
D Project Description

D.1 Objectives and Significance

The analysis of social science data is often difficult for reasons that tend to affect other fields

less substantially. Such problems include: high levels of measurement error, governments that

falsify or hide information, collection in difficult or even violent areas, embargoed information based

on privacy concerns, well-known survey response issues, overlapping explanatory power in model

variables, the fluidity of political and social institutions, as well as the willingness of humans to

conceal information from researchers. This has led to many important modeling innovations as a

way to meet these challenges. In particular, one problem that is difficult to handle with traditional

statistical models is deliberately withheld information that correlates strongly with phenomena of

interest. Gill and Casella (2009) used a generalized linear mixed model with an ordered probit link

to estimate levels of stress in presidential political appointees as a means of understanding their

surprisingly short tenures. In order to obtain open and honest responses, the collectors of these data

(Mackenzie and Light ICPSR Study Number 8458, Spring 1987) embargoed key information such as

agency employer that would have helped researchers but identified these government executives. As

a way to draw subtle information out of the data that sheds light on the bureaucratic classification

a Bayesian approach was developed where the random effects are modeled with a Dirichlet process

mixture prior, allowing for some incorporation of prior information, but retaining some vagueness

in the form of the prior. The nonparametric component of this method produced an enhanced

understanding of the agency environment that was not directly available by conventional means.

Such information can be thought of as latent clustering in the data.

This proposal outlines plans to substantially improve the current state of clustering algorithms

using Generalized Linear Mixed Dirichlet Models (GLMDM). Our key objectives are to:

⊲ Improve understanding of latent clustering effects that are pervasive in social science datasets,

notably with empirical studies of terrorism.

⊲ Adapt GLMDM algorithms such that the subclustering assignments in the Gibbs sampler lead

to substantive substantive clusters of interest using posterior probability.

⊲ Develop an algorithmic approach that directly includes variable selection within clusters into

a general clustering model.

⊲ Speed up the simultaneous clustering and variable selection process by parallelization.

⊲ Distribute this technology as an easy-to-use R package for general use by others.

We believe that this project has the following importance.

◮ The Intellectual Merit is in establishing a new paradigm for using Bayesian nonparametric

approaches to produce clustering based on posterior probability. This approach promises to

improve current designs since it inherently includes fit and ovefit criteria in the context of

Bayesian posterior probability. This is not possible without new Bayesian stochastic simula-

tion tools. Our application to the empirical study of terrorism is unique and will substantially

improve our understanding of these groups.
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◮ The Broader Impact comes from facilitating the development of more sophisticated mod-

eling frameworks across social and behavioral sciences thus helping researchers understand

complex phenomena in new and difficult datasets with measurement challenges. The algo-

rithmic developments, which we will develop and disseminate widely, can be applied in any

scientific field and will contribute to the statistical literature on Markov chain Monte Carlo.

The development of nonparametric clustering algorithms promises to substantially improve

the current state of data clustering. This project also aids in the intellectual development

of both graduate and undergraduate students as well as post-doctorate researchers, all of

which will benefit from the interdisciplinary focus. The work will be in both social/behavioral

science journals and statistics journals.

◮ This is Transformative Research because accounting for data clusters is often omitted or

done incompletely in statistical models, even though the problem is of great importance in the

social sciences, computer science, and in many biological applications. Our proposed technol-

ogy can substantially improve statistical practice when unobserved explanatory phenomena

are present.

D.2 Background

We are concerned with how nonparametric priors can enhance the increasing use of Bayesian models

in the social sciences. Consider modeling a dichotomous individual choices, Yi, such as a vote choice,

participation in a social event, or joining a political party. Typically logit or probit functions are

specified to provide an smooth underlying utility curve that dictates such preferences, providing an

estimated threshold, θ ∈ [0, 1], determining the choice. The individual’s placement along this curve

is given by the standard additive right-hand specification, Xβ. The θ threshold should actually be

treated differently for each individual, but we can use the reasonable Bayesian approach of assuming

that these vary but are still generated from a single distribution G which is itself conditional on a

parameter α, thus E[nG(θ|X,β, α)] is the expected number of positive outcomes.

There are often structures in social science data such as: unexplained clustering effects, unit

heterogeneity, autocorrelation, or missingness that cast doubt on the notion of G above as a single

model. Here we are first concerned with latent clustering that adversely affects the quality of

the model if not accounted for since unmeasured explanatory phenomena still affect the modeled

relationship from the observed data. This is a very general problem since these “clusters” can be

described in many ways. As an example, consider a vote choice in a congressional election where the

Democratic candidate favors pulling US soldiers out of Afghanistan and the Republican candidate

favors continued military action there. Normally the standard set of explanatory variables from

survey research (partisanship, ideology, race, age, education, etc.) are well-justified and powerful

determinants of this vote choice, but perhaps not in the same way for a respondent who has a relative

in the military based in Afghanistan. This is not normally a question asked in such surveys, but may

be an unmeasured strong causal reason for this vote. Or more generally, religious affiliation may

determine sets of clusters that have a strong effect on support for continuing military operations.

