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Abstract

The R package equate (Albano, 2011) contains functions for non-IRT equating under

random groups and nonequivalent groups designs. This package vignette introduces

these designs and provides an overview of statistical equating with details about each

of the supported equating methods. Examples demonstrate the basic functionality of

the package.

1 Introduction

Equating is a statistical procedure commonly used in testing programs where administrations

across more than one occasion and more than one examinee group can lead to overexposure

of items, threatening the security of the test. Another somewhat less common use is in

progress monitoring and growth modeling, where administrations occur across multiple time

points for the same individuals, and using the same test form is expected to lead to practice

effects. In each of these contexts item exposure can be controlled by using alternate test

forms; however, these multiple forms lead to multiple score scales for a single test. Despite

being designed based on the same specifications, to cover the same content, at the same level

of difficulty, these score scales and alternate forms are not identical. Instead, one is likely

more difficult than the other. In this case ability differences for examinees taking different

forms are confounded by differences in form difficulty. Equating methods can be used to

adjust for differences in difficulty across alternate forms, resulting in comparable score scales

and more accurate estimates of ability.

The equate package focuses on statistical equating, as opposed to item response theory

(IRT) equating (Weeks, 2009, provides a comprehensive R package for IRT equating). Most

of the procedures fit under what is called traditional equating, but they are more appropri-

ately referred to as non-IRT equating methods. This distinction importantly implies that

IRT equating is based on a measurement model (the IRT model, of course) whereas most
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traditional methods are not. Although there are many benefits of equating forms using IRT,

non-IRT equating can often be a simpler and more practical alternative, one which involves

fewer and less demanding assumptions (for further discussion see Kolen & Brennan, 2004;

Livingston, 2004).

Statistical equating defines a functional relationship between multiple test score distri-

butions and thereby between multiple score scales. When the test forms have been created

according to the same specifications and are similar in statistical characteristics, this func-

tional relationship is referred to as an equating function and it serves to translate scores

from one scale directly to their equivalent values on another. Whether score distributions

are based on samples from a single examinee population or different examinee populations

(these are referred to as equating designs, as discussed below), if the appropriate assump-

tions are met the equating function can be generalized to other examinees (for a detailed

discussion see Holland & Dorans, 2006).

2 Equating Designs

An equating design refers to the basic structure of an equating study, just as a research

design refers to the structure of a research study. The equating study serves to organize all

the stages which are essential to and which lead up to the equating process. These stages

include creation of test forms, sampling of examinees, and administration of the test. The

equating design specifies the administration (i.e., data collection) procedures, and just as the

control of variables in a research study depends on design, control of examinee ability (in

contrast with form difficulty) depends on the equating design (Holland & Dorans, 2006).

An equating study can take place in a variety of situations, depending on the needs

and resources of a testing program. As a result, numerous equating designs have been

documented in the literature (Kolen & Brennan, 2004). For simplicity, in this vignette and

in the equate package, equating designs are categorized as either involving equivalent groups

or nonequivalent groups.

Equivalent Groups

The equivalent groups design consists of either a single group of examinees taking both

forms of a test, or two groups sampled randomly from a single population and considered

to be randomly equivalent. In either case it is assumed that the two groups are equivalent

in ability, thus any differences in scores across forms can be attributed entirely to form

difficulty. When forms are administered to a single group administration procedures can be
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complicated by order and fatigue effects. Thus the single group design is often not a practical

option. Otherwise, because it involves only the examinee population of interest (called the

target population), the equivalent groups design is the most efficient, as examinee ability is

controlled directly.

Nonequivalent Groups

Without equivalent examinee groups two related problems arise: the target population must

be defined indirectly using samples from two different examinee populations, and the ability

of these groups must then be controlled. In the nonequivalent groups design1 these obstacles

are both overcome through the use of what is referred to as an anchor test, a set of items

appearing on both test forms. All non-equivalence is assumed to be removed via these anchor,

or common, items. Though this design is often more practical, as nonequivalent groups

are more easily obtained than equivalent ones, it also involves additional assumptions, as

discussed in the next section (for details see Holland & Dorans, 2006).

As noted above, the equivalent groups is the simpler equating design. The traditional

equating types applied with this design are the mean, linear, and equipercentile. More

complex extensions of these have been developed for use with the nonequivalent groups

design, each of which handles the issues inherent with nonequivalent groups in a slightly

different way. These methods are described briefly below, followed by examples of their

implementation in the equate package.

3 Equating Types and Methods

Types of Equating

Equatings with the equivalent groups design, that is, equatings in their simplest and most

general form, are referred to here and in the equate package as equating types. These can be

categorized as either linear, including mean and linear equating, or nonlinear, equipercentile

equating. An additional nonlinear type supported in the equate package is circle-arc equating,

as described by Livingston and Kim (2009).

1The nonequivalent groups design is also referred to as the nonequivalent groups with anchor test design,
the common-item nonequivalent groups design, or simply the anchor- or common-item design.

3



Identity equating

The identity equating function simply reproduces the original score value unchanged, and

thus un-equated:

idY (xi) = xi. (1)

With small samples, and when test forms are believed to be parallel, identity equating,

or no equating, has been recommended over other types (Kolen & Brennan, 2004). The

identity function can also be combined with any of the functions described below to obtain

the synthetic equating function (Kim, von Davier, & Haberman, 2008):

sY (xi) = (wI − 1)gY (xi) + wIidY (xi), (2)

where sY (xi) is a weighted combination of the generic equating function gY (xi) with the

identity, and wI is a value between zero and one.

