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This package is an extension to the igraph–package [1] and provides a set of tools specifically aimed at
the analysis of bipartite graphs. While intended to be continuously extended regarding functionality, the
current focus lies on the projection of bipartite graphs, specifically concerning the associated information
loss. In addition, clustering and community detection among vertex subsets is supported by providing metric
distance calculations based on flexible (weighted) neighbourhoods.

1 Projection of bipartite graphs

In bipartite graphs, vertices are distinguished into top and bottom (> and ⊥) set and edges only occur
between these two sets.

As example we examine a very small bipartite graph where vertices resemble diseases and genes thought
to be involved some of these diseases.

> library(biGraph)

> data(g)

> summary(g)

Vertices: 38

Edges: 48

Directed: FALSE

No graph attributes.

Vertex attributes: name, type, dclass, col, dname, size.

Edge attributes: weight.

The vertex attribute type was derived in advanced by using the igraph–function is.bipartite, and this
logical attribute identifies both vertex subsets.

> V(g)[type == TRUE]

Vertex sequence:

[1] "Papillary_serous_carcinoma" "Ovarian_cancer"

[3] "Breast_cancer" "Prostate_cancer"

[5] "Pancreatic_cancer" "Wilms_tumor"

[7] "Fanconi_anemia" "Lymphoma"
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[9] "Ataxia-telangiectasia" "T-cell_lymphoblastic_leukemia"

[11] "Amyotrophic_lateral_sclerosis" "Spastic_ataxia/paraplegia"

[13] "Spinal_muscular_atrophy" "Perineal_hypospadias"

[15] "Androgen_insensitivity" "Lipodystrophy"

[17] "Charcot-Marie-Tooth_disease" "Silver_spastic_paraplegia_syndrome"

[19] "Sandhoff_disease"

> V(g)[type == FALSE]

Vertex sequence:

[1] "BRCA1" "BRCA2" "TP53" "MAD1L1" "PIK3CA" "MSH2" "ATM" "ALS2"

[9] "VAPB" "RAD54L" "AR" "CDH1" "BRIP1" "LMNA" "KRAS" "CHEK2"

[17] "GARS" "BSCL2" "HEXB"

The depiction of this bipartite graph shown in Figure˜1 (p.˜3) can be generated by

> plot(g, layout = layout.fruchterman.reingold, vertex.label = gsub("_",

+ "\n", V(g)$dname), vertex.color = V(g)$col, vertex.label.color = "black",

+ vertex.label.dist = 0.5, vertex.label.family = "Helvetica",

+ vertex.label.cex = 0.6, edge.label.cex = 0.6)

Often, it is desired to derive a monopartite projection regarding one vertex subset, where vertices be-
longing to this selected set are connected by an edge if they are connected to at least one vertex of the other
vertex subset.

For this purpose, igraph provides the function bipartite.projection, that generates both projections,
from which the disease projection is shown in Figure˜2 (p.˜4)

> proj <- bipartite.projection(g)

> plot(proj[[2]], layout = layout.fruchterman.reingold, vertex.label = gsub("_",

+ "\n", V(g)[type == TRUE]$name), vertex.color = V(g)[type ==

+ TRUE]$col, vertex.label.color = "black", vertex.label.dist = 0.5,

+ vertex.label.family = "Helvetica", vertex.label.cex = 0.6,

+ edge.label.cex = 0.6)

However, this projection comes not without a loss of information as discussed in [2, 3, 4, ?, 5]. In order to
allow the quantification of this information loss two approaches are presented in [6], which are implemented
in biGraph by function bipartite.projection.informationloss.

1.1 Assessing information loss

In biGraph, function bipartite.projection.informationloss generates the desired projection(s) and sub-
sequently measures the information loss according to the user selection.

� graph.dH: Change in uncertainty for entire graph

� vertex.dH: Change in uncertainty for single vertices

� edge.dH: Change in uncertainty for single edges

� covLoss: Loss of coverage for single edges, leads to automatic calculation of vertex attribute avCovLoss

As a shortcut, measures='complete' selects all measures at once.

