DROP TABLE IF EXISTS Q;

create table Q (

id VARCHAR(40),

year INT,

period INT,

v double DEFAULT NULL

);

DROP TABLE IF EXISTS S;

create table S (

id VARCHAR(40),

year INT,

period INT,

v double DEFAULT NULL

);

DROP TABLE IF EXISTS W;

create table W (

id VARCHAR(40),

3



date DATE,

period INT,

v double DEFAULT NULL

);

DROP TABLE IF EXISTS I;

create table I (

id VARCHAR(40),

date DATE,

v double DEFAULT NULL

);

DROP TABLE IF EXISTS T;

create table T (

id VARCHAR(40),

date DATETIME,

v double DEFAULT NULL

);

Indexes can be generated as follows. (It may be quicker to load data before
generating indices.)

CREATE INDEX Metaindex_tbl ON Meta (tbl);

CREATE INDEX Aindex_id ON A (id);

CREATE INDEX Aindex_year ON A (year);

CREATE INDEX Bindex_id ON B (id);

CREATE INDEX Bindex_date ON B (date);

CREATE INDEX Bindex_period ON B (period);

CREATE INDEX Dindex_id ON D (id);

CREATE INDEX Dindex_date ON D (date);

CREATE INDEX Dindex_period ON D (period);

CREATE INDEX Mindex_id ON M (id);

CREATE INDEX Mindex_year ON M (year);

CREATE INDEX Mindex_period ON M (period);

CREATE INDEX Uindex_id ON U (id);

CREATE INDEX Uindex_date ON U (date);

CREATE INDEX Uindex_period ON U (period);

CREATE INDEX Qindex_id ON Q (id);

CREATE INDEX Qindex_year ON Q (year);

CREATE INDEX Qindex_period ON Q (period);

CREATE INDEX Sindex_id ON S (id);

CREATE INDEX Sindex_year ON S (year);

4



CREATE INDEX Sindex_period ON S (period);

CREATE INDEX Windex_id ON W (id);

CREATE INDEX Windex_date ON W (date);

CREATE INDEX Windex_period ON W (period);

CREATE INDEX Iindex_id ON I (id);

CREATE INDEX Iindex_date ON I (date);

CREATE INDEX Tindex_id ON T (id);

CREATE INDEX Tindex_date ON T (date);

In MySQL you can check table information (eg. table A ) with

describe A;

This is generic sql way to get table information but it requires read privileges
on INFORMATION SCHEMA.Columns which the user may not have. (And
SQLite does not seem to support this at all.)

SELECT COLUMN_NAME, COLUMN_DEFAULT, COLLATION_NAME, DATA_TYPE,

CHARACTER_SET_NAME, CHARACTER_MAXIMUM_LENGTH, NUMERIC_PRECISION

FROM INFORMATION_SCHEMA.Columns WHERE table_name='A' ;

In mysql data might typically be loaded into a table with command like

LOAD DATA LOCAL INFILE 'A.csv' INTO TABLE A FIELDS TERMINATED BY ',';

Of course, the corresponding Meta table entries also need to be made.

5