Linear equating

Linear equating defines a linear relationship between scores from forms X and Y , based on

the mean and standard deviation of each. In other words, the standardized deviation scores,

or z-scores, are set equal for all score points i:

xi − µ̂(X)

σ̂(X)
=
yi − µ̂(Y )

σ̂(Y )
. (3)

When solved for yi, the linear function lY (xi) can be rewritten in slope-intercept form as

lY (xi) =
σ̂(Y )

σ̂(X)
xi −

σ̂(Y )

σ̂(X)
µ̂(X) + µ̂(Y ). (4)

Mean equating

Mean equating is a simplification of linear where the slope, or ratio of standard deviations,

is not estimated but is instead assumed to be 1. Deviation scores across forms are thus set

equal:

xi − µ̂(X) = yi − µ̂(Y ), (5)

and the resulting mean function mY (xi) for equating X to Y is

mY (xi) = xi − µ̂(X) + µ̂(Y ). (6)
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Equipercentile equating

Equipercentile equating defines a nonlinear relationship between score scales by setting equal

the percentile ranks for each score point. Specifically, the equipercentile equivalent of a form-

X score on the Y scale is calculated by finding the percentile rank in X of score i, and then

the form-Y score associated with that form-Y percentile rank:

eY (xi) = Q−1[P (xi)]. (7)

Here, P (x) is the percentile rank function in X and Q−1(x) is the inverse percentile rank

function in Y . The process is complicated by the fact that scores are discrete, and must be

made continuous (for a detailed description see Kolen & Brennan, 2004, ch. 2).

Because it involves estimation at each score point, equipercentile equating is especially

susceptible to random sampling error. Smoothing methods are typically used to reduce

irregularities in either the score distributions or the equating function itself. Two commonly

used smoothing methods include polynomial loglinear presmoothing (Holland & Thayer,

2000) and cubic-spline postsmoothing (Kolen, 1984). The equate package currently supports

loglinear presmoothing (see Appendix A.2 for details).

Circle-arc equating

Circle-arc equating also defines a nonlinear relationship between score scales, but it utilizes

only three points for forms X and Y : the lowest meaningful score (x1, y1), which for a

multiple-choice test could be the lowest score expected by chance; a midpoint (x2, y2), based

on the center (e.g., means) of each form; and the maximum possible score on each form

(x3, y3). Only the midpoint requires estimation. The low and high points define the linear

component of the function:

linY (xi) = y1 +
y3 − y1
x3 − x1

(xi − x1). (8)

This linear function is combined with a curvilinear one, a circle-arc that is based on y2∗, the

distance in Y units of the point (x2, y2) from the line linY (x). The center (xc, yc) and radius

r of the circle define the curvilinear component:

arcY (xi) = yc ±
√
r2 − (xi − xc)2, (9)

where the second quantity, under the square root, is added to yc if y2∗ is positive (i.e., above

the linear function) and subtracted if it is negative (i.e., below the linear function). The
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circle-arc function cY (xi) combines the linear and curvilinear components:

cY (xi) = liny(xi) + arcy(xi). (10)

Equations for the center points and radius of the circle are included in Appendix A.3.

Livingston and Kim (2009) provide a complete description of the process.

Equating Methods

The nonequivalent groups design requires that information from anchor items be incorporated

into the functions and parameter estimation described above. This is necessary because two

populations are involved in the nonequivalent groups design: population 1 taking form X,

and population 2 taking form Y ; however, the equating function itself will be defined for a

single population. Since this population is only a hypothetical one, that is, no data exist for

it, it is referred to as the synthetic population (Braun & Holland, 1982). As described by

Kolen and Brennan (2004), the linear equating function from equation (4) can be rewritten

in terms of the synthetic population as follows:

lYS
(xi) =

σ̂S(Y )

σ̂S(X)
xi −

σ̂S(Y )

σ̂S(X)
µ̂S(X) + µ̂S(Y ). (11)

Since population S did not take forms X or Y , all of the terms µ̂S and σ̂S in this equation

must be estimated indirectly using: for the means,

µ̂S(X) = µ̂1(X)− w2γ1[µ̂1(V )− µ̂2(V )], (12)

µ̂S(Y ) = µ̂2(Y ) + w1γ2[µ̂1(V )− µ̂2(V )]; (13)

and for the variances,

σ̂2
S(X) = σ̂2

1(X)− w2γ
2
1 [σ̂2

1(V )− σ̂2
2(V )] + w1w2γ

2
1 [µ̂1(V )− µ̂2(V )]2, (14)

σ̂2
S(Y ) = σ̂2

2(Y ) + w1γ
2
2 [σ̂2

1(V )− σ̂2
2(V )] + w1w2γ

2
2 [µ̂1(V )− µ̂2(V )]2. (15)

In these equations the weights w1 and w2 sum to 1, and are used to specify the desired

influence of populations 1 and 2 in the estimation. The γ terms represent the relationship

between total scores on X and Y and the respective anchor test scores on V (described

further below). As is clear, γ1 and γ2 are used along with the weights to adjust the µ̂ and σ̂2

terms for X and Y in order to obtain corresponding estimates for the synthetic population.