> proj <- bipartite.projection.informationloss(g, vType = TRUE,

+ measures = "complete")
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Figure 1: Bipartite gene–disease graph, names of genes (smaller white circles) are omitted for better read-
ability
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Figure 2: Monopartite projection for disease vertices
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> proj[[1]]$H.delta

[1] 1.796607

> summary(V(proj[[1]])$H.delta)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.4055 0.9253 1.5260 1.5840 2.0790 2.7730

> summary(E(proj[[1]])$H.delta)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.6931 1.3860 1.3920 2.0790 2.0790

> summary(E(proj[[1]])$covLoss)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.2625 0.5000 0.3955 0.6000 0.6000

> summary(V(proj[[1]])$avCovLoss)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.1852 0.3407 0.3352 0.5000 0.6000

Figure˜3 (p.˜6) shows the monopartite disease projection where information loss measurements are vi-
sualized. If multiple cpus or cores are locally available, it is recommended to install the multicore–package
and enable parallel computation via setting parall=TRUE and cores as desired. To facilitate the analysis of
information loss e.g. by means of Figure˜4 (p.˜7), attributes H.before and H.after are also assigned to the
corresponding graph entities when measuring the change in uncertainty.

> plot(V(proj[[1]])$H.before, V(proj[[1]])$H.after, xlab = "Uncertainty before projection [nats]",

+ ylab = "Uncertainty after projection [nats]", pch = 20, cex = 1.5,

+ xlim = c(0, 4), ylim = c(0, 4))

1.2 Generating weighted projections

If desired, one can generate a projection where graph entities are assigned a weight, whether it is based
on some properties derived from the original bipartite graph or other sources. This functionality is im-
plemented in function get.weighted.projection. Currently only edge weights are supported, with one
built–in weighting scheme and the possibility to provide an externally calculated weight matrix.

Apart from taking the number of shared neighbours in the bipartite graph also the weighting scheme
for collaboration networks introduced by Newman [7] has been implemented. In Figure˜5 (p.˜8) the disease
projection is shown with the number of shared neighbours as edge weights.

> proj_weighted <- get.weighted.projection(g, vType = TRUE, mode = "shared-neighbours")

> plot(proj_weighted, layout = layout.fruchterman.reingold, vertex.color = V(g)[type ==

+ TRUE]$col, vertex.label = "", vertex.label.family = "Helvetica",

+ edge.label.family = "Helvetica", edge.label = E(proj_weighted)$weight,

+ vertex.label.cex = 0.6, edge.label.cex = 0.6, vertex.label.dist = 0.5)
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Figure 3: Monopartite disease projection. Vertex size and edge width are scaled by increase in uncertainty
and loss of coverage, respectively.
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Figure 4: Comparison of uncertainty associated to vertices before and after projection
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Figure 5: Disease projection with number of shared neighbours as edge weights

8



2 Linkage patterns

As one of the basic principles introduced in [6], linkage patterns in the context of projected monopartite
graphs are defined as the different neighbourhoods of order 1 of vertices that are omitted during projection.

> lpi(g,vType=FALSE)

Linkage.Patterns

[1] Breast_cancer;Ovarian_cancer;Papillary_serous_carcinoma

[2] Breast_cancer;Fanconi_anemia;Pancreatic_cancer;Prostate_cancer;Wilms_tumor

[3] Breast_cancer;Pancreatic_cancer

[4] Lymphoma;Prostate_cancer

[5] Breast_cancer;Ovarian_cancer

[6] Lymphoma;Ovarian_cancer

[7] Ataxia-telangiectasia;Breast_cancer;Lymphoma;T-cell_lymphoblastic_leukemia

[8] Amyotrophic_lateral_sclerosis;Spastic_ataxia/paraplegia

[9] Amyotrophic_lateral_sclerosis;Spinal_muscular_atrophy

[10] Breast_cancer;Lymphoma

[11] Androgen_insensitivity;Breast_cancer;Perineal_hypospadias;Prostate_cancer;Spinal_muscular_atrophy

