
Robust Loss Development Using MCMC: A Vignette

Christopher W. Laws Frank A. Schmid

November 17, 2010

Abstract

For many lines of insurance, the ultimate loss associated with a particular exposure (acci-
dent or policy) year may not be realized (and hence known) for many calendar years; instead
these losses develop as time progresses. The actuarial concept of loss development aims at
estimating (at the level of the aggregate loss triangle) the ultimate loss by exposure year,
given their respective stage of maturity (as defined by the time distance between the expo-
sure year and the latest observed calendar year). This vignette describes and demonstrates
loss development using of the package lossDev, which centers on a Bayesian time series
model. Notable features of this model are a skewed Student-t distribution with time-varying
scale and skewness parameters, the use of an expert prior for the calendar year effect, and
the ability to accommodate a structural break in the consumption path of services. R and
the package are open-source software projects and can be freely downloaded from CRAN:
http://cran.r-project.org and http://lossdev.r-forge.r-project.org/.

1 Installation

At the time of writing this vignette, the current version of lossDev is 0.9.5-2, which has been
released as an R package and can be downloaded from http://lossdev.r-forge.r-project.

org/. lossDev should be available on CRAN shortly. (For instructions on installing R packages
please see the help files for R.) lossDev requires rjags for installation. rjags requires that a
valid version of JAGS be installed on the system. JAGS is an open source program for analysis of
Bayesian hierarchical models using Markov Chain Monte Carlo (MCMC) simulation and can be
freely download from http://calvin.iarc.fr/~martyn/software/jags/.

2 Model Overview

lossDev identifies three time dimensions in the data-generating process of the loss triangle. Specif-
ically, the incremental payments are driven by three time series processes, which manifest them-
selves in exposure growth, development, and the calendar year effect; these processes are illustrated
in Figure 1.

In the model, the growth rate that represents the calendar year effect is denoted κ. The rate of
exposure growth, η, is net of the calendar year effect. The growth rate δ is the rate of decay
in incremental payments, adjusted for the calendar year effect. Incremental payments that have
been adjusted for the calendar year effect (and, hence, inflation) represent consumption of units
of services; for instance, for an auto bodily injury triangle, this consumption pertains to medical
services. A decline in consumption at the level of the aggregate loss triangle may be due to
claimants exiting or due to remaining claimants decreasing their consumption.

For a more detailed explanation, including model equations, please see
Schmid, Frank A. “Robust Loss Development Using MCMC,” 2009.

lossDev currently provides two models, both of which are designed to develop annual loss triangles.

1

http://cran.r-project.org
http://lossdev.r-forge.r-project.org/
http://lossdev.r-forge.r-project.org/
http://lossdev.r-forge.r-project.org/
http://calvin.iarc.fr/~martyn/software/jags/


Figure 1: Triangle Dynamics.

Section 3 uses the first (“standard”) model, which assumes that all exposure years are subject to
a common consumption path.

Section 4 uses the second (“change point”) model to develop a loss triangle with a structural break
in the consumption path, thus assuming that earlier exposure years are subject to one consumption
path and later exposure years are subject to another.

3 Using the Standard Model for Estimation

3.1 Data

The standard model (which does not allow for a structural break) is demonstrated on a loss triangle
from Automatic Facilitative business in General Liability (excluding Asbestos & Environmental).
The payments are on an incurred basis.

This triangle is taken from
Mack, Thomas, “Which Stochastic Model is Underlying the Chain Ladder Method,”Casualty Ac-
tuarial Society Forum, Fall 1995, pp. 229-240, http://www.casact.org/pubs/forum/95fforum/
95ff229.pdf.

3.2 Model Specification

Standard models are specified with the function makeStandardAnnualInput. This function takes
as input all data used in the estimation process. makeStandardAnnualInput also allows the user
to vary the model specification through several arguments. Most of these arguments have defaults
that should be suitable for most purposes.

To ensure portability, the data used in this vignette is packaged in lossDev and as such is loaded
using the data function. However, the user wishing to develop other loss triangles should load
the data using standard R functions (such as read.table or read.csv). See the R manual for
assistance.

3.2.1 Loading and Manipulating the Data

The Triangle As input, makeStandardAnnualInput can take either a cumulative loss triangle
or an incremental loss triangle (or in the case where one might not be directly calculable from
the other, both triangles may be supplied). makeStandardAnnualInput expects any supplied loss
triangle to be a matrix. The row names for the matrix must be the Accident (or Policy) Year

2

http://www.casact.org/pubs/forum/95fforum/95ff229.pdf
http://www.casact.org/pubs/forum/95fforum/95ff229.pdf


and must appear in ascending order. The matrix must be square and all values below the latest
observed diagonal must be missing; missing values on and above this diagonal are permitted.

Note the negative value in Accident Year 1982 in the example triangle. Because incremental
payments are modeled on the log scale, this value will be treated as missing, which could result in
a slightly overstated ultimate loss. A comparison of predicted vs observed cumulative payments
in Figure 9 indicates that, at least in this instance, this possible overstatement is not a concern.

> library(lossDev)

module basemod loaded

module bugs loaded

module lossDev loaded

> data(IncrementalGeneralLiablityTriangle)

> IncrementalGeneralLiablityTriangle <- as.matrix(IncrementalGeneralLiablityTriangle)

> print(IncrementalGeneralLiablityTriangle)

DevYear1 DevYear2 DevYear3 DevYear4 DevYear5 DevYear6 DevYear7 DevYear8

1981 5012 3257 2638 898 1734 2642 1828 599

1982 106 4179 1111 5270 3116 1817 -103 673

1983 3410 5582 4881 2268 2594 3479 649 603

1984 5655 5900 4211 5500 2159 2658 984 NA

1985 1092 8473 6271 6333 3786 225 NA NA

1986 1513 4932 5257 1233 2917 NA NA NA

1987 557 3463 6926 1368 NA NA NA NA

1988 1351 5596 6165 NA NA NA NA NA

1989 3133 2262 NA NA NA NA NA NA

1990 2063 NA NA NA NA NA NA NA

DevYear9 DevYear10

1981 54 172

1982 535 NA

1983 NA NA

1984 NA NA

1985 NA NA

1986 NA NA

1987 NA NA

1988 NA NA

1989 NA NA

1990 NA NA

The Stochastic Inflation Prior Incremental payments may be subject to inflation. One can
supply makeStandardAnnualInput with a price index, such as the CPI, as an expert prior for the
rate of inflation. The supplied rate of inflation must cover the years of the supplied incremental
triangle and may extend (both into the past and future) beyond these years. If a future year’s
rate of inflation is needed but is yet unobserved, it will be simulated from an Ornstein–Uhlenbeck
process that has been calibrated to the supplied inflation series.