For example, setting w1 = 0 and w2 = 1 will force µ̂S(Y ) to equal µ̂2(Y ), and conversely
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µ̂2(X) will be adjusted the maximum amount to obtain µ̂S(X). The same would occur with

the estimation of synthetic variances. Furthermore, the adjustments would be completely

removed if µ̂1(V ) = µ̂2(V ) and σ̂2
1(V ) = σ̂2

2(V ).

A variety of techniques have been developed for estimating the γ terms required by equa-

tions (12)-(15). These techniques are referred to here as equating methods. The equate pack-

age currently supports the Tucker, Levine observed score, Levine true score, Braun/Holland,

frequency estimation, and chained equating methods (Kolen & Brennan, 2004, provide a

full explanation of the assumptions related to each method, including derivations). Table 1

shows the supported methods that apply to each equating type.

Tucker equating

In Tucker equating the relationship between total and anchor test scores is defined in terms of

regression slopes, where γ1 is the slope resulting from the regression of X on V for population

1, and γ2 the slope from a regression of Y on V for population 2:

γ1 =
σ̂1(X, V )

σ̂2
1(V )

and γ2 =
σ̂2(Y, V )

σ̂2
2(V )

. (16)

The Tucker method assumes that across populations 1 and 2: 1) the coefficients resulting

form a regression of X on V are the same, and 2) the conditional variance of X given V is

the same. These assumptions apply to the regression of Y on V and the covariance of Y

given V as well.

Table 1: Applicable Equating Types and Methods

nominal tucker levine braun frequency chained

mean
√ √ √ √ √

linear
√ √ √ √

equipercentile
√ √

circle-arc
√ √ √ √ √

Nominal weights equating

Nominal weights equating is a simplified version of the Tucker method where the total and

anchor tests are assumed to have similar statistical properties and to correlate perfectly
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within populations 1 and 2. In this case the γ terms can be approximated by the ratios

γ1 =
K(X)

K(V )
and γ2 =

K(Y )

K(V )
, (17)

where K is the number of items on the test.

Levine equating

Assumptions for the Levine observed score method are stated in terms of true scores (though

only observed scores are used), where, across both populations: 1) the correlation between

true scores on X and V is 1, as is the correlation between true scores on Y and V ; 2) the

coefficients resulting form a regression of true scores for X on V are the same, as with true

scores for Y on V ; and 3) measurement error variance is the same (across populations) for

X, Y , and V . These assumptions make possible the estimation of γ as

γ1 =
σ̂2
1(X)

σ̂1(X, V )
and γ2 =

σ̂2
2(Y )

σ̂2(Y, V )
, (18)

which are the inverses of the respective regression slopes for V on X and V on Y . The

Levine true score method is based on the same assumptions as the observed score method;

however, it uses a slightly different linear equating function:

lY (xi) =
γ2
γ1

(X)[xi − µ̂1(X)] + µ̂2(Y ) + γ2[µ̂1(V )− µ̂2(V )]. (19)

Hanson (1991) and Kolen and Brennan (2004) provide justifications for using this approach.

Frequency estimation equating

The frequency estimation method is used in equipercentile equating under the nonequivalent

groups design. It is similar to the methods described above in that it involves a synthetic

population. However, in this case score distributions (i.e., percentile ranks) for the synthetic

population taking forms X and Y are required:

eYS
(xi) = Q−1

S [PS(xi)]. (20)

When the assumption is made that the conditional distribution of total scores on X for a

given score point in V is the same across populations 1 and 2 (as with Y and V ) the synthetic

8



distributions can be obtained:

fS(xi) = w1f1(xi) + w2

∑
f1(x|v)h2(v), (21)

gS(yi) = w2g2(yi) + w1

∑
g2(y|v)h1(v) (22)

Here, f , g, and h denote the distribution functions for forms X, Y , and V respectively. As

before, w1 and w2 specify the amount of adjustment to be made to each observed distribution

in the estimation of the corresponding synthetic distribution.

Braun/Holland equating

As a kind of extension of the frequency estimation method, the Braun/Holland method

defines a linear function relating X and Y that is based on the estimates µ̂S(X), µ̂S(Y ),

σ̂S(X), and σ̂S(Y ) for the synthetic distributions fS(x) and gS(y) obtained via frequency

estimation. Thus the full synthetic distributions are estimated, as with frequency estimation,

but only in order to obtain the means and standard deviations of each. Though not often

used in practice, the method provides an interesting combination of the linear and nonlinear

procedures (Braun & Holland, 1982).

Chained equating

Finally, chained equating (Livingston, Dorans, & Wright, 1990) can be applied to both linear

and equipercentile equating under the nonequivalent groups with anchor test design. It differs

from all other methods discussed here in that it does not reference a synthetic population.

Instead, it introduces an additional equating function in the process of estimating score

equivalents (see Appendix A.1 for details). For both linear and equipercentile equating the

steps are as follows:

1. Define the function relating X to V for population 1, lV 1(x) or eV 1(x)

2. Define the function relating V to Y for population 2, lY 2(v) or eY 2(v)

3. Equate X (population 1) to the scale of Y using both equating functions, where

lchainY (x) = lY 2[lV 1(x)] and echainY (x) = eY 2[eV 1(x)]

Methods for circle-arc equating

As discussed above, the circle-arc equating function combines a linear with a curvilinear

component based on three points in the X and Y score distributions. The first and third
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of these points are determined by the score scale, whereas the midpoint must be estimated.

