
Marginal Likelihood Computation with the
margLikArrogance package

By Benedict Escoto

Abstract

The purpose of the margLikArrogance package is to compute marginal likelihoods
from the posterior parameter distributions of Bayesian models using “arrogance sam-
pling”. These marginal likelihoods can then be used to compare how strongly the
evidence supports competing theories. This vignette treats a simple Bayesian model
comparison problem in detail from start to finish and shows how to apply the marg-

LikArrogance package.

1 Introduction

Model choice is theoretically simple in Bayesian statistics. Given two competing models or
theories, T1 and T2, and a vector of observations x, a Bayesian conditionalizes on x and finds
via Bayes’s Theorem that

p(T1|x)

p(T2|x)
=
p(x|T1)
p(x|T2)

p(T1)

p(T2)
. (1)

The quantity p(x|T1)
p(x|T2)

is called a Bayes factor and the quantities p(x|T1) and p(x|T2) are
called the theories’ marginal likelihoods. Once we compute either of these quantities we know
the strength of evidence x in support of theory T1 vs T2.

The problem is that the marginal likelihoods are hard to compute. They are called
marginal likelihoods because typically Bayesian models have several parameters necessary to
compute the models’ likelihood on any evidence. If θi are parameters for Ti, then

p(x|Ti) =

∫
p(x|θi, Ti)p(θi|Ti) dθi (2)

and the marginal likelihood computation requires evaluating an integral. Typically this inte-
gral has no analytic solution and must be solved numerically. Even numerical approximation
is often difficult because p(x|θi, Ti) is often very “spiky”—close to 0 except in a small region
where it is very large.

1.1 MCMC and Arrogance Sampling

The purpose of the margLikArrogance package is to help compute integral (2). The first
step is to sample from the posterior parameter distributions θi|x, Ti. This can be done using
a markov chain monte carlo (MCMC) technique such as Gibbs sampling. Sampling from the
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1.2 Compared to the Harmonic Mean Estimator 1 INTRODUCTION

posterior parameter distribution is a common move in Bayesian statistics, frequently done
even if theory choice is not an issue.

Second, the likelihoods p(x|θi, Ti) are computed for each θi in the posterior parameter
sample.

Third, the margLikArrogance package processes the posterior parameter samples and
the likelihoods and returns p(x|θi, Ti). These can then be plugged into formulas like (1) to
update probabilities. The two basic inputs required for the package to estimate the marginal
likelihood of a theory Ti are:

1. Samples from the posterior distribution of parameters θi|x, Ti, denoted as θj,i.

2. At each point θj,i, the log-likelihood of the prior probability times the likelihood of the
evidence: log(p(x|θj,i, Ti)p(θj,i|Ti)) = log p(x ∧ θj,i|Ti).

The margLikArrogance packge uses a monte carlo technique known as non-parametric
importance sampling, or arrogance sampling. Basically a kind of histogram is built from the
posterior parameter samples and used for importance sampling. The rest of this vignette
considers three simple theories in detail and shows how to use the margLikArrogance package
to decide between them in light of some data. Technical details can be found in XXXX.

That paper also explains the advantages and disadvantages of this technique versus other
methods such as simple monte carlo integration, parametrized importance sampling, path
integration, the standard harmonic mean estimator, etc. To summarize, you may find this
package useful if

� you already have the posterior parameter samples θj,i available, probably through an
MCMC method;

� the quantity p(x|θj,i, Ti)p(θj,i|Ti) is easy to compute;

� p(θj,i|x, Ti) > 0 everywhere, or at least near the samples θj,i;

� and the dimensionality of the space θi is not too large, say around 10 or less (or perhaps
more depending on the desired accuracy).

1.2 Compared to the Harmonic Mean Estimator

The harmonic mean estimator (HME) is similar to what the margLikArrogance package
does: they both approximate a theory’s marginal likelihood given samples from that theory’s
posterior parameter distribution. There are two main differences:

1. This package is supposed to actually give the correct answer.

2. The HME requires the likelihood p(x|θj,i, Ti) at each point, while this package requires
the value p(x ∧ θj,i|Ti).
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2 EXAMPLE THEORIES AND EVIDENCE

See http://http://radfordneal.wordpress.com/2008/08/17/the-harmonic-mean-of-the-
likelihood-worst-monte-carlo-method-ever for a nice explanation of why HME doesn’t
work. Because of the similarity in requirements to the HME, in many cases the arrogance
sampling described here may be used as a convenient but superior replacement for the HME.