Unknown clustering also has an effect on variable selection. Most literatures in the social

sciences have a collection of explanatory phenomena that need to be included because the theories
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supporting them are very strong. In many cases the resulting decision is simply which measured

version of the phenomenon should be used as a right-hand-side variable. Leamer (1978) called these

“inside the horizon” variables since their value is so well-established. In the above case of a voting

choice model these were: partisanship, ideology, race, age, and education. The game, according

to Leamer, is specifying an additional set of “over the horizon” variables that may provide new

knowledge if supported by the data and the model. Often the first type of variables are included

in the final specification even if they are not found to be statistically reliable because the norms

the discipline are strong motivators. It is not widely recognized that the effect of these variables

can be confounded by latent clusters. That is, for some individual cases in the data this variable

is a strong determinant of the outcome variable, but its effect is sufficiently heterogeneous across

clusters that it does not appear statistically reliable in the model and may be excluded in the final

specification. Thus accounting for latent clusters, as proposed here, affects both variable selection

and variable important in estimated clusters.

One effective strategy for dealing with unmeasured phenomena is to use random effect terms,

denoted ψi here, to capture such underlying clustering information. The distribution of the ψi is

unknown by the researcher but can be determined by custom or intuition. Frequently the choice is a

normal distribution, even in the absence of evidence that it provides a good fit. A better alternative

is a nonparametric Bayesian approach that draws ψi from more flexible class of distributions. We

start with a general mixed effects model

(Y1, . . . , Yn) ∼ f(y1, . . . , yn | β, ψ1, . . . , ψn) =
∏

i

f(yi|β, ψi), ψi ∼ G, i = 1, . . . , n, (1)

where f and G are often taken to be normal. The addition of a link function, g−1(), turns this into

a generalized linear mixed model. As the random effects, unlike error terms, can not be checked

(there are no corresponding residuals), the normal assumption is justified only as a convenience. a

popular alternative being the Dirichlet Process with

ψi ∼ G ∼ DP(m,φ0), i = 1, . . . , n, (2)

where DP is the Dirichlet Process with base measure φ0 and precision parameter m.

Dirichlet process mixture models were introduced by Ferguson (1973), who defined the process

and investigated the basic properties. Blackwell and MacQueen (1973) showed that the marginal

distribution is that of the nth step of a Polya urn process. Other work that characterizes the

properties of the Dirichlet process includes Korwar and Hollander (1973) and Sethuraman (1994).

Work that has particular importance for our development is that of Lo (1984), who derives the

analytic form of a Bayesian density estimator, and Liu (1996), who derives an identity for the

profile likelihood estimator of m. The implementation of the Dirichlet process mixture model has

been made feasible by modern methods of Bayesian computation and efficient algorithms. The work

of Escobar and West (1995) and MacEachern and Müller (1998) developed estimation techniques

and sampling algorithms. Neal (2000) provides an extended and more efficient Gibbs sampler.

The model specified in (1) is actually a classical semiparametric random effects model, and with

further Bayesian modeling of the parameters, lends itself to a Gibbs sampler. Unfortunately the
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presence of the Dirichlet term makes the use of the Gibbs sampler somewhat complicated in non-

conjugate situations, which is the algorithm we developed in Gill and Casella (2009). We found that

this approach can model difficult data and produce results that existing alternative methods fail

to discover. In that work we were able to account for unobserved, important clustering structures

that provided information about agency environment that was not explicitly available.

As a clarification, we are concerned here with accounting for an unknown number of unknown

clusters in the context of building a statistical model. We are not working in the general area of

spatial clustering with known coordinates using algorithms of the form: hierarchical, partitional,

K-means, c-means, QT, graphing, spectral, etc. Thus all work pertains to Bayesian statistical model

specification in the regression sense.

As a realistic example of the difference between the proposed approach and conventional Bayesian

(or other) modeling, we look at terrorist activity in 22 Asian democracies over 8 years (1990-1997)

with data subsetted from Koch and Cranmer (2007). Data problems (a recurrent problem in the

empirical study of terrorism) reduce the number of cases to 162 and make fitting an standard model

difficult. The outcome of interest is dichotomous, indicating whether not there was at least one

violent terrorist act in a country/year pair. In order to control for the level of democracy, DEM,

in these countries we use the Polity IV 21-point democracy scale ranging from -10, indicating a

hereditary monarchy to +10, indicating a fully consolidated democracy (Gurr, Marshall, and Jag-

gers 2003). The variable FED is assigned zero if sub-national governments do not have substantial

taxing, spending, and regulatory authority, and one otherwise. We look at three rough classes of

government structure with the variable SYS coded as: (0) for direct presidential elections, (1) for

strong president elected by assembly, and (2) dominant parliamentary government. Finally, AUT is

a dichotomous variable indicating whether or not there are autonomous regions not directly con-

trolled by the central government. The key substantive question evaluated here is whether specific

structures of government and sub-governments lead to more or less terrorism.