For this example, the CPI is taken as a prior for the stochastic rate of inflation.

Note that observed rates of inflation that extend beyond the last observed diagonal in Incremen-

talGeneralLiablityTriangle are not utilized in this example, although lossDev is capable of
doing so.

> data(CPI)

> CPI <- as.matrix(CPI)[, 1]

3



> CPI.rate <- CPI[-1]/CPI[-length(CPI)] - 1

> CPI.rate.length <- length(CPI.rate)

> print(CPI.rate[(-10):0 + CPI.rate.length])

1997 1998 1999 2000 2001 2002 2003

0.02294455 0.01557632 0.02208589 0.03361345 0.02845528 0.01581028 0.02279044

2004 2005 2006 2007

0.02663043 0.03388036 0.03225806 0.02848214

> CPI.years <- as.integer(names(CPI.rate))

> years.available <- CPI.years <= max(as.integer(dimnames(IncrementalGeneralLiablityTriangle)[[1]]))

> CPI.rate <- CPI.rate[years.available]

> CPI.rate.length <- length(CPI.rate)

> print(CPI.rate[(-10):0 + CPI.rate.length])

1980 1981 1982 1983 1984 1985 1986

0.13498623 0.10315534 0.06160616 0.03212435 0.04317269 0.03561116 0.01858736

1987 1988 1989 1990

0.03649635 0.04137324 0.04818259 0.05403226

3.2.2 Selection of Model Options

The function makeStandardAnnualInput has many options to allow for customization of model
specification; however, not all options will be illustrated in this tutorial.

For this example, the loss history is supplied as incremental payments to the argument incremen-
tal.payments. The exposure year type of this triangle is set to Accident Year by setting the value
of exp.year.type to “ay.” The default is “ambiguous” which should be sufficient in most cases as
this information is only utilized by a handful of functions and the information can be supplied (or
overridden calling those functions).

The function allows for the specification of two rates of inflation (in addition to a zero rate of
inflation). One of these rates is allowed to be stochastic, meaning that uncertainty in future
rates of this inflation series are simulated from a process calibrated to the observed series. For
the current demonstration, it will be assumed that the CPI is the only applicable inflation rate,
and that this rate is stochastic. This is done by setting the value of stoch.inflation.rate to
CPI.rate (which was created earlier). The user has the option of specifying what percentage of
dollars inflate at stoch.inflation.rate, with this value being allowed to vary for each cell of the
triangle. For the current illustration, it is assumed that all dollars (in all periods) follow the CPI.
This is done by setting stoch.inflation.weight to 1 and non.stoch.inflation.weight to 0.

By default, the measurement equation for the logarithm of the incremental payments is a Student-
t. The user has the option of using a skewed-t by setting the value of use.skew.t to TRUE. For
this demonstration, a skewed-t will be used.

Because lossDev is designed to develop loss triangles to ultimate, some assumptions must be
made with regard to the extension of the consumption path beyond the number of development
years in the observed triangle. The default assumes the last estimated decay rate (i.e., growth
rate of consumption) is applicable for all future development years, and such is assumed for this
example. This default can be overridden by the argument projected.rate.of.decay. Addition-
ally, either the final number of (possibly) non-zero payments must be supplied via the argument
total.dev.years or the number of non-zero payments in addition to the number of development
years in the observed triangle must be supplied via the argument extra.dev.years. Similarly,
the number of additional, projected exposure years can also be specified.

> standard.model.input <- makeStandardAnnualInput(incremental.payments = IncrementalGeneralLiablityTriangle,

+ stoch.inflation.weight = 1, non.stoch.inflation.weight = 0,

4



+ stoch.inflation.rate = CPI.rate, exp.year.type = "ay", extra.dev.years = 5,

+ use.skew.t = TRUE)

3.3 Estimating the Model

Once the model has been specified, it can be estimated.

MCMC Overview The model is Bayesian and estimated by means of Markov chain Monte
Carlo Simulation (MCMC). To perform MCMC, a Markov chain is constructed in such a way
that the limiting distribution of the chain is the posterior distribution of interest. The chain is
initialized with starting values and then run until it has reached a point of convergence in which
samples adequately represent random (albeit sequentially dependent) draws from this posterior
distribution. The set of iterations performed (and discarded) until samples are assumed to be
draws from the posterior is called a “burn-in.” After the burn-in, the chain is iterated further to
collect samples. The samples are then used to calculated the statistic of interest.

While the user is not responsible for the construction of the Markov chain, he is responsible for
assessing the chains’ convergence. (Section 3.4.1 gives some pointers on this.) The most common
way of accomplishing this task is to run several chains simultaneously with each chain having been
started with a different set of initial values. Once all chains are producing similar results, one can
assume that the chains have converged.

To estimate the model, the function runLossDevModel is called with the first argument being
the input object created by makeStandardAnnualInput. To specify the number of iterations to
discard, the user sets the value of burnIn. To specify the number of iterations to perform after the
burn-in, set the value of sampleSize. To set the number of chains to run simultaneously, supply
a value for nChains. The default value for nChains is 3, which should be sufficient for most cases.

It is also common practice (due to possible autocorrelation in the samples) to apply “thining,”
which means that only every n-th draw is stored. The argument thin is available for this purpose.

Memory Issues MCMC can require large amounts of memory. To allow lossDev to work
with limited hardware, the R package filehash is used to cache the codas of monitored values
to the hard-drive in an efficient way. While such caching can allow estimation of large triangles
on computers with limited memory, it can also slow down some computations. The user has the
option of turning this feature on and off. This is done via the function lossDevOptions by setting
the argument keepCodaOnDisk to TRUE or FALSE.

R also makes available the function memory.limit, which one may find useful.

> standard.model.output <- runLossDevModel(standard.model.input,

+ burnIn = 30000, sampleSize = 30000, thin = 10)

Compiling data graph

Resolving undeclared variables

Allocating nodes

Initializing

Reading data back into data table

Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph Size: 7974

[1] "Update took 17.82185 mins"

5



3.4 Examining Output

makeStandardAnnualInput returns a complex output object. lossDev provides several user-level
functions to access the information contained in this object. Many of these functions are described
below.