[12] Breast_cancer;Fanconi_anemia

[13] Charcot-Marie-Tooth_disease;Lipodystrophy

[14] Breast_cancer;Prostate_cancer

[15] Charcot-Marie-Tooth_disease;Spinal_muscular_atrophy

[16] Lipodystrophy;Silver_spastic_paraplegia_syndrome;Spinal_muscular_atrophy

[17] Sandhoff_disease;Spinal_muscular_atrophy

Occurrences

[1] 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1

Sources

[1] BRCA1 BRCA2 KRAS;TP53 MAD1L1 CDH1;PIK3CA MSH2

[7] ATM ALS2 VAPB RAD54L AR BRIP1

[13] LMNA CHEK2 GARS BSCL2 HEXB

Here, we observe 17 linkage patterns found among genes, of which pattern three and five occur twice, as
mirrored by the corresponding source observations. There are three different modes for the generation of the
linkage pattern information: full (default), basic, and minimal, where the last two increasingly discard
the information on occurrences and sources. Via write.lpi the given linkage pattern information can be
written to file, and read back via read.lpi.

> write.lpi(lpi(g, vType = FALSE, mode = "minimal"), "minimal.lpi")

> lp <- read.lpi("minimal.lpi")

> for (i in V(lp$graph)) {

+ c <- V(g)[which(V(g)$name == V(lp$graph)[i]$name) - 1]$col

+ if (length(c) > 0) {

+ V(lp$graph)[i]$col = c

+ V(lp$graph)[i]$size = 10

+ }

+ else {

+ V(lp$graph)[i]$col = "white"

+ V(lp$graph)[i]$size = 5

+ }

+ }
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Figure 6: Reconstructed minimal bipartite graph.

> plot(lp$graph, layout = layout.fruchterman.reingold, vertex.label = gsub("_",

+ "\n", V(lp$graph)$name), vertex.label.family = "Helvetica",

+ vertex.label.cex = 0.6, edge.label.cex = 0.6, vertex.label.color = "black",

+ vertex.label.dist = 0.5, vertex.color = V(lp$graph)$col,

+ vertex.size = V(lp$graph)$size)

As can be seen in Figure˜6 (p.˜10), gene vertices have been replaced by vertices representing a linkage pattern
each. If mode='basic' is chosen, only the names of omitted vertices will be discarded and the reconstructed
graph and the original bipartite graph will be isomorphic. This could e.g. be useful if one would like to share
the basic graph structure while withholding the identity of omitted vertices.

> write.lpi(lpi(g, vType = FALSE, mode = "basic"), "basic.lpi")

> lp <- read.lpi("basic.lpi")

> graph.isomorphic(g, lp$graph)

[1] TRUE
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3 Analytical tools for bipartite graphs

Many tools that are used to study the properties of monopartite graphs cannot be directly applied to bipartite
graphs. However, over the last decade, for some of these tools adaptions or analogous concepts have been
devised, that nevertheless remain mostly unused and are usually missing from widely–used network and
graph analysis suites. Apart from new developments, biGraph is also intended to collect those as well. In
this first release we implemented some of these tools published by Borgatti and Everett [8], compassing
measures for density, vertex centrality, and centralization with respect to each vertex subset.

3.1 Density

Density measures the number of edges present in a graph, usually as ratio of present over the number of
all possible edges. igraph already provides a method to calculate the density of monopartite graphs, yet in
bipartite graphs one has to take into account that vertices can only be connected to vertices in the other
subset. In biGraph this is implemented in function bipartite.graph.density.

Density of bipartite graph according to function in igraph:

> graph.density(g)

[1] 0.0682788

Density of bipartite graph according to adapted function in biGraph:

> bipartite.graph.density(g)

$Density

[1] 0.132964

3.2 Vertex centrality

In graph and network analysis, vertex centrality measures are applied in order to determine the relative
importance of vertices. The most widely used centrality measure are degree, closeness, betweenness, and
eigenvector centrality. Currently, the adaption to bipartite graphs have been implemented for the first three
measures. A visualization of the bipartite betweenness centrality scores is depicted in Figure˜7 (p.˜12).

