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Our corner of reality
Consider a model

yijt = Xijtβ + αi + γj + ε

where yijt is log-wage of individual i in firm j at time t. Xijt is a
set of time-varying covariates for individual i and firm j , αi is an
individual fixed effect, and γj is a firm-fixed effect.

I Such models have been used to study correlations between
individual effects and firm-effects (“High wage workers and high
wage firms”). It picks up arbitrary unobserved heterogeneity in both
firms and workers. Correlation between α, γ and X is allowed.

I One might imagine other fixed effects, such as students and schools,
or scientists and journals, citizens and their home-location. Or even
3 or more fixed effects.

I In some cases we might not be interested in the α’s and γ’s, we
only need them as controls.

I These models have been difficult to estimate due to the high
number of dummy-variables. (One for each firm, one for each
individual)



Single fixed effect - familiar within groups estimator

I When only considering one fixed effect, e.g. individual fixed
effects, the “within-groups” estimator is frequently used.

Y = Xβ + Dα + ε

I Subtract the group-means from Y and X , and find β̂FE from
the system

Ȳ = X̄β + ε

I “Time-demeaning”, “centering on the means”, “creating
mean deviations”, “sweeping out the fixed effects”. Many
names for this. I like centering and sweeping.

I If we need α̂ too, i.e. not only to control for fixed effects, we
may recover α̂ by solving D ′Dα̂ = D ′(Y − X β̂FE ). This is
easy since D ′D is diagonal. α̂ turns out to be the group
means of the residuals.
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Two (or more) fixed effects — ineffably tangled mess

I With two fixed effects (“worker” α and “firm” γ)

Y = Xβ + D1α + D2γ + ε (1)

it’s apparently harder to estimate β̂FE by sweeping out both
fixed effects to get a system like Ȳ = X̄β + ε

I “This fails in our model because creating firm mean deviations
destroys the patterning in D1 and creating worker mean deviations
destroys the patterning in D2” (Andrews et al, JRSS(2008)).
Similarly (but more detailed) in Abowd et al, Econometrica(1999).
And elsewhere and in between.

I Thus, various elaborate estimation schemes have been concocted
during the last decade; including sweeping out one of the fixed
effects, iterated estimations, linear approximations, conjugate
gradients with ingenious preconditioners; with all sorts of
mathematical formulæ with triple indices, double sums, and even
square roots.

I This is the wrong way to think about this problem, we’re not
supposed to sweep out workers from their firms, but to sweep out
workers and firms from eq. (1).
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Street sweepers — John von Neumann and Israel Halperin

I By doing Gaussian elimination on the normal equations, we see that
we need to center on both means at once; like this
Ȳ = PY ; X̄ = PX where P is the projection onto the orthogonal
complement of the column space of D = [D1 D2]; (i.e. R(D)⊥).

I Centering on individual means only, is also a projection P1 (onto
R(D1)⊥). Similarly with the firm means, P2.

I Moreover, we have P = P1 ∧ P2, the intersection of P1 and P2.
(Because R(D)⊥ = R(D1)⊥ ∩ R(D2)⊥). The problem is to compute
Pv given a vector v , using the simple transformations P1 and P2.

I If two projections happen to commute, P1P2 = P2P1, we have from
general theory, P1 ∧ P2 = P1P2, i.e. we get away by centering on
the individual means, then on the firm means. Easy cases.

I In general, they don’t commute, but there’s a theorem by von
Neumann (1933) stating that P1 ∧ P2 = limn→∞(P1P2)n. Israel
Halperin extended it in 1962 to any finite number of projections.

I Thus, we may sweep out both (or more) fixed effects by
centering Y and X on the individual means, then on the firm
means, then on the individual means again, then the firm means, individual

means, firm means, i.m., f.m., ..., until ... they’re gone.
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A graphical rendition of the process



So ... What about the fixed effects?

I Once we have acquired β̂, we compute the residuals R = Y − X β̂,

go back to the normal equations and note that D ′D

[
α̂
γ̂

]
= D ′R

where D =
[
D1 D2

]
. (Just like the within-groups estimator).

I Unlike the case with a single fixed effect, D ′D is not diagonal.
Luckily, identification is a complicated issue (though, solved by
Abowd et al) which lowers the dimension of this system.

I Consider a case where we have 15000 firms with 300000 employees
moving between them. Then we have another set of 9000 firms,
with a set of 120000 employees. But no employee in one group ever
moves into the other group. In each group we may add a constant c
to every individual effect, and subtract the same constant from
every firm effect, and we will not be able to tell:

yijt = xijtβ + (αi + c) + (γj − c) = xijtβ + αi + γj

We may have a different constant c in each group, thus estimates
are not comparable across groups.
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Connection components



That’s all there is to it

I Divide the dataset into (graph-theoretic) connection components
(of firms and individuals, with no relation to the other components).

I In each component we must pick a reference (either a firm or an
employee). (This is due to a somewhat lengthy argument by Abowd
et al, but is also a direct consequence of a theorem about the
signless Laplacian spectrum of bipartite graphs). Then we may solve
for the fixed effects separately in each component, like

B ′B

[
α̂
γ̂

]
= B ′R (these are “sparse” systems, i.e. mostly zeroes).

All the systems are conditional on the jointly estimated β̂ (via the
residuals R = Y − X β̂).

I The fixed effects are identified up to adding a constant c to the
individual effects and subtracting the same c from the firm effects.
Thus, differences (and variances) between individual effects within a
component are identified, and so are differences between firm
effects.



Practical estimation

We have installed software (under the name “LFE” - linear fixed
effects) doing the above on “leif”, our compute cluster. Both
centering and solving the component systems are embarrassingly
parallel tasks, thus we do this in parallel over 8 cpus. A typical
specification file looks like this

file middata.csv # name of data file

vars x x2 year id firm y ife ffe yfe # layout of data-file

model y ~ x + x2 + year # R-style model-spec

dummy year # tell’em it’s categories

complim 10 # ditch small components

fe firm id # fixed effects

A package “lfe” will shortly be uploaded to “CRAN”, the R package

repository for public download. (Our installed “LFE” is just a wrapper

around this package.)



Elsewhere
This way of finding the intersection of projections is known as MAP - Method of Alternating Projections and has
been in use in image processing, not in Photoshop (I think), but in computed tomography (CT) for a while, where
it is known as ART - Algebraic Reconstruction Technique. In numerical linear algebra it is known as The Kaczmarz
Method.
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