
Multivariate polynomials in R

Robin K. S. Hankin
University of Cambridge

Abstract

In this short article I introduce the multipol package, which provides some functionality
for handling multivariate polynomials; the package is discussed here from a programming
perspective. An example from the field of enumerative combinatorics is presented.

This vignette is based on Hankin (2008).

Keywords: Multivariate polynomials, R.

1. Univariate polynomials

A polynomial is an algebraic expression of the form
∑n

i=0 aix
i where the ai are real or complex

numbers and n (the degree of the polynomial) is a nonnegative integer. A polynomial may be
viewed in three distinct ways:

• Polynomials are interesting and instructive examples of complete functions: they map
C (the complex numbers) to C.

• Polynomials are a map from the positive integers to C: this is f(n) = an and one
demands that ∃n0 with n > n0 −→ f(n) = 0. Relaxation of the final clause results in a
generating function which is useful in combinatorics.

• Polynomials with complex coefficients form an algebraic object known as a ring: polyno-
mial multiplication is associative and distributive with respect to addition; (ab)c = a(bc)
and a(b + c) = ab + ac.

A multivariate polynomial is a generalization of a polynomial to expressions of the form
∑

ai1i2...id

∏d
j=1 x

ij
j .

The three characterizations of polynomials above generalize to the multivariate case, but note
that the algebraic structure is more general.

In the context of R programming, the first two points typically dominate. Viewing a polyno-
mial as a function is certainly second nature to the current readership and unlikely to yield
new insight. But generating functions are also interesting and useful applications of polyno-
mials (Wilf 1994) which may be less familiar and here I discuss an example from the discipline
of integer partitions (Andrews 1998).

A partition of an integer n is a non-increasing sequence of positive integers p1, p2, . . . , pr such
that n =

∑r
i=1 pi (Hankin 2006a). How many distinct partitions does n have?

2 Multivariate polynomials in R

The answer is the coefficient of xn in

n∏
i=1

1
1− xi

(observe that we may truncate the Taylor expansion of 1/(1− xj) to terms not exceeding xn;
thus the problem is within the domain of polynomials as infinite sequences of coefficients are
not required). Here, as in many applications of generating functions, one uses the mechanism
of polynomial multiplication as a bookkeeping device to keep track of the possibilities. The
R idiom used in the polynom package is a spectacularly efficient method for doing so.

Multivariate polynomials generalize the concept of generating function, but in this case the
functions are from n-tuples of nonnegative integers to C. An example is given in the appendix
below.

1.1. The polynom package

The polynom package (Venables, Hornik, and Maechler 2007) is a consistent and convenient
suite of software for manipulating polynomials. This package was originally written in 1993
and is used by Venables and Ripley (2001) as an example of S3 classes.

The following R code shows the polynom package in use; the examples are then generalized
to the multivariate case using the multipol package.

> require(polynom)

> (p <- polynomial(c(1, 0, 0, 3, 4)))

1 + 3*x^3 + 4*x^4

> str(p)

Class 'polynomial' num [1:5] 1 0 0 3 4

See how a polynomial is represented as a vector of coefficients with p[i] holding the coefficient
of xi−1; note the off-by-one issue. Observe the natural print method which suppresses the
zero entries—but the internal representation requires all coefficients so a length 5 vector is
needed to store the object.

Polynomials may be multiplied and added:

> p + polynomial(1:2)

2 + 2*x + 3*x^3 + 4*x^4

> p * p

1 + 6*x^3 + 8*x^4 + 9*x^6 + 24*x^7 + 16*x^8

Robin K. S. Hankin 3

Note the overloading of ‘+’ and ’*’: polynomial addition and multiplication are executed
using the natural syntax on the command line. Observe that the addition is not entirely
straightforward: the shorter polynomial must be padded with zeros.
A polynomial may be viewed either as an object, or a function. Coercing a polynomial to a
function is straightforward:

> f1 <- as.function(p)

> f1(pi)

[1] 483.6552

> f1(matrix(1:6, 2, 3))

[,1] [,2] [,3]
[1,] 8 406 2876
[2,] 89 1217 5833

Note the effortless and transparent vectorization of f1().

2. Multivariate polynomials

There exist several methods by which polynomials may be generalized to multipols. To this
author, the most natural is to consider an array of coefficients; the dimensionality of the array
corresponds to the arity of the multipol. However, other methods suggest themselves and a
brief discussion is given at the end.
Much of the univariate polynomial functionality presented above is directly applicable to
multivariate polynomials.