3.4.1 Assessing Convergence

As mentioned, the user is responsible for assessing the convergence of the Markov chains used to
estimate the model. To this aim, lossDev provides several functions to produce trace and density
plots.

Arguably, the most important charts for assessing convergence are the trace plots associated
with the three time dimensions of the model. Convergence of exposure growth, the consumption
path, and the calendar year effect are assessed in Figures 2, 3, and 4 respectively. These charts
are produced with the functions exposureGrowthTracePlot, consumptionPathTracePlot, and
calendarYearEffectErrorTracePlot.

> exposureGrowthTracePlot(standard.model.output)

0 500 1000 1500 2000 2500 3000

−
0.

5
0.

5
1.

5

Exposure Growth :2

Sample

P
ar

am
et

er
 V

al
ue

0 500 1000 1500 2000 2500 3000

−
0.

5
0.

5
1.

5

Exposure Growth :6

Sample

P
ar

am
et

er
 V

al
ue

0 500 1000 1500 2000 2500 3000

0
2

4
6

8

Exposure Growth :11

Sample

P
ar

am
et

er
 V

al
ue

Figure 2: Trace plots for select exposure growth parameters.

3.4.2 Assessing Model Fit

lossDev provides many diagnostic charts to asses how well the model fits the observed triangle.

Residuals For the analysis of residuals, lossDev provides the function triResi. triResi plots
the residuals (on the log scale) by the three time dimensions. The time dimension is selected by
means of the argument timeAxis. By default, residual charts are standardized to account for
any assumed/estimated heteroskedasticity in the (log) incremental payments. These charts can
be found in Figures 5, 6, and 7.

Note that because (the log) incremental payments are allowed to be skewed, the residuals need
not be symmetric.

QQ-Plot lossDev provides a QQ-Plot in the function QQPlot. QQPlot plots the median of
simulated incremental payments (sorted at each simulation) against the observed incremental
payments. Plotted points from a well calibrated model will be close to the 45-degree line. These
results are shown in Figure 8.

6



> consumptionPathTracePlot(standard.model.output)

0 500 1000 1500 2000 2500 3000

−
1

1
2

3
4

Calendar Year Effect Error :3

Sample

P
ar

am
et

er
 V

al
ue

0 500 1000 1500 2000 2500 3000

−
0.

5
1.

0
2.

0

Calendar Year Effect Error :7

Sample

P
ar

am
et

er
 V

al
ue

0 500 1000 1500 2000 2500 3000

0
4

8

Calendar Year Effect Error :12

Sample

P
ar

am
et

er
 V

al
ue

Figure 3: Trace plots for select development years on the consumption path.

> calendarYearEffectErrorTracePlot(standard.model.output)

0 500 1000 1500 2000 2500 3000

−
1

1
2

3
4

Calendar Year Effect Error :3

Sample

P
ar

am
et

er
 V

al
ue

0 500 1000 1500 2000 2500 3000

−
0.

5
1.

0
2.

0

Calendar Year Effect Error :7

Sample

P
ar

am
et

er
 V

al
ue

0 500 1000 1500 2000 2500 3000

0
4

8

Calendar Year Effect Error :12

Sample

P
ar

am
et

er
 V

al
ue

Figure 4: Trace plots for select calendar year effect errors.

Comparison of Cumulative Payments As a means of assessing how well the predicted cu-
mulative payments line up with the observed values, lossDev provides the function finalCu-

mulativeDiff. This function plots the relative difference between the predicted and observed
cumulative payments (when such payments exists) for the last observed cumulative payment in
each exposure year, alongside credible intervals. These relative differences, which are shown in
Figure 9, can be useful for assessing the impact of negative incremental payments, as discussed.

3.4.3 Extracting Inference and Results

After compiling, burning-in, and sampling, the user will wish to extract results from the output.
Many of the functions mentioned in this section also return the values of some plotted information.
These values are returned invisibly and as such are not printed at the REPL unless such an
operation is requested. Additionally, many of these functions also provide an option to suppress
plotting.

7



> triResi(standard.model.output, timeAxis = "dy")

2 4 6 8 10

−
3

−
2

−
1

0
1

Development Year

S
ta

nd
ar

di
ze

d 
R

es
id

ua
ls

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● Median of Residuals

Figure 5: Residuals by development year.

> triResi(standard.model.output, timeAxis = "ey")

1982 1984 1986 1988 1990

−
3

−
2

−
1

0
1

Accident Year

S
ta

nd
ar

di
ze

d 
R

es
id

ua
ls

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

● Median of Residuals

Figure 6: Residuals by exposure year.

Predicted Payments Perhaps the most practically useful function is predictedPayments. This
function can plot and return the estimated incremental predicated payments. As the function can
also plot the observed values against the predicted values (plotObservedValues), it also serves
as a diagnostic tool. The log incremental payments are plotted against the predicted values in
Figure 10.

predictedPayments can also plot and return the estimated cumulative payments and has the
option of taking observed payments at “face value” (meaning that predicted payments are replaced
with observed payments whenever possible) in the returned calculations; this can be useful for
the construction of reserve estimates. In Figure 11, only the predicted cumulative payments are
plotted. The function is also used to construct an estimate (with credible intervals) of the ultimate
loss.

> standard.ult <- predictedPayments(standard.model.output, type = "cumulative",

+ plotObservedValues = FALSE, mergePredictedWithObserved = TRUE,

8



> triResi(standard.model.output, timeAxis = "cy")

1982 1984 1986 1988 1990

−
3

−
2

−
1

0
1

Calendar Year

S
ta

nd
ar

di
ze

d 
R

es
id

ua
ls

●●

●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● Median of Residuals

Figure 7: Residuals by calendar year.

> QQPlot(standard.model.output)

50 100 200 500 1000 2000 5000 100001e
−

02
1e

+
00

1e
+

02
1e

+
04

Sorted Observed Incrementals (Log Scale)

S
or

te
d 

P
re

di
ct

ed
 In

cr
em

en
ta

ls
 (

Lo
g 

S
ca

le
)

●

●
●

●
●● ●●

●● ● ● ●● ● ●● ● ●●● ●●●● ●●●● ● ●●●●●● ● ●● ●●●●●●●●●
●●●●

●
●

● Median
90 Percent
Credible Intervals

45 Degree Line

Figure 8: QQ-Plot.