Thus, equating methods used with circle-arc equating apply only to estimation of this mid-

point. Livingston and Kim (2009) demonstrate chained linear equating of means, under

a nonequivalent groups design. The midpoint could also be estimated using other linear

methods, such as Tucker or Levine.

Note that circle-arc equating is defined here as an equating type, and equating methods

are used to estimate the midpoint, which implies a nonequivalent groups design. When

groups are considered equivalent (i.e., an anchor test is not used) equating at the midpoint

is simply mean equating, as mentioned above (replace xi with µ̂(X) in equation 4 to see why

this is the case). With scores on an anchor test, both Tucker and Levine equating at the

midpoint also reduce to mean equating. However, chained linear equating at the midpoint

differs from chained mean (see Appendix A.1).

4 Application Using the equate Package

Sample Test Scores

The examples below rely on two data sets, both of which are provided in the equate package.

The first, ACTmath, is used throughout Kolen and Brennan (2004), and comes from two

administrations of the ACT mathematics test. The test scores are based on a random

groups design and are contained in a three-column matrix where column one is the 40-point

score scale and columns two and three the number of examinees for forms x and y obtaining

each score point.

> library(equate)

[1] "equate" "stats" "graphics" "grDevices" "utils" "datasets"

[7] "methods" "base"

> head(ACTmath)

scale xcount ycount

[1,] 0 0 0

[2,] 1 1 1

[3,] 2 1 3

[4,] 3 3 13

[5,] 4 9 42

[6,] 5 18 59

The second data set, KBneat, is also referenced in Kolen and Brennan (2004). It contains

scores for two forms of a 36-item test administered under a nonequivalent groups with anchor
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test design. The 12-item anchor test is internal, that is, the total-test score for an examinee

includes the score on the anchor items. Thus, the number of non-anchor items, items unique

to each form, is 24, and the highest possible score is 36. Unlike the first data set, KBneat

contains a separate total-test and anchor-test score for each examinee, as is required by the

nonequivalent groups equating methods described above. It is a list of length two where the

list elements x and y each consist of a two-column matrix of scores on the total test, and

scores on the anchor test v.

> head(KBneat$x)

x xv

[1,] 8 3

[2,] 21 6

[3,] 31 10

[4,] 7 2

[5,] 18 5

[6,] 36 12

Preparing the Score Distributions

The equate package handles score distributions primarily as frequency tables, as described

by the freqtab function, which is used to create them. The ACTmath data set is an example

of a frequency table; scores for over 8, 000 examinees (NX = 4, 329, NY = 4, 152) are stored

compactly in three columns and 41 rows. The trade-off is that there is no record of scores

at the individual level, but this information is not required under the random groups design,

as is evident in equations (3)-(10). Frequency tables of class "freqtab" are created for the

2 ACTmath forms as follows:

> act.x <- as.freqtab(ACTmath[, 1], ACTmath[, 2])

> act.y <- as.freqtab(ACTmath[, 1], ACTmath[, 3])

> act.x[1:4, ]

x count

[1,] 0 0

[2,] 1 1

[3,] 2 1

[4,] 3 3

Here, the command as.freqtab is used because the vectors for the score scale and counts

are already tabulated, thus they are simply combined and the class changed. The tables can

be summarized with the descript function:

> rbind(descript(act.x), descript(act.y))
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mean sd skew kurt n

[1,] 19.85239 8.212585 0.3752283 2.301911 4329

[2,] 18.97977 8.940397 0.3526516 2.145847 4152

The function freqtab creates a frequency table from scratch, using a vector of scores and

the corresponding score scale. With an anchor test this becomes a bivariate frequency table

for forms x and y, and the arguments sent to freqtab are the total score scale, vector of

total scores, anchor score scale, and vector of anchor scores:

> neat.x <- freqtab(0:36, KBneat$x[, 1], 0:12, KBneat$x[, 2])

> neat.y <- freqtab(0:36, KBneat$y[, 1], 0:12, KBneat$y[, 2])

> neat.x[50:55, ]

x v count

[1,] 3 10 0

[2,] 3 11 0

[3,] 3 12 0

[4,] 4 0 0

[5,] 4 1 4

[6,] 4 2 3

These bivariate tables contain all possible score combinations in columns 1 and 2, along with

the number of examinees obtaining each combination in column 3. For example, rows 50

through 55 are displayed above for form X, where counts for 6 X and V score combinations

are shown. Based on the scale lengths, tables for neat.x and neat.y contain 37× 13 = 481

rows of scores, many of which have counts of zero.

The equate package provides a basic plot method for tables of class "freqtab". Univariate

frequency tables (up to two) are plotted together as lines with type = "h". For a single

bivariate frequency table a scatter plot with marginal barplots is produced (see Figures 1

and 2).