2 Example Theories and Evidence

Our simpleminded task is to measure people’s heights and choose between three theories of
how tall people are. Each theory is a Bayesian hierarchical model:

Theory 1: People’s heights are normally distributed with mean µ and standard deviation
0.5.

� µ is normally distributed with mean 5 and standard deviation 0.1.

Theory 2: Heights are lognormally distributed with mean log µ and standard deviation log
of 0.1.

� µ is normally distributed with mean 1.6 and standard deviation 0.02.

Theory 3: Heights are normally distributed with mean µ and precision τ (precision is the
reciprocal of variance).

� µ is normally distributed with mean 5 and standard deviation 0.1.

� τ is gamma distributed with mean 4 and standard deviation 1.

� µ and τ are independent.

For each, the hyperparameters are shared by all people. For instance, in theory 1, if µ is 6.1,
then the height distribution of everyone has a mean of 6.1.

> t1.mean.mean <- 5

> t1.mean.sd <- 0.1

> t1.sd <- 0.5

> t2.mu.mean <- 1.6

> t2.mu.sd <- 0.02

> t2.sigma <- 0.1

> t3.mean.mean <- 5

> t3.mean.sd <- 0.1

> t3.prec.rate <- 4/1^2

> t3.prec.shape <- 4 * t3.prec.rate

> set.seed(1)

> t1.prior.samples <- rnorm(1000, mean = rnorm(1000, mean = t1.mean.mean,
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2 EXAMPLE THEORIES AND EVIDENCE

+ sd = t1.mean.sd), sd = t1.sd)

> t2.prior.samples <- exp(rnorm(1000, rnorm(1000, mean = t2.mu.mean,

+ sd = t2.mu.sd), t2.sigma))

> t3.prior.mu.samples <- rnorm(1000, mean = t3.mean.mean, sd = t3.mean.sd)

> t3.prior.prec.samples <- rgamma(1000, shape = t3.prec.shape,

+ rate = t3.prec.rate)

> t3.prior.samples <- rnorm(1000, mean = t3.prior.mu.samples, sd = 1/sqrt(t3.prior.prec.samples))

> p1.df <- data.frame(x = c(t1.prior.samples, t2.prior.samples,

+ t3.prior.samples), t = c(rep("Theory 1", 1000), rep("Theory 2",

+ 1000), rep("Theory 3", 1000)))

> p1 <- (ggplot(data = p1.df) + geom_histogram(aes(x = x), binwidth = 0.2) +

+ facet_wrap(~t, ncol = 1) + labs(x = "Height", y = "Count"))

The R code above defined the initial parameters and samples 1000 heights from each
prior marginal distribution. These samples are then used to plot a histogram shown in figure
1. As you can see, the marginal distributions look somewhat similar.
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2 EXAMPLE THEORIES AND EVIDENCE
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Figure 1: Prior Marginal Distributions
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2.1 Example Data 3 SAMPLING FROM THE POSTERIOR

2.1 Example Data

To continue the sample, we now sample the heights of 100 people. The results are shown in
figure 2. This is the evidence we will use to compare the three theories.

Person # Height Person # Height Person # Height Person # Height

1 4.66 16 5.07 31 6.05 46 4.60
2 5.23 17 5.09 32 5.03 47 5.36
3 4.52 18 5.76 33 5.37 48 5.64
4 6.22 19 5.67 34 5.06 49 5.02
5 5.33 20 5.52 35 4.14 50 5.72
6 4.53 21 5.74 36 4.81 51 5.38
7 5.44 22 5.65 37 4.82 52 4.67
8 5.62 23 5.15 38 5.06 53 5.34
9 5.50 24 3.71 39 5.87 54 4.31

10 4.89 25 5.53 40 5.63 55 6.10
11 6.16 26 5.06 41 4.98 56 6.49
12 5.37 27 4.99 42 4.92 57 4.84
13 4.67 28 4.07 43 5.59 58 4.37
14 3.55 29 4.77 44 5.49 59 5.50
15 5.89 30 5.39 45 4.62 60 5.01

Figure 2: Sampled Heights

3 Sampling From the Posterior

The next step is to sample from the posterior of each distribution’s parameters. 1000 samples
will be taken from each posterior distribution.