+ logScale = TRUE, quantiles = c(0.025, 0.5, 0.0975), plot = FALSE)

> standard.ult <- standard.ult[, , dim(standard.ult)[3]]

> print(standard.ult)

1981 1982 1983 1984 1985 1986 1987 1988

2.5% 18862.00 16763.84 23639.79 27510.47 27075.65 17306.81 14537.10 16416.21

50% 19140.92 17227.62 24420.79 28855.91 29395.73 20795.11 19823.18 24161.35

9.75% 18912.04 16854.27 23809.52 27846.27 27659.45 18225.77 15936.49 18512.02

1989 1990 1991

2.5% 9433.645 6658.116 3892.761

50% 20111.442 20594.845 21374.034

9.75% 12234.727 9763.830 7670.817

9



> finalCumulativeDiff(standard.model.output)

1980 1982 1984 1986 1988 1990

0
2

4
6

Accident Year

R
el

at
iv

e 
D

iff
er

en
ce

 B
et

w
ee

n 
A

ct
ua

l a
nd

 E
st

im
at

ed
 C

um
ul

at
iv

es

Figure 9: Difference in Final Observed Cumulative Payments.

> predictedPayments(standard.model.output, type = "incremental",

+ logScale = TRUE)

5 10 15

20
50

10
0

50
0

20
00

10
00

0

Development Year

In
cr

em
en

ta
l P

ay
m

en
ts

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

● ●

●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●
●

●Predicted Observed

Figure 10: Predicted Incremental Payments.

Consumption Path lossDev makes the consumption path available via consumptionPath.
The consumption path is the trajectory of exposure-adjusted and calendar year effect-adjusted log
incremental payments and is modeled as a linear spline. The standard model assumes a common
consumption path for all exposure years in the triangle. The use of this function is demonstrated
in Figure 12; the displayed consumption path represents the exposure level of the first exposure
year in the triangle.

Knots in the Consumption Path The consumption path is modeled as a linear spline. The
number of knots in this spline is endogenous to the model. The function numberOfKnots can
be used to extract information regarding the posterior number of knots. All else equal, a higher
number of knots indicates a higher degree of non-linearity. Figure 13 illustrates the use of this
function.

10



> predictedPayments(standard.model.output, type = "cumulative",

+ plotObservedValues = FALSE, logScale = TRUE)

5 10 15

20
00

50
00

10
00

0
20

00
0

Development Year

C
um

ul
at

iv
e 

P
ay

m
en

ts

Figure 11: Predicted Cumulative Payments.

> consumptionPath(standard.model.output)

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

9.
0

Development Year

C
al

en
da

r 
Ye

ar
−

E
ffe

ct
 A

dj
us

te
d 

Lo
g 

In
cr

em
en

al
 P

ay
m

en
ts

Figure 12: Consumption Path.

Rate of Decay While the consumption path illustrates the level of exposure-adjusted and cal-
endar year effect-adjusted log incremental payments, sometimes one may prefer to examine the
development time force in terms of a decay rate. The rate of decay from one development year
to the next (which is approximately the slope of the consumption path) is made available via the
function rateOfDecay. As the standard model assumes a common consumption path for all ex-
posure years, the standard model has only a single decay rate vector. An example of this function
can be found in Figure 14.

Exposure Growth The year over year changes in the estimated exposure level are made avail-
able by the function exposureGrowth. An example of this function can be found in Figure 15.

Calendar Year Effect The model assumes that the cells on a diagonal are subject to a corre-
lated shock. The shock consists of a component exogenous to the triangle (generally represented

11



> numberOfKnots(standard.model.output)

0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Number of Knots

R
el

at
iv

e 
F

re
qu

en
cy

Prior Posterior

Figure 13: Number of Knots.

> rateOfDecay(standard.model.output)

2 4 6 8 10 12 14

−
0.

35
−

0.
25

−
0.

15
−

0.
05

Development Year

R
at

e 
of

 D
ec

ay

●

●

●

●

●

●

●
● ●

● Estimated Projected

Figure 14: Rate Of Decay.

by a price index, such as the CPI) and an endogenous stochastic component. This endogenous
component is the calendar year effect error, defined as the difference between the estimated calen-
dar year effect and the expert prior for the rate of inflation. As lossDev allows the user to vary the
exogenous component for each cell, graphically displaying the entire calendar year effect requires
three dimensions. This is done by plotting a grid of colored blocks and varying the intensity of
each color according to the associated calendar year effect. An example of this can be found in
Figure 16. Note that the value in cell (1,1) is undefined.

Alternatively, one could merely plot the endogenous stochastic component. As this calendar year
effect error is common to all cells on a given diagonal, the number of dimensions is reduced by
one. An illustration of the calendar year effect error is displayed in Figure 17. In this example, the
calendar year effect error displays a fair degree of autocorrelation. lossDev can account for such
correlation by setting the argument use.ar1.in.calendar.year in makeStandardAnnualInput

to TRUE. Exploring this is left as an exercise to the reader.

12



> exposureGrowth(standard.model.output)

1982 1984 1986 1988 1990

−
0.

08
−

0.
06

−
0.

04
−

0.
02

0.
00

Accident Year

R
at

e 
of

 E
xp

os
ur

e 
G

ro
w

th
 (

N
et

 o
f C

al
en

da
r 

Ye
ar

 E
ffe

ct
)

●

●
●

●

●

●

●

●

●

●

● ●Rate of Exposure Growth Future Rate of Growth Stationary Mean

Figure 15: Exposure Growth.

> calendarYearEffect(standard.model.output)

Development Year

A
cc

id
en

t Y
ea

r

1982

1984

1986

1988

1990

5 10 15

0.00

0.02

0.04

0.06

0.08

0.10

Figure 16: Calendar Year Effect.

Changes In Variance As development time progresses, the number of transactions that com-
prise a given incremental payment declines. This can lead to an increase in the variance of the
log incremental payments even as the level of the payments may decrease. In order to account
for this potential increase in variance, the model (optionally) allows for the scale parameter of the
Student-t to vary with development time. This scale parameter is smoothed via a second-order
random walk on the log scale. As a result, the standard deviation can vary for each development
year. An example is displayed in Figure 18.

Skewness Parameter The measurement equation for the log incremental payments is (option-
ally) a skewed-t. skewnessParameter allows for the illustration of the posterior skewness param-
eter. (For reference, the prior is also illustrated.) While the skewness parameter does not directly
translate into the estimated skewness, the two are related. For instance, a skewness parameter of
zero would correspond to zero skew. An example is displayed in Figure 19.

13



> calendarYearEffectErrors(standard.model.output)

1985 1990 1995 2000 2005

−
0.