> plot(x = act.x, y = act.y, lwd = 2, xlab = "Score", ylab = "Count")

> plot(neat.x)

Finally, presmoothing options are available for equipercentile equating. Three methods

are currently supported, all of which can be requested from within the equate function. Two

of the methods are designed to adjust (i.e., increase) frequencies falling below a specified

threshold. Frequency averaging (described by Moses & Holland, 2008), using freqavg,

replaces scores falling below jmin with averages based on adjacent scores:

> cbind(act.x, avg = freqavg(act.x, jmin = 2))[1:5, ]

12



x count avg

[1,] 0 0 1.25

[2,] 1 1 1.25

[3,] 2 1 1.25

[4,] 3 3 1.25

[5,] 4 9 9.00

In columns 1 and 2 are the scale and original counts for act.x. Column three contains the

adjusted counts which are averaged based on any score points with counts below 2 (scores of

0, 1, and 2), along with the next adjacent value (score of 3, with count of 3). The function

freqbump simply adds a small relative frequency (jmin) to each score point while adjusting

the probabilities to sum to one (as described by Kolen & Brennan, 2004, p. 48).

As described above and in Appendix A.2, polynomial loglinear smoothing is a flexible

option for reducing irregularities throughout the score distribution. In the equate package a

loglinear model is fit using the function loglinear. Model terms are specified with either a

set of score functions (see example(loglinear)), or simply by including the degree of the

highest desired polynomial term. Here, the bivariate distribution of X and V is smoothed

with degree=3, and a frequency table is created from the fitted values. The smoothed

distributions in Figure 3 can be compared to the unsmoothed ones in Figure 2. Descriptive

statistics show that the smoothed distributions match the unsmoothed in the first three

moments.

> neat.x.smoothout <- loglinear(neat.x, degree = 3)

> neat.xs <- as.freqtab(neat.x[, 1:2], neat.x.smoothout$fitted)

> rbind(descript(neat.x), descript(neat.xs))

mean sd skew kurt n

[1,] 15.82054 6.529799 0.5797331 2.720015 1655

[2,] 15.82054 6.529799 0.5797331 3.270636 1655

> rbind(descript(neat.x[, -1]), descript(neat.xs[, -1]))

mean sd skew kurt n

[1,] 5.106344 2.376742 0.4115535 2.766619 1655

[2,] 5.106344 2.376742 0.4115535 2.976297 1655

> plot(neat.xs)

The equate Function

Most of the functionality of the equate package can be accessed via equate, which integrates

the equating types and methods described above into a single function. The random groups
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design provides a simple example, where, besides the frequency tables, only the equating

type need be specified:

> equate(act.x, act.y, type = "mean")

Mean Equating: Random Groups

Summary Statistics:

mean sd skew kurt n

x 19.8524 8.2126 0.3752 2.3019 4329

y 18.9798 8.9404 0.3527 2.1458 4152

yx 18.9798 8.2126 0.3752 2.3019 4329

Coefficients:

intercept slope

-0.8726 1.0000

Summary statistics and the intercept and slope are printed (for a full description of available

output see ?equate). The nonequivalent groups design is requested by specifying an equating

method:

> neat.e.c <- equate(neat.x, neat.y, type = "equip", method = "chained")

Chained Equipercentile Equating: Nonequivalent Groups

Summary Statistics:

mean sd skew kurt n

x 15.8205 6.5298 0.5797 2.7200 1655

y 18.6728 6.8805 0.2051 2.3014 1638

yx 16.5556 6.5909 0.5439 2.6925 1655

xv 5.1063 2.3767 0.4116 2.7666 1655

yv 5.8626 2.4522 0.1072 2.5089 1638

Table 1 above summarizes the equating methods that apply to each equating type in the

nonequivalent groups design. For convenience, these may all be specified in the equate

function using only the first letter, as in type="c" for circle-arc equating. Levine true-score

equating (lts) is requested by including the additional argument lts=TRUE.

The equate function can also be used to convert scores from one scale to another based

on the function from a previous equating. For example, scores on Y for a few more examinees

taking KBneat form X could be obtained:

> cbind(newx = c(3, 29, 8, 7, 13), yx = equate(x = c(3, 29, 8,

+ 7, 13), y = neat.e.c))
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newx yx

[1,] 3 4.083333

[2,] 29 29.907143

[3,] 8 8.546184

[4,] 7 7.388498

[5,] 13 13.936969

Here, the argument y passed to equate is the chained equipercentile equating from above,

which is an object of class "equate". The equate function recognizes it as such and attempts

to perform the conversion. Note that since the equating function from neat.e.c relates scores

on X to the scale of Y , anchor test scores are not needed for the examinees newx.

Comparing Equatings

There are many considerations involved in choosing a type and method for equating two test

forms (see Kolen & Brennan, 2004, ch. 8). However, sample size is paramount, as statistical

equating involves the estimation of different numbers of parameters, and accurate estimation

depends on adequate and representative samples. As shown above, each equating type and

method creates an equating function using different estimates of the score distributions. The

equated equivalent at a given score point can vary substantially across equating methods,

and within a single equating method across examinee samples.