> require(multipol)

> (a <- as.multipol(matrix(1:10, nrow = 2)))

y^0 y^1 y^2 y^3 y^4
x^0 1 3 5 7 9
x^1 2 4 6 8 10

See how a multipol is actually an array, with one extent per variable present, in this case 2,
although the package is capable of manipulating polynomials of arbitrary arity.
Multipol addition is a slight generalization of the univariate case:

> b <- as.multipol(matrix(1:10, ncol = 2))

> a + b

y^0 y^1 y^2 y^3 y^4
x^0 2 9 5 7 9
x^1 4 11 6 8 10
x^2 3 8 0 0 0
x^3 4 9 0 0 0
x^4 5 10 0 0 0

4 Multivariate polynomials in R

In the multivariate case, the zero padding must be done in each array extent; the natural
command-line syntax is achieved by defining an appropriate Ops.multipol() function to
overload the arithmetic operators.

2.1. Multivariate polynomial multiplication

The heart of the package is multipol multiplication:

> a * b

y^0 y^1 y^2 y^3 y^4 y^5
x^0 1 9 23 37 51 54
x^1 4 29 61 93 125 123
x^2 7 39 79 119 159 142
x^3 10 49 97 145 193 161
x^4 13 59 115 171 227 180
x^5 10 40 70 100 130 100

Multivariate polynomial multiplication is considerably more involved than in the univariate
case. Consider the coefficient of x2y2 in the product. This is

Ca

(
x2y2

)
Cb (1) + Ca

(
xy2
)
Cb (x) + Ca

(
y2
)
Cb

(
x2
)

+ Ca

(
x2y
)
Cb (y) + Ca (xy) Cb (xy) + Ca (y) Cb

(
x2y
)

+ Ca

(
x2
)
Cb

(
y2
)

+ Ca (x) Cb

(
xy2
)

+ Ca (1) Cb

(
x2y2

)
= 0 · 1 + 6 · 2 + 5 · 3

+ 0 · 6 + 4 · 7 + 3 · 8
+ 0 · 0 + 2 · 0 + 1 · 0

= 79,

where “Ca (xmyn)” means the coefficient of xmyn in polynomial a. It should be clear that
large multipols involve more terms and a typical example is given later in the paper.

Multivariate polynomial multiplication in multipol

The appropriate R idiom is to follow the above prose description in a vectorized manner; the
following extract from mprod() is very slightly edited in the interests of clarity.
First we define a matrix, index, whose rows are the array indices of the product:

outDims <- dim(a)+dim(b)-1

Here outDims is the dimensions of the product. Note again the off-by-one issue:
the package uses array indices internally, while the user consistently indexes by
variable power.

index <- expand.grid(lapply(outDims,seq_len))

Each row of matrix index is thus an array index for the product.

The next step is to define a convenience function f(), whose argument u is a row
of index, that returns the entry in the multipol product:

Robin K. S. Hankin 5

f <- function(u){

jja <-

expand.grid(lapply(u,function(i)0:(i-1)))

jjb <- -sweep(jja, 2, u)-1

So jja is the (power) index of a, and the rows of jjb added to those
of jja give u, which is the power index of the returned array. Now
not all rows of jja and jjb correspond to extant elements of a and b
respectively; so define a Boolean variable wanted that selects just the
appropriate rows:

wanted <-

apply(jja,1,function(x)all(x < dim(a))) &

apply(jjb,1,function(x)all(x < dim(b))) &

apply(jjb,1,function(x)all(x >= 0))

Thus element n of wanted is TRUE only if the nth row of both jja and
jjb correspond to a legal element of a and b respectively. Now perform
the addition by summing the products of the legal elements:

sum(a[1+jja[wanted,]] * b[1+jjb[wanted,]])

}

Thus function f() returns the coefficient, which is the sum of products of pairs of
legal elements of a and b. Again observe the off-by-one issue.

Now apply() function f() to the rows of index and reshape:

out <- apply(index,1,f)

dim(out) <- outDims

Thus array out contains the multivariate polynomial product of a and b.

The preceding code shows how multivariate polynomials may be multiplied. The implemen-
tation makes no assumptions about the entries of a or b and the coefficients of the product are
summed over all possibilities; opportunities to streamline the procedure are discussed below.