04
−

0.
02

0.
00

0.
02

0.
04

0.
06

Calendar Year

C
al

en
da

r 
E

ffe
ct

 E
rr

or

Estimated Predicted

Figure 17: Calendar Year Effect Errors.

> standardDeviationVsDevelopmentTime(standard.model.output)

2 4 6 8 10

1
2

3
4

5

Development Year

S
ta

nd
ar

d 
D

ev
ia

tio
n 

in
 M

ea
su

re
m

en
t E

qu
at

io
n

Median 90 Percent Credible Interval

Figure 18: Standard Deviation vs Development Time.

Degrees of Freedom The degrees of freedom associated with the measurement equation is
endogenous to the model estimation. To ensure existence of moments, when estimating a skewed-
t, the degrees of freedom is constrained to be greater than 4; otherwise this value is constrained
to be greater than 2. All else equal, lower degrees of freedom indicate the presence of heavy tails.

The lossDev function degreesOfFreedom allows for the illustration of the posterior degrees of
freedom. (For reference, the prior is also illustrated.) Figure 19 displays the posterior degrees of
freedom for this example.

3.4.4 The Ornstein–Uhlenbeck Process

Future values for the assumed stochastic rate of inflation are simulated from an Ornstein–Uhlenbeck
process. lossDev allows the user to examine predicted and forecast values as well as some of the
underlying parameters. Such options are outlined below.

14



> skewnessParameter(standard.model.output)

−8 −6 −4 −2 0

0.
00

0.
15

0.
30

Skewness Parameter

D
en

si
ty

Prior Posterior

0 500 1000 1500 2000 2500 3000

−
10

−
6

−
2

Sample

S
ke

w
ne

ss
 P

ar
am

et
er

Figure 19: Skewness Parameter.

> degreesOfFreedom(standard.model.output)

5 10 15 20

0.
00

0.
10

Degrees of Freedom

D
en

si
ty

Prior Posterior

0 500 1000 1500 2000 2500 3000

5
10

20

Sample

D
eg

re
es

 o
f F

re
ed

om

Figure 20: Degrees Of Freedom.

Fit and Forecast To display the fitted values vs the observed values (as well as the forecast val-
ues) the user must use the function stochasticInflation. The chart for the example illustrated
above is displayed in Figure 21.

Stationary Mean The Ornstein–Uhlenbeck process has a stationary mean; disturbances from
this mean are assumed to be correlated. Specifically, the projected rate of inflation will (geomet-
rically) approach the stationay mean as time progresses. This stationary mean can be graphed
with the function StochasticInflationStationaryMean. The chart for the example illustrated
above is displayed in Figure 22.

Autocorrelation The Ornstein – Uhlenbeck process assumes that the influence of a disturbance
decays geometrically with time. The parameter governing this rate is traditionally referred to as
ρ. To obtain this value, call the function StochasticInflationRhoParameter. The chart for the
example illustrated above is displayed in Figure 23.

15



> stochasticInflation(standard.model.output)

1920 1940 1960 1980 2000

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

0.
15

Calendar Year

R
at

e 
of

 In
fla

tio
n 

(A
ct

ua
l a

nd
 P

re
di

ct
ed

)

Actual
Predicted/
Forecast

90 Percent
Credible Interval

Stationary
Mean

Figure 21: Stochastic Inflation Fit.

> stochasticInflationStationaryMean(standard.model.output)

0.00 0.02 0.04 0.06

0
10

20
30

(Log) Inflation Stationary Mean

D
en

si
ty

Posterior

0 500 1000 1500 2000 2500 3000

−
0.

05
0.

05
0.

15

Sample

(L
og

) 
In

fla
tio

n 
S

ta
tio

na
ry

 M
ea

n

Figure 22: Estimated Stochastic Inflation Stationary Mean.

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 384757 10.3 667722 17.9 667722 17.9

Vcells 6301753 48.1 14768770 112.7 14768588 112.7

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 384747 10.3 667722 17.9 667722 17.9

Vcells 6301747 48.1 14768770 112.7 14768588 112.7

4 Using the Change Point Model for Estimation

The standard model outlined in Section 3 assumes the same consumption path for all exposure
years. Due to changes in the loss environment, this may not be appropriate for all loss triangles. A
triangle that may have experienced a structural break in the consumption path is outlined below.

16



> stochasticInflationRhoParameter(standard.model.output)

0.4 0.5 0.6 0.7 0.8

0
1

2
3

4

Inflation Autoregressive Parameter

D
en

si
ty

Prior Posterior

0 500 1000 1500 2000 2500 3000

0.
3

0.
5

0.
7

0.
9

SampleIn
fla

tio
n 

A
ut

or
eg

re
ss

iv
e 

P
ar

am
et

er

Figure 23: Estimated Stochastic Inflation Rho Parameter.

4.1 Data

The triangle used for this example is a Private Passenger Auto Bodily Injury Liability triangle
and consists of accident year data on a paid basis.

In December 1986, a judicial decision limited the ability of judges to dismiss cases. This judicial
decision may have brought about a change in the consumption path, thus making this triangle a
good example for the change point model.

This triangle is taken from
Hayne, Roger M., “Measurement of Reserve Variability,” Casualty Actuarial Society Forum, Fall
2003, pp. 141-172, http://www.casact.org/pubs/forum/03fforum/03ff141.pdf.

4.2 Model Specification

4.2.1 Loading and Manipulating the Data

The Triangle Section 3.2.1 supplied incremental payments as model input. For variety, cumu-
lative payments are supplied in this example.

Note the large number of payments at zero amounts. Because the model will treat these payments
as missing values (since they are equal to negative infinity on the log scale), the predicted payments
may be overstated. This issue is addressed in Section 5.

> data(CumulativeAutoBodilyInjuryTriangle)

> CumulativeAutoBodilyInjuryTriangle <- as.matrix(CumulativeAutoBodilyInjuryTriangle)

> sample.col <- (dim(CumulativeAutoBodilyInjuryTriangle)[2] - 6:0)

> print(decumulate(CumulativeAutoBodilyInjuryTriangle)[1:7, sample.col])

DevYear12 DevYear13 DevYear14 DevYear15 DevYear16 DevYear17 DevYear18

1974 20 25 0 12 0 0 0

1975 18 67 0 0 0 32 NA

1976 96 7 8 18 0 NA NA

1977 2 0 50 0 NA NA NA

1978 -55 18 21 NA NA NA NA

1979 19 26 NA NA NA NA NA

1980 5 NA NA NA NA NA NA

17

http://www.casact.org/pubs/forum/03fforum/03ff141.pdf


The Stochastic Inflation Expert Prior The MCPI (Medical Care Component of the CPI) is
chosen as a an expert prior for the stochastic rate of inflation. While in Section 3.2.1 the expert
prior did not extend beyond the observed diagonals (for realism), here a few extra observed years
of the MCPI inflation are used for illustration purposes.