When samples are small2 or inadequate for a specific method, random sampling error

becomes a major concern. This type of error can be indexed by the standard error of

equating (SEE), which is defined as the standard deviation of equated scores for a given

xi over multiple repeated equatings (systematic error is an equally important consideration,

but is not as easily estimated; see Appendix A.4). The equate package provides estimates of

linear and equipercentile SEE under the random groups design, based on equations derived

by Braun and Holland (1982) and Lord (1982, p. 168). Additionally, bootstrap standard

errors are obtained through the equate function using the argument bootse:

> boots <- equate(act.x, act.y, type = "lin", bootse = TRUE)$bootse

> round(boots, 4)

[1] 0.2901 0.2786 0.2673 0.2563 0.2456 0.2352 0.2253 0.2158 0.2068 0.1984

[11] 0.1907 0.1837 0.1776 0.1724 0.1682 0.1651 0.1631 0.1623 0.1628 0.1644

[21] 0.1673 0.1712 0.1762 0.1821 0.1888 0.1964 0.2046 0.2134 0.2228 0.2327

[31] 0.2429 0.2535 0.2645 0.2757 0.2871 0.2988 0.3107 0.3228 0.3350 0.3473

[41] 0.3598

2Kolen and Brennan (2004) refer to “small” as less than 100. Other literature discusses small-sample
equating with 20-30 examinees per form, for example Livingston (1993) and Skaggs (2005)
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The sample size taken with each bootstrap replication is specified via xn and yn, the number

of replications via reps, and the matrix of equated scores (one column per replication) is

requested by setting returnboots=TRUE (see ?se.boot for details).

The example below compares mean and linear Tucker and Levine equating, frequency

estimation and chained equipercentile equating, and circle-arc chained (linear) and Tucker

(mean) equating of the forms neat.x and neat.y. Thus there are eight separate nonequiv-

alent groups equatings (see Appendix B.1 for R code). Table 2 contains Y equivalents of

scores on X for each (R code in Appendix B.2). The conversion table reveals that equated

scores vary somewhat by method. Equipercentile equating with frequency estimation (e.f)

produced the highest scores of any method between X = 5 and X = 32. The largest differ-

ence between equated scores was between e.f and mean Levine (m.l) at X = 21, a difference

of 3.25 points on Y . Across methods the smallest equated scores came from circle-arc Tucker

equating (c.t) at score points X < 3, X > 31, linear Levine (l.l) at points 2 < X < 16, and

mean Levine (m.l) at scores of 15 > X < 32.

In Figure 4 are plotted the bootstrap standard errors (code for this plot is found in

Appendix B.3). The four equating types exhibit a clear trend in SEE across the score scale.

As expected, SEE for both mean equatings do not vary by score point, since the scores

are equated by a constant amount. Also as expected, random error for linear equating is

lowest in the center (slightly lower than estimates for mean) and increases in the tails of

the distribution. Overall SEE for equipercentile equating appear to be the largest, despite

the fact that the raw score distributions were smoothed. Finally, random error for circle-arc

equating is lowest overall, though values increase toward the center of the distribution.

Since equating methods do not extend across all types, they are most easily compared

within equating type. Tucker mean outperforms Levine mean; however, the opposite is true

for linear equating where Levine SEE are smaller than Tucker across the scale. Until a

score on X of 10, values for the two equipercentile methods are comparable. Beyond X = 10

random error for chained equating is much lower. Finally, circle-arc equating using the

Tucker method to obtain the midpoint results in the lowest SEE of all, values about half as

large as those of the chained circle-arc.

Again, it is important to note that random sampling error paints only half the picture

when describing equating accuracy. Though a method such as Tucker circle-arc results in

some SEE of nearly zero, it may very well be that the estimates are stable (i.e., not varying)

around a point that is far from the true equated score. Nevertheless, this example serves to

demonstrate the ease with which multiple equatings can be conducted and compared using

the equate function.
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Table 2: Form Y Equivalents for Eight Nonequivalent Groups Equatings