Table 1: Probit Models for Asian Terrorism Incidents

Standard Probit GLMDM Probit
Coefficient COEF SE 95% CI COEF SE 95% CI

Intercept 0.249 0.337 [-0.412 : 0.911] 0.127 0.188 [-0.241 : 0.495]
DEM 0.109 0.035 [ 0.041 : 0.177] 0.058 0.019 [ 0.020 : 0.095]
FED 0.649 0.469 [-0.269 : 1.566] 0.258 0.254 [-0.241 : 0.756]
SYS -0.817 0.252 [-1.034 : -0.601] -0.420 0.137 [-0.690 : -0.151]
AUT 1.619 0.871 [ 0.123 : 3.116] 0.450 0.371 [-0.277 : 1.176]

For purposes of contrast we specify a standard GLM model and a Generalized Linear Mixed

Dirichlet Model (GLMDM) as we developed in Kyung, et al. (2009a), both with a probit link

function. In the latter case, the Markov chain is run for 50,000 iterations disposing of the first

half. There is no evidence of non-convergence in the remaining runs using standard diagnostic

tools. Table 1 provides results from two approaches: a standard Bayesian probit model with flat
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priors, and a Dirichlet random effects model. Notice first that while there are no changes in sign or

statistical reliability for the estimated coefficients, the magnitude of effects uniformly smaller with

the enhanced model: four of the estimates are roughly twice as large and one is about three times

as large in the standard model. This indicates that there is extra variability in the data detected

by the random effect that tends to dampen the size of the effect of these explanatory variables on

explaining incidences of terrorist attacks. Specifically, running the standard probit model would

find an exaggerated relationship between these explanatory variables and the outcome. Notice also

that the credible intervals are smaller for the GLMDM model, providing more accurate estimates

than the standard Bayesian GLM (in Kyung et al.(2009c) we prove that this is always the case).

The results are also interesting substantively. The more democratic a country is, the more

terrorist attacks they can expect. This is consistent with the literature in that autocratic nations

tend to have more security resources per capita and fewer civil rights to worry about. Secondly,

the more the legislature holds central power, the fewer expected terrorist attacks. This also makes

sense, given what is known, disparate groups in society tend to have a greater voice in government

when the legislature dominates the executive.

D.3 Previous Related Accomplishments

During the previous grant period we developed new models for social science data, and made

substantial progress both on statistical estimation and computational implementation. In Gill and

Casella (2009) we first explored the effectiveness of using a Dirichlet random effects model for social

science data, implementing the model (1) with an ordered probit link, and standard priors on the

model parameters in θ, to model the stress levels of presidential appointees. The conclusions drawn

from his model were both interesting as well as suggestive, and were different from those that would

have been obtained with classical modeling, including the aforementioned-mentioned observation

that the Dirichlet model resulted in shorter credible intervals.

After seeing that these models had potential, we became concerned about two aspects. First, the

estimation of the precision parameter m needed more attention. We found in Gill and Casella (2009)

that the fit of the model was relatively insensitive to the value of m, and we wanted to find out if

this was always the case and, if not, was there a preferred way to estimate it. Second, the MCMC

algorithm that we used, which was a common one in the literature (see, for example, Neal 2000)

was suspect in its mixing potential, and we wanted to look at other alternatives. Both of these goals

were accomplished in Kyung et al. (2009a), where we first looked at maximum likelihood estimation

of m, and found that the standard approach in finding the maximum likelihood estimate (MLE),

given in Liu (1996), may have problems. In particular, by plotting the likelihood function for a

selection of parameter values, we found that Liu’s equation could yield a maximum, a minimum,

or there might be a ridge. Figure 1, reproduced from Kyung et al. (2009a), shows possible shapes

of the likelihood function. Thus, likelihood estimation is not reliable, and we were able to prove

that by introducing a prior distribution on m, we could guarantee and interior mode, stabilizing

the estimation procedure.

5



Figure 1: Log-likelihood functions for configurations of component likelihoods.

We next concentrated on a normal linear mixed model of the form:

Y
n×1

|ψ ∼ N(Xβ +ψ, σ2I), (3)

where ψ = (ψ1, . . . , ψn)′, ψi ∼ DP(m,N(0, τ2)), i = 1, . . . , n, independent. As the values of ψ are

not distinct, we can represent this model as

Y
n×1

| η
k×1

,A ∼ N(Xβ + Aη, σ2I), η ∼ Nk(0, τ
2I), (4)

Figure 2: 90% credible intervals for the

Dirichlet random effects model (black),

and a normal random effects model

(blue)

−4 −3 −2 −1 0 1 2

Politics

ReadPap

PtyThink

IDString

TaxLess

DeathPen

Lords

ScengBen

ScoPref1

RSex

RSocCla2

Tenure1

PresB

IndPar

90% Intervals for Coefficients

Dirichlet= Black, Normal = Blue

where k is the number of distinct values in ψ,

A′

k×1 = (a′1, a
′

2, · · · , a
′

n), and each ai is a 1 × k

vector of all zeros except for a 1 in one posi-

tion that indicates which group the observation

is from. With this representation, MCMC im-

plementation is straightforward, as the Dirichlet

process is reduced to dealing with the binary ma-

trix A. Using this representation we presented a

new Gibbs sampler that was proven to be more

efficient that the current algorithms, in that the

variances were proven to be uniformly smaller.

Moreover, investigation into the size of the re-

duction showed that it could be more than 50%.