2.2. Multipols as functions

Polynomials are implicitly functions of one variable; multivariate polynomials are functions
too, but of more than one argument. Coercion of a multipol to a function is straightforward:

> f2 <- as.function(a * b)

> f2(c(x = 1, y = 0+3i))

[1] 67725+167400i

6 Multivariate polynomials in R

It is worth noting the seamless integration between polynom and multipol in this regard:
f1(a) is a multipol [recall that f1() is a function coerced from a univariate polynomial].

2.3. Multipol extraction and replacement

One often needs to extract or replace parts of a multipol. The package includes extraction and
replacement methods but, partly because of the off-by-one issue, these are not straightforward.
Consider the case where one has a multipol and wishes to extract the terms of order zero ane
one:

> a[0:1, 0:1]

[,1] [,2]
[1,] 1 3
[2,] 2 4

Note how the off-by-one issue is handled: a[i,j] is the coefficient of xiyj (here the constant
and first-order terms); the code is due to Rougier (2007). Replacement is slightly different:

> a[0, 0] <- -99

> a

y^0 y^1 y^2 y^3 y^4
x^0 -99 3 5 7 9
x^1 2 4 6 8 10

Observe how replacement operators—unlike extraction operators—return a multipol; this
allows expeditious modification of multivariate polynomials. The reason that the extraction
operator returns an array rather than a multipol is that the extracted object often does not
have unambiguous interpretation as a multipol (consider a[-1,-1], for example). It seems
to this author that the loss of elegance arising from the asymmetry between extraction and
replacement is amply offset by the impossibility of an extracted object’s representation as a
multipol being undesired—unless the user explicitly coerces.

3. The elephant in the room

Representing a multivariate polynomial by an array is a natural and efficient method, but
suffers some disadvantages.
Consider Euler’s four-square identity

(
a2

1 + a2
2 + a2

3 + a2
4

)
·
(
b2
1 + b2

2 + b2
3 + b2

4

)
=

(a1b1 − a2b2 − a3b3 − a4b4)2 +
(a1b2 + a2b1 + a3b4 − a4b3)2 +
(a1b3 − a2b4 + a3b1 + a4b2)2 +
(a1b4 + a2b3 − a3b2 + a4b1)2

Robin K. S. Hankin 7

which was discussed in 1749 in a letter from Euler to Goldbach. The identity is important in
number theory, and may be proved straightforwardly by direct expansion1. It may by verified
to machine precision using the multipol package; the left hand side is given by:

> options("showchars" = TRUE)

> lhs <- polyprod(ones(4,2),ones(4,2))

[1] "1*x1^2*x5^2 + 1*x2^2*x5^2 + ...

(the right hand side’s idiom is more involved), but this relatively trivial expansion requires
about 20 minutes on my 1.5 GHz G4; the product comprises 38 = 6561 elements, of which
only 16 are nonzero. Note the options() statement controlling the format of the output which
causes the result to be printed in a more appropriate form. Clearly the multipol package as
currently implemented is inefficient for multivariate problems of this nature in which the
arrays possess few nonzero elements.

A challenge

The inefficiency discussed above is ultimately due to the storage and manipulation of many
zero coefficients that may be omitted from a calculation. Multivariate polynomials for which
this is an issue appear to be common: the package includes many functions—such as uni(),
single(), and lone()—that define useful multipols in which the number of nonzero elements
is very small.

In this section, I discuss some ideas for implementations in which zero operations are implicitly
excluded. These ideas are presented in the spirit of a request for comments: although they
seem to this author to be reasonable methodologies, readers are invited to discuss the ideas
presented here and indeed to suggest alternative strategies.

The canonical solution would be to employ some form of sparse array class, along the lines
of Mathematica’s SparseArray. Unfortunately, no such functionality exists as of 2008, but
C++ includes a“map”class (Stroustrup 1997) that would be ideally suited to this application.

There are other paradigms that may be worth exploring. It is possible to consider a multi-
variate polynomial of arity d (call this an object of class P d) as being a univariate polynomial
whose coefficients are of class P d−1—class P 0 would be a real or complex number—but such
recursive class definitions appear not to be possible with the current implementation of S3 or
S4 (Venables 2008). Recent experimental work by West (2008) exhibits a proof-of-concept in
C++ which might form the back end of an R implementation. Euler’s identity appears to be
a particularly favourable example and is proved essentially instantaneously.