> data(MCPI)

> MCPI <- as.matrix(MCPI)[, 1]

> MCPI.rate <- MCPI[-1]/MCPI[-length(MCPI)] - 1

> print(MCPI.rate[(-10):0 + length(MCPI.rate)])

1997 1998 1999 2000 2001 2002 2003

0.02804557 0.03196931 0.03510946 0.04070231 0.04601227 0.04692082 0.04026611

2004 2005 2006 2007

0.04375631 0.04224444 0.04022277 0.04418203

> MCPI.years <- as.integer(names(MCPI.rate))

> max.exp.year <- max(as.integer(dimnames(CumulativeAutoBodilyInjuryTriangle)[[1]]))

> years.to.keep <- MCPI.years <= max.exp.year + 3

> MCPI.rate <- MCPI.rate[years.to.keep]

4.2.2 Selection of Model Options

While makeStandardAnnualInput (Section 3.2.2) is used to specify models without a change point
(i.e., structural break), makeBreakAnnualInput is used to specify models with a change point.
makeBreakAnnualInput has most of its arguments in common with makeStandardAnnualInput,
and all these common arguments carry their meanings forward. However, makeBreakAnnualInput
adds a few new arguments; these are for specifying the location of the structural break.

Most notable is the argument first.year.in.new.regime which, as the name suggests, indicates
the first year in which the new consumption path applies. This argument can be supplied with
a single value, in which case the model will give a hundred percent probability that this year is
the first year in the new regime. However, this argument can also be supplied with a range of
contiguous years, and the model will then estimate the first year in the new regime. Because the
possible break occurs in late 1986, the range of years chosen for this example is 1986 to 1987.

The prior for the first year in the new regime is a discretized beta distribution. The user has the op-
tion of choosing the parameters for this prior by setting the argument prior.for.first.year.in.new.regime.
Here, since the change was in late 1986, we choose a prior that accords more probability to the
later year.

The argument bound.for.skewness.parameter is set to 5. This avoids the MCMC chain from
“getting stuck” in the lower tail of the distribution (in this particular example). One should use
the function skewnessParemeter (Figure 37) to evaluate the need to set this value. If the user
is experiencing difficulties with the skewed-t, he may wish to use the non-skewed-t by setting the
argument use.skew.t equal to FALSE (which is the default).

> break.model.input <- makeBreakAnnualInput(cumulative.payments = CumulativeAutoBodilyInjuryTriangle,

+ stoch.inflation.weight = 1, non.stoch.inflation.weight = 0,

+ stoch.inflation.rate = MCPI.rate, first.year.in.new.regime = c(1986,

+ 1987), prior.for.first.year.in.new.regime = c(2, 1),

+ exp.year.type = "ay", extra.dev.years = 5, use.skew.t = TRUE,

+ bound.for.skewness.parameter = 5)

4.3 Estimating the Model

Just like in Section 3.3, the S4 object returned by makeBreakAnnualInput must be supplied to
the function runLossDevModel in order to produce estimates.

18



> break.model.output <- runLossDevModel(break.model.input, burnIn = 30000,

+ sampleSize = 30000, thin = 10)

Compiling data graph

Resolving undeclared variables

Allocating nodes

Initializing

Reading data back into data table

Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph Size: 30421

[1] "Update took 1.333058 hours"

4.4 Examining Output

4.4.1 Assessing Convergence

As discussed, the user must examine the MCMC runs for convergence using the same functions
mentioned in Section 3.4.1. To avoid repetition, only a few of the previously illustrated charts will
be discussed below.

Because the change point model has two consumption paths, the method consumptionPathTra-

cePlot for output related to this model has an additional argument when it comes to specifing the
consumption path. If the argument preBreak equals TRUE, then the trace for the consumption
path relevant to exposure years prior to the structural break will be plotted. Otherwise, the trace
for the consumption path relevant to exposure years after the break will be plotted.

The trace for the pre-break consumption path is plotted in Figure 24. The trace for the post-break
path is plotted in Figure 25.

> consumptionPathTracePlot(break.model.output, preBreak = TRUE)

0 500 1000 1500 2000 2500 3000

5.
0

5.
4

5.
8

6.
2

Pre−Break Consumption Path :1

Sample

P
ar

am
et

er
 V

al
ue

0 500 1000 1500 2000 2500 3000

0
2

4
6

Pre−Break Consumption Path :9

Sample

P
ar

am
et

er
 V

al
ue

0 500 1000 1500 2000 2500 3000

−
80

−
40

0

Pre−Break Consumption Path :18

Sample

P
ar

am
et

er
 V

al
ue

Figure 24: Trace plots for select development years on the pre-break consumption path.

4.4.2 Assessing Model Fit

All of the functions mentioned in Section 3.4.2 are available for the change point model as well.

19



> consumptionPathTracePlot(break.model.output, preBreak = FALSE)

0 500 1000 1500 2000 2500 3000

4.
5

5.
5

Post−Break Consumption Path :1

Sample

P
ar

am
et

er
 V

al
ue

0 500 1000 1500 2000 2500 3000

0
2

4
6

Post−Break Consumption Path :9

Sample

P
ar

am
et

er
 V

al
ue

0 500 1000 1500 2000 2500 3000

−
80

−
40

0

Post−Break Consumption Path :18

Sample

P
ar

am
et

er
 V

al
ue

Figure 25: Trace plots for select development years on the post-break consumption path.

Residuals One feature of triResi not mentioned in Section 3.4.2 is the option to turn off the
standardization. As discussed, the model accounts for an increase in the variance of incremental
payments as development time progresses by allowing a scale parameter to vary with development
time. By default, triResi accounts for this by standardizing all the residuals to have a standard
deviation of one. Turning off this feature (via the argument standardize) can provide insight
into this process.

The standardized residuals for the change point model are displayed by development time in
Figure 26. Figure 27 shows the residuals without this standardization.