The normal linear mixed model is easily ex-

tended to a probit model by introducing a latent

variable into the hierarchy. However, other mod-

els, such as logit or loglinear models are not avail-

able as straightforward extensions, and present

new computational problems. These models, with Dirichlet random effects, are the subject of

Kyung et al. (2009b).

After looking at a number of data sets, and comparing the fit with the Dirichlet random effects

model to that of the more classical normal random effects, we noted that in every instance the

Dirichlet model produces shorter intervals on the coefficient estimates as seen in the terrorism
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example; recall Table 1. In another example in Kyung et al. (2009a) we analyzed data from the

British General Election Study, Scottish Election Survey, 1997 (ICPSR Study Number 2617). There

we saw that the widths of 90% credible intervals from the Dirichlet random effects model were all

shorter than those from a normal random effects model, as shown in Figure 2. Such results were so

persistent that it seemed unlikely to be a coincidence, and in Kyung et al. (2009c) we were able to

prove that the Dirichlet model always results in smaller posterior variances than the normal model.

Specifically, in that paper we proved the following theorem.

Theorem 1 For all y not containing a within subcluster contrast, the mean of the posterior distri-

bution of the variance from the Dirichlet random effects model

Y|µ,η, σ2,A ∼ N
(

µ1 + Aη, σ2I
)

η|σ2 ∼ Nn

(

0, cσ2IK

)

µ|σ2 ∼ N
(

0, vσ2
)

σ2 ∼ IG (a, b) ,

is smaller than that from the normal random effects model.

D.4 Proposed Research

In this section we provide a brief background in order to put some perspective on our proposed work

and then describe four main topics that we will address in the grant period: (i) a new approach for

clustering, (ii) merging clustering and variable selection, (iii) implementing valid parallel processing

of MCMC algorithms, and (iv) the application of this technology to the challenging data applications

in the empirical study of terrorism.

D.4.1 Cluster Models

Model-based cluster analysis has a long and rich history, and recent developments using MCMC

methods and hierarchical models are relevant to our work. There are two approaches to cluster

models that have been used in the literature, those based on an underlying mixture model, and those

based on a product partition model (also called classification likelihood). The mixture model begins

with the assumption that Y1, . . . ,Yn are realizations of n independent and identically distributed

(iid) random vectors from the K-component mixture density

K
∑

α=1

τα f(·|βα,Σα, G) , (5)

where K is a fixed positive integer, 0 ≤ τα ≤ 1,
∑K

α=1 τk = 1. A partition of the data is typically

obtained as a byproduct of an EM algorithm. An alternative, the product partition model, starts

with the assumption that there is some fixed, unknown partition of Nn := {1, 2, . . . , n}, Cm, that

has m clusters denoted by C1, . . . , Cm and that the data are a realization from a density of the form

f(y|β,Σ, G, Cm) =
k

∏

α=1

∏

i∈Cα

f(yi|βα,Σα, G) . (6)
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Unlike the standard mixture model, (6) contains a parameter, Cm, that is directly relevant to

the basic clustering problem. This model was developed by Hartigan (1990) (see also Barry and

Hartigan 1992, Crowley 1997) as a product partition model.

Booth et al. (2008) argue strongly in favor of the product partition model, noting that not only

does the mixture model lack a parameter that defines the clusters, the inference is confounded with

the application of the EM algorithm. That is, even if the parameters of the model are known,

there needs to be one final run of the EM algorithm to obtain the clusters. McCullaugh and Yang

(2008) agree, arguing that the mixture model is not appropriate for determining clusters. A further

deficiency is that the model needs to be run with a fixed K; the typical strategy is to run a selection

of K values and choose the one with the best BIC. Conversely, the product partition model clearly

identifies the parameter that determines the cluster, and has no restriction on k, the number of

clusters. A stochastic search algorithm, such as one used by Booth et al. (2008), can move between

different size partitions at each iteration.
We can classify related previous work according to the model used for the clustering, and the

model used for the random effects, summarized in the following table:

Mixture Model Product Partition Model

Dirichlet Dahl (2006) Lau and Green (2007)

Kim et al. (2006) Quintana and Iglesias (2003)

Rodriguez et al. (2008)

Green and Richardson (2001)

Normal Fraley and Raftery (2002) Booth et al. (2008)

Richardson and Green (2002) Heard et al. (2006)

Tadesse et al. (2005)

Clustering based on mixture models was used by Fraley and Rafterty (2002), estimating the

allocation probabilities and the model parameters with the EM algorithm, and using the Bayesian

information criteria (BIC) to determination of the number of clusters. Mixture models with Dirichlet

random effects (or latent variables) were used by Dahl (2006) for microarray expression data, Kim,

et al. (2006) for both variable selection and clustering (updating Tadesse et al. 2005), and Rodriquez,

et al. (2008), who used a nested Dirichlet process structure.