scale m.t m.l l.t l.l e.f e.c c.c c.t
0 0.995 0.428 0.537 0.251 0.191 0.038 0.000 0.000
1 1.995 1.428 1.566 1.263 1.486 1.142 1.233 1.109
2 2.995 2.428 2.595 2.274 2.677 2.295 2.451 2.212
3 3.995 3.428 3.624 3.285 3.879 3.472 3.656 3.309
4 4.995 4.428 4.653 4.296 5.097 4.535 4.847 4.400
5 5.995 5.428 5.682 5.307 6.326 5.554 6.025 5.484
6 6.995 6.428 6.710 6.318 7.546 6.593 7.189 6.562
7 7.995 7.428 7.739 7.330 8.731 7.610 8.339 7.633
8 8.995 8.428 8.768 8.341 9.925 8.620 9.477 8.699
9 9.995 9.428 9.797 9.352 11.123 9.631 10.601 9.758
10 10.995 10.428 10.826 10.363 12.320 10.661 11.711 10.811
11 11.995 11.428 11.855 11.374 13.511 11.659 12.809 11.857
12 12.995 12.428 12.884 12.385 14.682 12.692 13.893 12.898
13 13.995 13.428 13.913 13.396 15.850 13.722 14.965 13.932
14 14.995 14.428 14.942 14.408 17.010 14.696 16.023 14.960
15 15.995 15.428 15.971 15.419 18.159 15.781 17.068 15.982
16 16.995 16.428 17.000 16.430 19.294 16.797 18.101 16.997
17 17.995 17.428 18.029 17.441 20.411 17.808 19.120 18.006
18 18.995 18.428 19.058 18.452 21.509 18.881 20.127 19.010
19 19.995 19.428 20.087 19.463 22.591 19.878 21.120 20.006
20 20.995 20.428 21.116 20.475 23.647 20.918 22.101 20.997
21 21.995 21.428 22.145 21.486 24.675 21.967 23.068 21.982
22 22.995 22.428 23.174 22.497 25.669 22.948 24.023 22.960
23 23.995 23.428 24.203 23.508 26.626 23.980 24.965 23.932
24 24.995 24.428 25.232 24.519 27.542 24.998 25.893 24.898
25 25.995 25.428 26.260 25.530 28.425 25.963 26.809 25.857
26 26.995 26.428 27.289 26.542 29.272 26.947 27.711 26.811
27 27.995 27.428 28.318 27.553 30.075 27.921 28.601 27.758
28 28.995 28.428 29.347 28.564 30.829 28.864 29.477 28.699
29 29.995 29.428 30.376 29.575 31.534 29.788 30.339 29.633
30 30.995 30.428 31.405 30.586 32.235 30.705 31.189 30.562
31 31.995 31.428 32.434 31.597 32.898 31.621 32.025 31.484
32 32.995 32.428 33.463 32.609 33.522 32.524 32.847 32.400
33 33.995 33.428 34.492 33.620 34.171 33.402 33.656 33.309
34 34.995 34.428 35.521 34.631 34.805 34.323 34.451 34.212
35 35.995 35.428 36.550 35.642 35.445 35.205 35.233 35.109
36 36.995 36.428 37.579 36.653 36.150 36.057 36.000 36.000
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Figure 4: Bootstrap Standard Errors for Eight Nonequivalent Groups Equatings
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A Additional Equations

A.1 Chained Linear Equating

Chained linear equating involves two separate linear functions. In the equations below the

anchor test V is distinguished by population (1 taking form X and 2 taking form Y ), though

the items on V do not change. The first linear function in slope-intercept form converts X

to the scale of V1:

lV1(xi) =
σ̂(V1)

σ̂(X)
xi −

σ̂(V1)

σ̂(X)
µ̂(X) + µ̂(V1). (23)

The second function converts V2 to the scale of Y :

lY (v2i) =
σ̂(Y )

σ̂(V2)
v2i −

σ̂(Y )

σ̂(V2)
µ̂(V2) + µ̂(Y ). (24)

These functions are combined, where the first, lV1(xi), takes the place of v2i in the second to

obtain:

lchainY (xi) =
σ̂(Y )

σ̂(V2)

[
σ̂(V1)

σ̂(X)
xi −

σ̂(V1)

σ̂(X)
µ̂(X) + µ̂(V1)

]
− σ̂(Y )

σ̂(V2)
µ̂(V2) + µ̂(Y ), (25)

or, in slope-intercept form, after some rearranging:

lchainY (xi) =
σ̂(Y )

σ̂(V2)

σ̂(V1)

σ̂(X)
xi +

σ̂(Y )

σ̂(V2)

[
µ̂(V1)−

σ̂(V1)

σ̂(X)
µ̂(X)− µ̂(V2)

]
+ µ̂(Y ). (26)

Finally, for chained mean equating this reduces to:

mchainY (xi) = xi + µ̂(V1)− µ̂(X)− µ̂(V2) + µ̂(Y ). (27)

When used to obtain the midpoint coordinates in circle-arc equating, the chained method

reduces even further, since xi is µ̂(X). Here, the linear and mean functions simplify to

lchainY (µ̂(X)) =
σ̂(Y )

σ̂(V2)
µ̂(V1)−

σ̂(Y )

σ̂(V2)
µ̂(V2) + µ̂(Y ), (28)

and

mchainY (µ̂(X)) = µ̂(V1)− µ̂(V2) + µ̂(Y ). (29)
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A.2 Loglinear Presmoothing

Polynomial loglinear modeling is a flexible method for smoothing distributions of various

shapes to varying degrees; the structure of a distribution can either be maintained or ignored

depending on the complexity of the model, where the degree of the polynomial term included

determines the moment of the raw score distribution to be preserved. For example, a model

with terms to the first, second, and third powers would create a smoothed distribution which

matches the raw in mean, variance, and skewness. In the model below, the log of the expected

relative frequency (pi) at score point i is expressed in terms of a normalizing constant (β0)

and three weighted score functions (x1, x2, x3) of the possible score values of test X:

log(pi) = β0 + β1x
1
i + β2x

2
i + β3x

3
i . (30)

Indicator variables may also be included to preserve specific moments for specific score points.

In the next model the mean and variance of a sub-distribution are preserved, in addition to

the first three moments of the full distribution. Scores with indicator function Si = 1 are

included in this sub-distribution, whereas scores with Si = 0 are ignored:

log(pi) = β0 + β1x
1
i + β2x

2
i + β3x

3
i + βS0Si + βS1x

1
iSi + βS2x

2
iSi. (31)

An acceptable degree of smoothing is typically achieved by comparing multiple models with

different numbers of polynomial terms based on their fit to the data (Kolen & Brennan,

2004). In the equate package, the function loglinear produces fitted (i.e., smoothed) values

for univariate and bivariate distributions, and can be used to compare models based on a

number of fit indices. It uses a Newton-Raphson maximum likelihood procedure modeled

after a SAS macro written by (Moses & von Davier, 2006). Comparable fitted estimates can

be obtained using the glm function.