This is somewhat trivial for theories 1 and 2 because they are Bayesian conjugates. In
fact, the marginal likelihood is analytically soluable so there is no need to use the marg-

LikArrogance package. They were chosen as an example so the output of the package can
be compared to the exact answer. The code that computes them is shown below.

> UpdateMean <- function(mean.mean, mean.sd, sd, x) {

+ post.sd <- sqrt(1/(1/mean.sd^2 + length(x)/sd^2))

+ return(c(mean = (mean.mean/mean.sd^2 + sum(x)/sd^2) * post.sd^2,

+ sd = post.sd))

+ }

> set.seed(1)
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3.1 Sampled Likelihoods 3 SAMPLING FROM THE POSTERIOR

> t1.post.param <- UpdateMean(t1.mean.mean, t1.mean.sd, t1.sd,

+ samples)

> t1.post.samples <- rnorm(1000, mean = t1.post.param["mean"],

+ sd = t1.post.param["sd"])

> t2.post.param <- UpdateMean(t2.mu.mean, t2.mu.sd, t2.sigma, log(samples))

> t2.post.samples <- rnorm(1000, mean = t2.post.param["mean"],

+ sd = t2.post.param["sd"])

For theory 3 we will sample from the posterior by taking advantage of the semi-conjugacy
of our model and coding a Gibbs sampler. The code is shown below.

> UpdatePrecision <- function(prec.shape, prec.rate, mean, x) {

+ return(c(shape = prec.shape + length(x)/2, rate = prec.rate +

+ sum((x - mean)^2)/2))

+ }

> t3.mean.post.samples <- rep(NA, 1010)

> t3.sd.post.samples <- rep(NA, 1010)

> t3.mean.post.samples[1] <- 5

> t3.sd.post.samples[1] <- 0.5

> set.seed(1)

> for (i in 2:1010) {

+ mu.params <- UpdateMean(t3.mean.mean, t3.mean.sd, t3.sd.post.samples[i -

+ 1], samples)

+ t3.mean.post.samples[i] <- rnorm(1, mu.params["mean"], mu.params["sd"])

+ prec.params <- UpdatePrecision(t3.prec.shape, t3.prec.rate,

+ t3.mean.post.samples[i - 1], samples)

+ t3.sd.post.samples[i] <- sqrt(1/rgamma(1, shape = prec.params["shape"],

+ rate = prec.params["rate"]))

+ }

> t3.post.samples <- cbind(t3.mean.post.samples, t3.sd.post.samples)[11:1010,

+ ]

> colnames(t3.post.samples) <- c("mean", "sd")

This chain should be checked for tuning, convergence, etc., but here we will just assume
we have obtained the posterior samples we wanted. The prior and posterior parameter
distributions are shown in figure 3.

3.1 Sampled Likelihoods

We have the sampled posterio parameter distributions for each theory; the next step is
compute the value log p(x ∧ θj,i|Ti) = log(p(x|θj,i, Ti)p(θj,i|Ti)) for each point θj,i. For
theory 1 we have:
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Figure 3: Theory 3 Prior vs Posterior Parameters
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4 USING THE PACKAGE AND COMPARING THE THEORIES

> T1OneLik <- function(theta) {

+ ll <- sum(dnorm(samples, mean = theta, sd = t1.sd, log = TRUE))

+ return(ll + dnorm(theta, mean = t1.mean.mean, sd = t1.mean.sd,

+ log = TRUE))

+ }

> t1.ll <- sapply(t1.post.samples, T1OneLik)

For theory 2:

> T2OneLik <- function(theta) {

+ ll <- sum(dlnorm(samples, meanlog = theta, sdlog = t2.sigma,

+ log = TRUE))

+ return(ll + dnorm(theta, mean = t2.mu.mean, sd = t2.mu.sd,

+ log = TRUE))

+ }

> t2.ll <- sapply(t2.post.samples, T2OneLik)

Finally, for theory 3 we have:

> T3OneLik <- function(theta) {

+ ll <- sum(dnorm(samples, mean = theta[1], sd = theta[2],

+ log = TRUE))

+ param.ll <- (dnorm(theta[1], mean = t3.mean.mean, sd = t3.mean.sd,

+ log = TRUE) + dgamma(1/theta[2]^2, shape = t3.prec.shape,

+ rate = t3.prec.rate, log = TRUE))

+ return(ll + param.ll)

+ }

> t3.ll <- apply(t3.post.samples, 1, T3OneLik)

4 Using the Package and Comparing the Theories

We can now apply the margLikArrogance package to compute each theory’s marginal like-
lihood. The following are the only three lines in this example that actually use the package!