The product partition model, which explicitly searches for the best cluster, was used by Heard

et al. (2006) and Booth et al. (2008), the latter using a substantive objective function to drive

the search. Specifically, the evaluated the posterior probability of each partition Cm, using this

probability as the target in a Metropolis-Hasting search algorithm. With the product partition

model and Dirichlet random effects, Quintana and Iglesias (2003) proposed a Bayesian clustering

algorithm that minimizes a posterior loss, which is similar to the approach of Lau and Green (2007),

who minimized a misclassification loss.

It is important to understand the clustering strategy that has previously been used in all appli-

cations of the Dirichlet random effects model. The cluster search has been carried out only using

the random clustering that appears in realizations of the Dirichlet process. In particular, consider

model (3), where a subject is modeled with covariates and a random effect. A typical strategy is
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to use the Dirichlet to generate a very large number of candidate clusters, then choose the best of

these by a post-hoc scheme–processing the MCMC output through some objective function to find

the best cluster. All previous applications of the Dirichlet random effects model only cluster the

subjects according to the generated values of the random effects parameter, ψi, and then fit the β

vector, that is, the cluster search then ignores the covariates. Thus, the clusters are produced in

a realization of the Dirichlet process and are not substantive in any way, and cannot reflect any

cluster structure driven by the covariates. Importantly, Dirichlet process subcluster assignments are

not disaggregated pieces of real clusters, they are temporary model assignments of random effects

assignments that make the model fit better. Furthermore, since there is no overfitting penalty in

the Dirichlet process, there will always be more subclusters than actual latent clusters in the data.

This problem is our starting point and the next section describes a solution for recovering estimates

of substantive clusters in social science data.

D.4.2 Substantive Clustering

Here, we start with the model

Yi = Xiβ + 1ψi + ǫi, (7)

where Yi = (Yi1, . . . , Yir)
′ are the responses of subject i, i = 1, . . . , n, Xi is an r × p design matrix

for subject i, β is a p× 1 coefficient vector, ψi is a subject specific random effect (multiplied by the

vector of ones 1r×1 modeled with the Dirichlet process (2) with φ0 = N(0, τ2), and ǫi ∼ N (0,Σr×r)

are error terms. We assume that ǫ and ψ are mutually independent. Starting from (7), we will

search for a partition of (Y1, . . . ,Yn) into clusters Cα, α = 1, . . . ,m where for Yi in cluster Cα we

have

Yi = Xiβα + 1ψi + ǫαi
, (8)

where βα and ǫαi
∼ N (0,Σα) are specific to cluster Cα. For ease of notation we take r = 1; the

more general case merely increases the algebraic overhead. Using the A matrix notation of (4),

and letting the base measure of ψ be N(0, τ2), we can integrate out the ψi to obtain the marginal

distribution of Yi in cluster Cα is

Yα|A, Cm,θ ∼ Nnα

(

X(α)βα, σ
2
αΣα + τ2AαA′

α

)

, (9)

where Yα is a vector of length nα containing the Yi in cluster Cα, Aα is made of the rows of

A corresponding to observations in Yα, θ =
(

β1, . . . ,βm, σ
2
1 , . . . , σ

2
m

)

are unknown, and Σα is a

known matrix describing the within-cluster structure.

Our goal is to find the best partition Cm, but the A matrix cannot be ignored. From (9), we

want to find the posterior probability of the pair (Cm,A), marginalized over the covariates, and use

this function to drive a stochastic search. Using the priors

βα ∼ Np

(

0, dσ2
αI

)

σ2
α ∼ IG(a1, b1) and τ2 ∼ IG(a2, b2).
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we can integrate out θ and τ2 to obtain the posterior probability of A and C

π (C,A,η|y) ∝
π(A)π(C)Γ(k

2 )

[12 |η|
2 + b2]

(k

2
+a2)

m
∏

α=1

|Σyα
|−1/2Γ

(

nα

2 + a1

)

[

b+ 1
2 (yα − Aαη)′ Σ−1

yα
(yα − Aαη)

](nα

2
+a1)

, (10)

where Σyα
= Σα + dX(α)X(α)′. We will use (10) to drive a stochastic search. Specifically, we

create a Markov chain (A,η, Cm,θ) with stationary distribution (10), which will therefore explore

the modes of the posterior probability surface. To do this we will adapt our Gibbs sampler in Kyung

et al. (2009a) to go from (A,η, Cm,θ) to (A′,η′, C′

m′ ,θ
′) using the conditionals:

(C′

m′ ,θ
′)|A,η, Cm,θ, (A′,η′)|A,η, C′

m′ ,θ
′. (11)

We then take this candidate and apply a Metropolis-Hasting correction (see Robert and Casella

2004, Chapter 7) using (10), which insures that the posterior probability will drive the search.

We give a few details of the stochastic search, as they show the possible difficulties we will

encounter. Given we are at (A,η, Cm,θ), we first update to (C′

m′ ,θ
′). To do this we first obtain

a new candidate C∗

m∗ using our algorithm in Kyung et al. (2009a). We now need a candidate θ∗,

but the previous θ is useless, as it is based on different clusters. This would not be a problem if

we made the somewhat unrealistic assumption that the cluster variances are all equal, as done in

Tadesse et al. 2005 and Booth et al. 2008.