> triResi(break.model.output, timeAxis = "dy")

5 10 15

−
2

−
1

0
1

2
3

Development Year

S
ta

nd
ar

di
ze

d 
R

es
id

ua
ls

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

● Median of Residuals

Figure 26: (Standardized) Residuals by development year.

Comparison of Cumulative Payments As mentioned, the loss triangle used to illustrate the
change point model has a non-negligible number of incremental payments at the zero amount.
Figure 28 uses the function finalCumulativeDiff to examine the impact of treating these values
as missing.

20



> triResi(break.model.output, standardize = FALSE, timeAxis = "dy")

5 10 15

−
2

−
1

0
1

Development Year

R
es

id
ua

ls ●●●

●

●
●

●
●●●●
●
●
●●
●

●
● ●

●

●
●
●
●●
●
●

●
●●●●
●●●

●
●

●
●●

●
●

●●
●●●

●

●●● ●●

●
●
●
●
●●
●
●
●

●

●
●●

●

●

●

●
●
●

●
●

●

●
●

●
●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●
●

● ●

●
●

●

●

●

●

●

●

●

● Median of Residuals

Figure 27: (Unstandardized) Residuals by development year.

> finalCumulativeDiff(break.model.output)

1975 1980 1985 1990

−
0.

1
0.

0
0.

1
0.

2
0.

3

Accident Year

R
el

at
iv

e 
D

iff
er

en
ce

 B
et

w
ee

n 
A

ct
ua

l a
nd

 E
st

im
at

ed
 C

um
ul

at
iv

es

Figure 28: Difference in Final Observed Cumulative Payments.

4.4.3 Extracting Inference and Results

As was done for the standard model, the user will want to draw inferences from the change point
model. All of the functions discussed in Section 3.4.3 are available for this purpose–though some
will plot slightly different charts and return answers in slightly different ways. In addition, a few
functions are made available to deal with the change point. These functions have no meaning for
the standard model discussed in Section 3.

Predicted Payments Figure 29 again uses the function predictedPayments to plot the pre-
dicted incremental payments vs the observed incremental payments. The impact of treating in-
cremental payments of zero as missing values is most noticeable in this chart.

Consumption Path Figure 30 plots the consumption path for the change point model, again
using the function consumptionPath. Note that now two consumption paths are plotted – one for

21



> predictedPayments(break.model.output, type = "incremental", logScale = TRUE)

5 10 15 20

1e
+

01
1e

+
02

1e
+

03
1e

+
04

1e
+

05

Development Year

In
cr

em
en

ta
l P

ay
m

en
ts

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●Predicted Observed

Figure 29: Predicted Incremental Payments.

the pre-break path and one for the post-break path. Both the pre- and post- break paths represent
the exposure level of the first exposure year.

> consumptionPath(break.model.output)

5 10 15

1
2

3
4

5
6

7

Development Year

C
al

en
da

r 
Ye

ar
−

E
ffe

ct
 A

dj
us

te
d 

Lo
g 

In
cr

em
en

al
 P

ay
m

en
ts

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

Pre−Structrural Break Post−Structural Break

Figure 30: Consumption Path.

Knots in the Consumption Path Figure 31 displays the posterior number of knots for the
change point model example, again using the function numberOfKnots. Note that the number of
knots of both the pre-break and the post-break consumption paths are plotted.

Rate of Decay Figure 32 uses the function rateOfDecay to plot the rate of decay from one
development year to the next for both the pre- and post- break regimes. This can be useful in
assessing the impact of a structural break in the run-off.

Calendar Year Effect Figure 33 uses the function calendarYearEffect to plot the calendar
year effect for the change point model. By default, calendarYearEffect will plot the calendar year

22



> numberOfKnots(break.model.output)

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Pre−Structural Break

Number of Knots

R
el

at
iv

e 
F

re
qu

en
cy

Prior Posterior

0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Post−Structural Break

Number of Knots

R
el

at
iv

e 
F

re
qu

en
cy

Figure 31: Number of Knots.

> rateOfDecay(break.model.output)

5 10 15 20

0
1

2
3

4
5

6

Development Year

R
at

e 
of

 D
ec

ay

●

●

●

●

● ● ● ● ● ● ●

●

● ● ● ● ●

●

●

● ●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●

● ● ●
Pre−Structrural
Break

Post−Structural
Break

Pre/Post−Structrural
Break

Figure 32: Rate Of Decay.

effect for all (observed and projected) incremental payments. Setting the argument restricted-
Size to TRUE will plot the calendar year effect for only the observed incremental payments and
the projected incremental payments needed to “square” the triangle. This feature can be useful
for insurance lines with long tails.

Figure 34 shows the calendar year effect error which is plotted using the function calendarYear-

EffectErrors.

Autocorrelation in Calendar Year Effect The autocorrelation exhibited in Figure 34 is too
strong to ignore. Figure 35 illustrates the use of makeBreakAnnualInput’s argument use.ar1.in.calendar.year.

Setting use.ar1.in.calendar.year to TRUE enables the use of an additional function: cal-

endarYearEffectAutoregressiveParameter. This function will plot the autoregressive parame-
ter associated with the calendar year effect error. Figure 36 illustrates the use of this function.

23



> calendarYearEffect(break.model.output)

Development Year

A
cc

id
en

t Y
ea

r

1975

1980

1985

1990

5 10 15 20

−0.2

0.0

0.2

0.4

0.6

Figure 33: Calendar Year Effect.

> calendarYearEffectErrors(break.model.output)

1975 1980 1985 1990 1995 2000 2005

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Calendar Year

C
al

en
da

r 
E

ffe
ct

 E
rr

or

Estimated Predicted

Figure 34: Calendar Year Effect Errors (Without AR1).

Skewness Parameter Figure 37 displays the skewness parameter for the change point model ex-
ample by using the function skewnessParemeter. The result of setting bound.for.skewness.parameter

to 5 is visible in the chart.

First Year in New Regime The posterior for the first year in which the post-break consump-
tion path applies can be obtained via the function firstYearInNewRegime. Figure 38 shows the
posterior (and prior) for the first year in the new regime. Note how the choice of the argument
prior.for.first.year.in.new.regime to makeBreakAnnualInput has affected the prior.