> library(margLikArrogance)

> t1.margll <- MarginalLikelihood(matrix(t1.post.samples, ncol = 1),

+ t1.ll)

> t2.margll <- MarginalLikelihood(matrix(t2.post.samples, ncol = 1),

+ t2.ll)

> t3.margll <- MarginalLikelihood(t3.post.samples, t3.ll, bounds = matrix(c(-Inf,

+ Inf, 0.1, Inf), nrow = 2))
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4.1 Qualitative Comparisons 5 A MORE CHALLENGING EXAMPLE

The results are summarized in figure 4. The posterior probability shown assumes that
each theory had probability one-third before the data was observed. Note that the bounds

argument was used for theory 3, specifying that the standard deviation cannot be negative.

Estimated Confidence Actual MLL Posterior
Theory Marg LL Interval (Analytic) Probability

1 -57.6 -57.8 to -57.5 -57.5 0.70
2 -59.9 -60.0 to -59.8 -59.9 0.08
3 -58.8 -58.9 to -58.8 0.22

Figure 4: Arrogance Sampling Results

4.1 Qualitative Comparisons

Instead of computing posterior probabilities directly, we can reference the table from Kass
and Raftery (figure 5) when interpreting the results in figure 4. According to that, the sample
data is positive evidence for theory 1 versus theory 3. The data does not help us much to
decide between theories 1 and 3 or theories 2 and 3.

LL Strength
Difference of Evidence

0 to 1 Inconsequential
1 to 3 Positive
3 to 5 Strong
> 5 Very Strong

Figure 5: Kass and Raftery’s Guidelines

5 A More Challenging Example

The margLikArrogance package requires samples θj,i from the posterior parameter distri-
bution θi|x, Ti and the value of log p(x ∧ θj,i|Ti) at each point. Because

p(θi|x, Ti) =
p(x ∧ θi|Ti)
p(x|Ti)

,
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6 CONCLUSION

computing the marginal likelihood p(x, Ti) is equivalent to computing the normalizing con-
stant for an unknown density p(θi|x, Ti), given samples from θi|x, Ti and the unnormalized
density p(x ∧ θi|Ti) at each point.

Thus we can test the algorithm by suppling samples from an arbitrary density along with
densities multiplied by an arbitrary constant. In this section, we try the algorithm on a
50/50 mixture of two 15-dimensional normal distributions. The first has mean at

µ1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

The second has mean at µ2 = 106µ1. Both will have the identity covariance matrix. The
code below generates n = 100000 samples from this distribution are generated below.

> library(mvtnorm)

> mvn.n <- 10^5

> mvn.mu1 <- c(1, rep(0, 14))

> mvn.mu2 <- 10^6 * mvn.mu1

> set.seed(1)

> mvn.theta <- rbind(rmvnorm(mvn.n/2, mean = mvn.mu1), rmvnorm(mvn.n/2,

+ mean = mvn.mu2))

The log likelihood of the samples are computed below. An arbitrary constant 1000 is
added to each log-likelihood (equivalent to scaling each likelihood by a factor of e1000). This
means that the correct marginal log-likelihood is 1000.

> mvn.ll <- (1000 + log(dmvnorm(mvn.theta, mean = mvn.mu1)/2 +

+ dmvnorm(mvn.theta, mean = mvn.mu2)/2))

We can then apply the algorithm the same way as in section 4.

> mvn.mll <- MarginalLikelihood(mvn.theta, mvn.ll)

> mvn.mll$mll

[1] 1000.626

> mvn.mll$conf.interval

[1] 1000.380 1000.953

The algorithm returns a reasonable approximation of the correct log-likelihood 1000, and
has a reasonably small confidence interval.

6 Conclusion

In this vignette we have applied the margLikArrogance package to two example problems.
The first was detailed and involved choosing between three models of people’s height distri-
butions. The second was abstract but quick, and involved a bimodal 15-dimensional posterior
parameter distribution. In applications such as these, I hope the margLikArrogance package
can provide an easy and useful way to approximate marginal likelihoods.
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