Given C∗

m∗ we can calculate the mean and variance of the conditional distribution of β′

α up to a

constant that depends on the incalculable cluster variance. A way to do this is with an Accept-Reject

algorithm (see Robert and Casella 2004, Section 2.3). Thus we generate a candidate θ∗ = (β∗

α, σ
2∗
α

according to

g
(

σ2,β
)

= IG
(

σ2 : a∗1, b
∗

1

)

×Np

(

β : β∗, σ2Σ∗

β

)

where the parameters of the candidate can all be calculated:

Σ∗

β =

(

1

d
Ip + X(α)′Σ−1

α X(α)

)

−1

β∗ = Σ∗

βX(α)′Σ−1
α (yα − Aαη)

a∗1 =
n∗α
2

+ a1 b∗1 = b1 +
1

2
(yα − Aαη)′ Σ−1

yα
(yα − Aαη) .

The candidate (C∗

m∗ ,θ∗) is then subjected to the Accept-Reject test using the target density

f
(

σ2,β
)

= IG

(

σ2 : a∗1, b
∗

1 +
1

2
(β − β∗)′Σ∗−1

β (β − β∗)

)

×Np

(

β : β∗, σ2Σ∗

β

)

.

This process is repeated until a candidate is accepted. Note that a Metropolis-Hastings step cannot

be used, as there is no direct way to compare (C′

m∗ ,θ
∗) to (Cm,θ) We now are at (A,η, C′

m′ ,θ
′),

and to proceed to (A′,η′, C′

m′ ,θ
′) by adapting our Gibbs sampler in Kyung et al. (2009a)
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D.4.3 Variable Selection

The idea of combining variable selection and clustering has a long history in statistics, dating back

to at least Fowlkes et al. (1988). More recent work includes Raftery and Dean (2006), who use a

mixture model for the clustering and a greedy search to select variables; Wang and Zhu (2008),

who also use mixture models but use a lasso-type penalty to select variables; and Xie et al. (2008),

who extend the model of Wang and Zhu (2008), looking at computational properties. Tadesse et

al. (2005) also use mixture models, but partition variables into those that discriminate the mixture

components, and those that do not, and only cluster the former. None of the previous papers used

the Dirichlet process, but Kim et al. (2006) adapted the Tadesse et al. (2005) approach to Dirichlet

random effects. However, all of these papers start from the mixture model which, as previously

argued, is not a good clustering model. In addition, the applied practice of variable selection has

an inglorious history in the social sciences (Leamer 1978, Gill 1999), and remains an ongoing source

of controversy. We seek to provide a means whereby empirical researchers can avoid: arbitrary

decisions, difficult covariate tradeoffs, and the fallacy that only one specification was tried.

Variable selection, independent of clustering, got a huge boost with the work of George and Mc-

Culloch (1993), who showed how hierarchical models and stochastic search can be used for variable

selection. Since then there has been a lot of development of this topic, with the recent papers by

Casella and Moreno (2006) and Casella et al. (2009) being most relevant to our application. They

showed that by introducing a vector γ of 0s and 1s, indicating which variables are to be included,

and selecting on Bayes factors (posterior probabilities), one can do consistent variable selection.

In our application we define, for cluster Cα, a vector γα by: γαi
=

{

0 if βαi
= 0

1 otherwise,

and our model (8) becomes

Yi = Xi(βα ∗ γα) + 1ψi + ǫαi
, for Yi in cluster Cα, (12)

where “*” is elementwise multiplication. We now want to include the vector γα in the Markov chain

(11) using a random walk/independent jump algorithm that moves γα → γ′α by

with probability p : select one element of γα at random and switch 0 → 1 or 1 → 0

with probability 1 − p : select γ′α at random from all possible vectors.

However, we encounter the same problem as in Section D.4.2. Once we iterate to a new cluster

structure, the γ of the previous structure is irrelevant, so implementing a random walk is not

straightforward. There are two possible ways to overcome this problem:

(i) Take γα = γ, the same for each cluster, and update γ one time for each step of the (A,η, Cm,θ)

chain.

(ii) Given (A,η, Cm,θ), start with each γα = 1, and update γα a total of ℓ times, using a hybrid

Metropolis-Hastings step based on (10) and including random jumps.

Clearly (i) is computationally faster, but restricts each cluster to select the same variables, which

11



will often be too limiting. The more flexible (ii) requires restarting the γα chain at each iteration,

again increasing the computational overhead. However, this is the more realistic approach, and to

better deal with it we will also investigate ways of substantially increasing computation speed.

D.4.4 Parallel Processing

Our last objective is purely computational, but has the potential of increasing the speed of related

MCMC algorithms greatly. The chains that we have described in Sections D.4.2 and D.4.3 will

require chains within chains, greatly increasing the computational demand.

A drawback of MCMC algorithms for large social science datasets is the need to run long chains,

not only to reach the stationary distribution, but also to insure that the space has been adequately

searched. These requirements seem to preclude the use of parallel computing, because if we start

two Markov chains on two different nodes, there is no obvious way to put them together into one

longer chain. In fact, if the same MCMC algorithm is run for M iterations on two separate nodes,

the chains cannot be spliced together in a valid way. However, we can circumvent this problem by

creating a split chain though the process of regeneration.