A.3 Circle-Arc Equating

The circle-arc in circle-arc equating is a section of the circle that is defined by the vertical

distance of the three points (x1, y1), (x2, y2), and (x3, y3) from the line linY (x). Since the low

and high points define the line linY (x), they reduce to (x1, 0) and (x3, 0). The new midpoint

is identified as (x2, y2∗). These three points are used to determine the coordinates xc and yc

for the center of the circle:

xc =
(x23 − x21)
2(x3 − x1)

, (32)
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yc =
(x21)(x3 − x2)− (x22 + y22∗)(x3 − x1) + (x23)(x2 − x1)

2[y2∗(x1 − x3)]
. (33)

These center points are then used to obtain the radius

r2 = (x1 − xc)2 + (y1∗ − yc)2. (34)

Since y1∗ = 0 (x3 and y3∗ could also be used) this reduces to

r =
√

(x1 − xc)2 + (yc)2. (35)

A.4 Error in Equating

In the literature, equatings are typically compared based on both random and systematic

error, where the first is estimated by the standard error of equating (SEE or simply SE)

and the second by the Bias. As demonstrated above, estimates of SEE can be obtained

through bootstrap resampling from the sample score distributions. However, both the SE

and Bias are defined in terms of the population equating function. Using a generic equating

function gY (xi) to represent a score on X equated to Y , the systematic error is calculated as

Bias = ˆ̄gY (xi)− gY (xi), (36)

where gY (xi) is the population equating equivalent and

ˆ̄gY (xi) =
1

R

R∑
r=1

ĝY r(xi) (37)

is the average estimated equivalent over R samples. The random error is defined as

SE =
1

R

√√√√ R∑
r=1

[ĝY r(xi)− ˆ̄gY (xi)]2. (38)

And combining both systematic error and random error, the root mean squared error (RMSE)

is defined as

RMSE =
√
{Bias}2 + {SE}2, (39)
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B Additional R Code

B.1 Eight Equatings

> neat.m.t <- equate(neat.x, neat.y, type = "m", method = "t",

+ bootse = TRUE)

> neat.m.l <- equate(neat.x, neat.y, type = "m", method = "l",

+ bootse = TRUE)

> neat.l.t <- equate(neat.x, neat.y, type = "l", method = "t",

+ bootse = TRUE)

> neat.l.l <- equate(neat.x, neat.y, type = "l", method = "l",

+ bootse = TRUE)

> neat.e.f <- equate(neat.x, neat.y, type = "e", method = "f",

+ bootse = TRUE, smooth = "loglin", degree = 3)

> neat.e.c <- equate(neat.x, neat.y, type = "e", method = "c",

+ bootse = TRUE, smooth = "loglin", degree = 3)

> neat.c.c <- equate(neat.x, neat.y, type = "c", method = "c",

+ bootse = TRUE)

> neat.c.t <- equate(neat.x, neat.y, type = "c", method = "t",

+ bootse = TRUE)

B.2 Concordance Table

> concordance <- cbind(neat.m.t$conc, neat.m.l$conc[, 2], neat.l.t$conc[,

+ 2], neat.l.l$conc[, 2], neat.e.f$conc[, 2], neat.e.c$conc[,

+ 2], neat.c.c$conc[, 2], neat.c.t$conc[, 2])

> colnames(concordance)[-1] <- c("m.t", "m.l", "l.t", "l.l", "e.f",

+ "e.c", "c.c", "c.t")

B.3 Plotting Bootstrap SEE

> plot(c(1, 37), c(0, 0.6), type = "n", xlab = "Score on X", ylab = "SEE")

> points(neat.m.t$bootsee, col = 1, type = "l")

> points(neat.m.l$bootsee, col = 1, type = "l")

> points(neat.l.t$bootsee, col = 2, type = "l")

> points(neat.l.l$bootsee, col = 2, type = "l")

> points(neat.e.f$bootsee, col = 3, type = "l")

> points(neat.e.c$bootsee, col = 3, type = "l")

> points(neat.c.c$bootsee, col = 4, type = "l")

> points(neat.c.t$bootsee, col = 4, type = "l")

> points(neat.m.t$bootsee, col = 1, type = "p", pch = 1)

> points(neat.m.l$bootsee, col = 1, type = "p", pch = 2)

> points(neat.l.t$bootsee, col = 2, type = "p", pch = 3)

> points(neat.l.l$bootsee, col = 2, type = "p", pch = 4)

> points(neat.e.f$bootsee, col = 3, type = "p", pch = 5)

> points(neat.e.c$bootsee, col = 3, type = "p", pch = 6)
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> points(neat.c.c$bootsee, col = 4, type = "p", pch = 7)

> points(neat.c.t$bootsee, col = 4, type = "p", pch = 8)

> legend("topright", legend = c("Tucker Mean", "Tucker Linear",

+ "Levine Mean", "Levine Linear", "Equip FE", "Equip Chain",

+ "Circle Chain", "Circle Tucker"), col = rep(1:4, each = 2),

+ pch = 1:8, lty = 1, bty = "n", ncol = 2)
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