> degree.centrality(g)

$Bipartite.Degree.Centrality

[1] 0.15789474 0.05263158 0.21052632 0.57894737 0.26315789 0.21052632

[7] 0.15789474 0.05263158 0.10526316 0.10526316 0.10526316 0.21052632

[13] 0.10526316 0.10526316 0.21052632 0.05263158 0.05263158 0.10526316

[19] 0.10526316 0.05263158 0.10526316 0.26315789 0.10526316 0.26315789

[25] 0.05263158 0.05263158 0.10526316 0.10526316 0.10526316 0.10526316

[31] 0.10526316 0.10526316 0.10526316 0.10526316 0.15789474 0.05263158

[37] 0.10526316 0.05263158

> bipartite.closeness.centrality(g)

$Bipartite.Closeness.Centrality

[1] 0.4621849 0.3548387 0.3793103 0.6179775 0.4782609 0.4954955 0.3741497

[8] 0.3642384 0.3691275 0.4471545 0.4135338 0.3900709 0.4545455 0.3293413

[15] 0.4782609 0.3642384 0.3642384 0.2763819 0.3333333 0.2340426 0.4135338

[22] 0.5339806 0.4621849 0.6043956 0.4330709 0.4330709 0.4545455 0.4471545

[29] 0.2791878 0.3333333 0.3293413 0.4471545 0.4545455 0.4074074 0.4135338

[36] 0.3254438 0.4014599 0.3179191
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Figure 7: Bipartite gene–disease graph, vertex sizes are scaled by bipartite betweenness centrality.

> bipartite.betweenness.centrality(g)

$Bipartite.Betweenness.Centrality

[1] 0.077113145 0.000000000 0.033191288 0.622408025 0.122349320 0.108816254

[7] 0.006172840 0.000000000 0.002572016 0.013011648 0.020210287 0.046284021

[13] 0.021557590 0.007870370 0.134564644 0.000000000 0.000000000 0.055555556

[19] 0.108024691 0.000000000 0.157407407 0.536265432 0.024996743 0.558770576

[25] 0.000000000 0.000000000 0.021557590 0.018808455 0.003858025 0.029320988

[31] 0.027006173 0.013011648 0.007844650 0.075617284 0.130401235 0.000000000

[37] 0.055555556 0.000000000

As degree centrality is currently not implemented in igraph, degree.centrality can also be applied to
monopartite graphs.
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3.3 Centralization

Graph centralization quantifies to which extent a graph resembles a star, that is, contains a highly central
vertex around which highly peripheral neighbour vertices are gathered [8]. As discussed in several publications
[6, 8], projecting bipartite to monopartite graphs prior to analysis leads probably to biased results due to the
loss of information associated with the projection scheme. Therefore, applying single mode centralization
measures that determine the extent to which vertices in one subset are central relative only to other vertices
within the same subset avoids this problem.

Based on the adapted vertex centrality measures, biGraph provides three single mode graph centralization
measures.

> single.mode.degree.centralization(g)

$Single.Mode.Degree.Centralization.TRUE

[1] 0.4969136

$Single.Mode.Degree.Centralization.FALSE

[1] 0.1450617

> single.mode.closeness.centralization(g)

$Single.Mode.Closeness.Centralization.TRUE

[1] 0.502622

$Single.Mode.Closeness.Centralization.FALSE

[1] 0.3841707

> single.mode.betweenness.centralization(g)

$Single.Mode.Betweenness.Centralization.TRUE

[1] 0.5725384

$Single.Mode.Betweenness.Centralization.FALSE

[1] 0.5053655

For the given example, we observe from the results that according to all three centralization measures disease
vertices are more centralized than gene vertices.
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