If we denote the current state of our Markov chain by ∆(t) = (A(t),η(t), C
(t)
m ,θ(t)), then the

transition kernel is the function k(∆(t),∆(t+1)) that produces the next state in the Markov chain.

For the chains described in this proposal, k is composed of the steps of the Gibbs sampler and

Metropolis-Hastings algorithms. If there are functions s and w that satisfy

k(∆(t),∆(t+1)) ≥ s(∆(t))w(∆(t+1)) for all ∆(t) ∈ D, (13)

then D is a small set and (13) is a minorization condition. The existence of D allows us to construct

the split chain, a Markov chain that is identical to k(∆(t),∆(t+1)) with the exception that whenever

the chain enters D, there is a positive probability of emerging independently. This allows use to

join chains together and thus take advantage of parallel processing.

In particular, suppose that we have R nodes and, in each node we start our Markov chain in

the set D. We then have
Node 1 : ∆

(1)
1 , . . . ,∆

(nκ1
)

1

...

Node R : ∆
(1)
R , . . . ,∆

(nκR
)

R

where κi is the random time that chain i returns to D. Since the Markov chain has been regenerated

independently at each start in D, we can validly splice the chain into

∆
(1)
1 , . . . ,∆

(nκ1
)

1 ,∆
(1)
2 , . . . ,∆

(nκ2
)

2 , . . . ,∆
(1)
R , . . . ,∆

(nκR
)

R ,

one chain of length R
∑

i nκi
. Moreover, the independent pieces allow for valid calculation of the

Monte Carlo variance (Hobert et al. 2002).

The use of regeneration was first explored by Mykland et al. (1995) and Rosenthal (1995), but

implementation was not apparent as the identification of small sets was very difficult. Moreover,

such sets need to be entered with a large enough probability to be practical. Progress has been
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made by Roy and Hobert (2007) and Tan (2009), and we intend to use those results to identify

useful small sets. In particular, Tan (2009) identifies small sets for a two-stage block Gibbs sampler.

Our Markov chain (11) is in this form, as we can write it as the conditionals:

C′

m′ |A,η,θ, (θ′,A′,η′)|C′

m′ . (14)

To implement this strategy we need to first need to verify that our chain is geometrically ergodic,

that is, having a convergence rate that is at least geometric. As our chain is a block Gibbs sampler,

geometric ergodicity is a strong possibility (Hobert and Geyer 1998). We have already adapted

these results in other work to prove geometric ergodicity of another Gibbs sampler used in Bayesian

lasso calculations (Kyung et al. 2009d), and we expect that a similar calculation will hold in this

case. We then will identify small sets to investigate the practicality of parallelization.

D.4.5 Application: Reanalysis of Terrorism Data

The study of terrorism has not made substantial empirical progress due to inherent problems in the

available data. However, terrorism is an important problem because it affects internal government

policy, public perception, relations between states, and of course, personal safety. Data problems

include: selection on the outcome variable (a visible event), non-granular discrete measurement,

insufficient explanatory variables, and the lack of access to classified collections. Another key

problem, and the one addressed here, is that there are unmeasured clusters in almost all terrorism

data. These groups have a natural affinity for dispersion and segmentation, either for ideological or

obvious tactical reasons (becoming less transparent). Some progress has been made: we know not

to treat these groups as unitary actors (Chai 1993, Crenshaw 1981), they tend to be cellular and

distributed rather than hierarchically organized (Carley 2004, Krebs 2002, Rothenberg 2002), they

evolve over time (Carley 2003, 2006), and semi-automatic parsing of signal traffic is informative

(Tsvetovat and Carley 2006). Yet much more data-analytic work is needed.

We intend to apply the GLMDM technology to this problem to reveal clusters in the data.

Furthermore, we will use every publicly available organized dataset on terrorist events, including

(but not limited to): START (University of Maryland), text-processed DOTS (Directory of Ter-

rorists; Vinyardsoftware, Inc), Harrison-Israel, Koch and Cranmer, Global Terrorism Database II

(GTD2), Multiple Regions MIPT Terrorism Knowledge Database, Varshney-Wilkinson Dataset on

Hindu-Muslim Violence in India 1950-1995, Terrorism in Western Europe: Events Data (TWEED),

Worldwide Incidents Tracking System, International Terrorism–Attributes of Terrorist Events (IT-

ERATE), Pinkerton Global Intelligence Service (PGIS), and several on the Irish “Troubles” (Index

of Deaths in Northern Ireland and others). Where possible we will also merge information across

datasets since some have a limited number of possible covariates. Because these datasets are of

modest size, we expect the nonparametric effect to be important, providing estimates of the unmea-

sured clusters from various sub-groups among these actors. Unfortunately, it is not always clear

which group or sub-group committed the violence since the attackers may not reveal themselves,

multiple groups attempt to take credit, or governments conceal information for strategic reasons.

The GLMDM approach will also provide guidance on variable selection in a literature where there

is no strong set of conventions for explanatory variables. The study of terrorism data is an ideal
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application for our technology: progress is stymied by unmeasured effects in the data, strong quali-

tative and journalistic evidence points toward clustering, and nonparametric approaches to variable

selection have the potential to improve our understanding of this pervasive political and military

challenge.