5 Accounting for Incremental Payments of Zero

As mentioned in Section 4.2.1 and illustrated in Figure 29, the triangle used as an example for the
change point model contains several incremental payments of zero which, if ignored, could cause

24



> break.model.input.w.ar1 <- makeBreakAnnualInput(cumulative.payments = CumulativeAutoBodilyInjuryTriangle,

+ stoch.inflation.weight = 1, non.stoch.inflation.weight = 0,

+ stoch.inflation.rate = MCPI.rate, first.year.in.new.regime = c(1986,

+ 1987), prior.for.first.year.in.new.regime = c(2, 1),

+ exp.year.type = "ay", extra.dev.years = 5, use.skew.t = TRUE,

+ bound.for.skewness.parameter = 5, use.ar1.in.calendar.year = TRUE)

> break.model.output.w.ar1 <- runLossDevModel(break.model.input.w.ar1,

+ burnIn = 30000, sampleSize = 30000, thin = 10)

Compiling data graph

Resolving undeclared variables

Allocating nodes

Initializing

Reading data back into data table

Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph Size: 30249

[1] "Update took 1.419602 hours"

> calendarYearEffectErrors(break.model.output.w.ar1)

1975 1980 1985 1990 1995 2000 2005

−
0.

2
0.

0
0.

2
0.

4

Calendar Year

C
al

en
da

r 
E

ffe
ct

 E
rr

or

Estimated Predicted

Figure 35: Calendar Year Effect Errors (With AR1).

the predicted losses to be overestimated.

lossDev provides a means to account for these payments at the zero amount. This is done by
estimating a secondary, auxiliary model to determine the probably that a payment will be greater
than zero. Predicted payments are then weighted by this probability.

5.1 Estimating the Auxiliary Model

To account for payments at zero amounts, the function accountForZeroPayments is called with the
first argument being an object returned from a call to runLossDevModel. This function will then
return another object which, when called by certain functions already mentioned, will incorporate
into the calculation the probability that any particular payment is zero.

> break.model.output.w.zeros <- accountForZeroPayments(break.model.output)

25



> calendarYearEffectAutoregressiveParameter(break.model.output.w.ar1)

0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

Calendar Year AR Parameter

D
en

si
ty

Prior Posterior

0 500 1000 1500 2000 2500 3000

0.
0

0.
4

0.
8

Sample

C
al

en
da

r 
Ye

ar
 A

R
 P

ar
am

et
er

Figure 36: Calendar Year Effect Autoregressive Parameter.

> skewnessParameter(break.model.output)

−2 −1 0 1 2

0.
0

0.
4

Skewness Parameter

D
en

si
ty

Prior Posterior

0 500 1000 1500 2000 2500 3000

−
4

0
2

4

Sample

S
ke

w
ne

ss
 P

ar
am

et
er

Figure 37: Skewness Parameter.

Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph Size: 3093

[1] "Update took 26.173 secs"

5.2 Assessing Convergence of the Auxiliary Model

The MCMC run used to estimate the auxiliary model must be checked for convergence. lossDev
provides the function gompertzParameters to this end.

The auxiliary model uses a (two-parameter) gompertz function to model the incremental payments
at the zero amount. Which of these parameters is plotted by gompertzParameters is determined
by the argument parameter.

26



> firstYearInNewRegime(break.model.output)

First Year in Post−Structural Break Regime

R
el

at
iv

e 
F

re
qu

en
cy

1975 1980 1985 1990

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Posterior (gray) and Prior

Figure 38: First Year in New Regime.

Figure 39 plots the parameter that determines the steepness of the curve. This parameter can be
examined by setting parameter equal to “scale.”

> gompertzParameters(break.model.output.w.zeros, parameter = "scale")

0.45 0.50 0.55 0.60 0.65 0.70 0.75

0
2

4
6

Gompertz Parameter: scale

D
en

si
ty

Posterior

0 500 1000 1500 2000 2500 3000

0.
4

0.
6

0.
8

Sample

G
om

pe
rt

z 
P

ar
am

et
er

: s
ca

le

Figure 39: Gompertz Scale Parameter.

Figure 40 plots the parameter that determines the point in development time at which the curve
assigns equal probability to payments being zero and payments being greater than zero; this
parameter can be examined by setting parameter equal to “fifty.fifty.”

5.3 Assessing Fit of the Auxiliary Model

One can plot the observed empirical probabilities of payments being greater than zero against the
predicted (and projected) probabilities. This is done with the function probablityOfPayment.
Figure 41 plot this chart.

27



> gompertzParameters(break.model.output.w.zeros, parameter = "fifty.fifty")

13.5 14.0 14.5 15.0 15.5 16.0

0.
0

0.
4

0.
8

Gompertz Parameter: fifty.fifty

D
en

si
ty

Posterior

0 500 1000 1500 2000 2500 3000

13
14

15
16

Sample

G
om

pe
rt

z 
P

ar
am

et
er

: f
ift

y.
fif

ty

Figure 40: Gompertz Location Parameter.

> probablityOfPayment(break.model.output.w.zeros)

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Development Year

P
ro

ba
bi

lit
y 

of
 P

ay
m

en
t

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●Fitted Empirical

Figure 41: Probability of Non-Zero Payment.

5.4 Incorporating the Probability of Non-Zero Payment

Once the auxiliary model has been estimated and its output verified, the functions predicted-

Payments, finalCumulativeDiff, and tailFactor will incorporate this information into their
calculations.

Figure 42 displays the predicted incremental payments after accounting for the probability that
some of them may be zero. This should be compared with Figure 29, which does not account for
the possibility that payments may be zero.

28



> predictedPayments(break.model.output.w.zeros, type = "incremental",

+ logScale = TRUE)

5 10 15 20

1
10

0
10

00
0

Development Year

In
cr

em
en

ta
l P

ay
m

en
ts

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

● ●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
● ●

●

●

●
●

●

●

●

●

●

● ● ●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●Predicted Observed

Figure 42: Predicted Incremental Payments (Accounting for Zero Payments).

29


	Installation
	Model Overview
	Using the Standard Model for Estimation
	Data
	Model Specification
	Loading and Manipulating the Data
	Selection of Model Options

	Estimating the Model
	Examining Output
	Assessing Convergence
	Assessing Model Fit
	Extracting Inference and Results
	The Ornstein–Uhlenbeck Process


	Using the Change Point Model for Estimation
	Data
	Model Specification
	Loading and Manipulating the Data
	Selection of Model Options

	Estimating the Model
	Examining Output
	Assessing Convergence
	Assessing Model Fit
	Extracting Inference and Results


	Accounting for Incremental Payments of Zero
	Estimating the Auxiliary Model
	Assessing Convergence of the Auxiliary Model
	Assessing Fit of the Auxiliary Model
	Incorporating the Probability of Non-Zero Payment