D.5 Expected Outcomes

This work is expected to make research progress in both statistics and the social sciences. If

supported, this project will lead to the following expected outcomes.

⊲ Research papers in methodological statistics producing usable posterior forms from general

nonparametric priors. At least one paper will be directed at statistical inference and properties

of estimators, and another will address computational issues.

⊲ Applied research papers demonstrating the value of specifying Dirichlet process priors to

complex data problems in terrorism datasets.

⊲ Software tools for MCMC written in R and C++, which will be made freely available to re-

searchers on a dedicated webpage.

⊲ Training of post-docs and graduate students in the development of statistical methodology

and algorithms, with an emphasis on data problems encountered by social scientists. We will

also include undergraduate students in the research by having them process datasets, test

software, and participate in research meetings. See the attached Dean’s letter as confirmation

of our intent.

D.6 Results from Prior NSF Support

D.6.1 PI Gill

⊲ NSF-MSBS.“Adaptive Nonparametric Markov Chain Monte Carlo Algorithms for Social Data

Models with Nonparametric Priors,” DMS-0631632 and SES-0631588 with George Casella.

Award period: January 2007 to January 2010.

⊲ During the grant period one post-doc was supervised (Minjung Kyung) and three PhD stu-

dents were supervised: Skyler Cranmer (UC-Davis Political Science Ph.D, now Assistant

Professor, UNC Chapel Hill Political Science), Xun Pang (Washington University Political

Science), Andrew Womack (Washington University Mathematics).

⊲ Relevant Publications:

1. Kyung, M., Gill, J. and Casella, G. (2009). Estimation in Dirichlet Random Effects

Models. To appear in Annals of Statistics.

2. Gill, J and Casella, G. (2009). Nonparametric Priors For Ordinal Bayesian Social Science

Models: Specification and Estimation. Journal of the American Statistical Association

104 453-464.

3. Garabed, R.B., Johnson, W.O., Gill, J., Perez, A.M. and Thurmond, M.C. (2008). Effects

of Politics and Economics on Country-Level Foot-and-Mouth-Disease Status. Journal of

the Royal Statistical Society, Series A 171 699-722.
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4. Gill, J. (2008). Is Partial-Dimension Convergence a Problem for Inferences From MCMC

Algorithms? Political Analysis 16 153-178.

5. Altman, M., Gill, J. and McDonald, M. P. (2007). Accuracy: Tools for Accurate and

Reliable Statistical Computing. Journal of Statistical Software 21. (Abstract published

in Journal of Computational Graphics and Statistics.)

D.6.2 PI Casella

⊲ NSF-MSBS.“Adaptive Nonparametric Markov Chain Monte Carlo Algorithms for Social Data

Models with Nonparametric Priors,” DMS-0631632 and SES-0631588 with Jeff Gill (Wash-

ington University). Award period: January 2007 to January 2010, and NSF-DMS “Cluster

Analysis, Predictive Distributions, and Stochastic Search Algorithms,” DMS-0405543. Award

period: July 2004 to June 2009.

⊲ During the grant period the main focus of the research was in development of algorithms

for valid inferential procedures, with particular attention to cluster algorithms and stochastic

search. One post-doc was supervised (Minjung Kyung) and four graduate students: Jessica

Zhen Li. (PhD completed December 2008), Nabanita Mukherjee (PhD expected December

2009), Claudio Fuentes (PhD expected May 2010), and Viknesh Gopal (PhD expected May

2010).

⊲ Relevant Publications (in addition to 1. and 2. above):

1. Booth, J. G., Casella, G. and Hobert, J. P. (2008). Clustering using objective functions

and stochastic search. Journal of the Royal Statistical Society, Series B 70 119-140

2. Brumback, B. A, Winner, L. H., Casella, G., Ghosh, M., Hall, A., Zhang, J., Chorba,

Lorna, and Duncan, P. (2008). Estimating a Weighted Average of Stratum-Specific

Parameters. Statistics in Medicine 27 4972-4991.

3. Casella, G., Giron, F. J. and Moreno, E. (2009). Consistent Model Selection in Regres-

sion. Annals of Statistics 37 1207-1228

4. Casella, G. and Moreno, E. (2009). Assessing Robustness of Intrinsic Tests of Inde-

pendence in Two-way Contingency Tables. To appear in the Journal of the American

Statistical Association.

5. Fuentes, C. and Casella, G. (2009). Testing for the existence of Clusters (with discussion).

To appear in Statistics and Operations Research Transactions

6. Joo, Y. , Booth, J. G., Namkoong, Y. and Casella, G. (2008). Model-Based Bayesian

Clustering (MBBC). Bioinformatics 24 874-875

7. Park, T. and Casella, G. (2008). The Bayesian Lasso. Journal of the American Statistical

Association 103 681-686

⊲ Other Specific Products

Two R packages were created. The package bayesclust implements the cluster test of Fuentes,

C. and Casella, G. (2009), and BAMD implements a missing data Gibbs sampler to do Bayesian

association mapping, the subject of the PhD thesis of Jessica Li.
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