4. Conclusions

This short document introduces the multipol package that provides functionality for manipu-
lating multivariate polynomials. The multipol package builds on and generalizes the polynom

1Or indeed more elegantly by observing that both sides of the identity express the absolute value
of the product of two quaternions: |a|2 |b|2 = |ab|2. With the onion package (Hankin 2006b),
one would define f <- function(a,b)Norm(a)*Norm(b) - Norm(a*b) and observe (for example) that
f(rquat(rand="norm"),rquat(rand="norm")) is zero to machine precision.

8 Multivariate polynomials in R

package of Venables et al., which is restricted to the case of univariate polynomials. The
generalization is not straightforward and presents a number of programming issues that were
discussed.

One overriding issue is that of performance: many multivariate polynomials of interest are
“sparse” in the sense that they have many zero entries that unnecessarily consume storage
and processing resources.

Several possible solutions are suggested, in the form of a request for comments. The canonical
method appears to be some form of sparse array, for which the “map” class of the C++ lan-
guage is ideally suited. Implementation of such functionality in R might well find application
in fields other than multivariate polynomials.

5. An example

This appendix presents a brief technical example of multivariate polynomials in use in the
field of enumerative combinatorics (Good 1976). Suppose one wishes to determine how many
contingency tables, with non-negative integer entries, have specified row and column marginal
totals. The appropriate generating function is

∏
16i6nr

∏
16j6nc

1
1− xiyj

where the table has nr rows and nc columns (the number of contingency tables is given by the
coefficient of xs1

1 xs2
2 · · ·xsr

r · y
t1
1 yt2

2 · · · y
tc
t where the si and ti are the row- and column- sums

respectively). The R idiom for the generating function gf in the case of nr = nc = n = 3 is:

n <- 3

jj <- as.matrix(expand.grid(seq_len(n),n+seq_len(n)))

f <- function(i) ooom(n,lone(2*n,jj[i,]),maxorder=n)

u <- c(sapply(seq_len(n^2),f,simplify=FALSE))

gf <- do.call("mprod", u)

[here function ooom() is “one-over-one-minus”; and mprod() is the function name for multipol
product]. In this case, it is clear that sparse array functionality would not result in better
performance, as almost every element of the generating function gf is nonzero. Observe that
the maximum of gf, 55, is consistent with Sloane (2008).

Acknowledgements

I would like to acknowledge the many stimulating comments made by the R-help list. In par-
ticular, the insightful comments from Bill Venables and Kurt Hornik were extremely helpful.

References

Andrews GE (1998). The Theory of Partitions. Cambridge University Press.

Robin K. S. Hankin 9

Euler L (1749). “Lettre CXXV.” Communication to Goldbach; Berlin, 12 April.

Good IJ (1976). “On the application of symmetric Dirichlet distributions and their mixtures
to contingency tables.” The Annals of Statistics, 4(6), 1159–1189.

Hankin RKS (2006a). “Additive Integer Partitions in R.” Journal of Statistical Software, Code
Snippets, 16(1).

Hankin RKS (2006b). “Normed division algebras with R: Introducing the onion package.” R
News, 6(2), 49–52. URL http://CRAN.R-project.org/doc/Rnews/.

Hankin RKS (2008). “Programmers’ Niche: Multivariate polynomials in R.” R News, 8(1),
41–45. URL http://CRAN.R-project.org/doc/Rnews/.

Rougier J (2007). Oarray: Arrays with arbitrary offsets. R package version 1.4-2.

Sloane NJA (2008). “The On-Line Encyclopedia of Integer Sequences.” Published electroni-
cally at http://www.research.att.com/~njas/sequences/A110058.

Stroustrup B (1997). The C++ Programming Language. Addison Wesley, third edition.

Venables B, Hornik K, Maechler M (2007). polynom: A collection of functions to implement
a class for univariate polynomial manipulations. R package version 1.3-2. S original by
Bill Venables, packages for R by Kurt Hornik and Martin Maechler, URL http://CRAN.
R-project.org/.

Venables WN (2008). Personal Communication.

Venables WN, Ripley BD (2001). S Programming. Springer.

West LJ (2008). “An experimental C++ implementation of a recursively defined polynomial
class.” Personal communication.

Wilf HS (1994). generatingfunctionology. Academic Press.

Affiliation:

Robin K. S. Hankin
Cambridge Centre for Climate Change Mitigation
University of Cambridge
19 Silver Street
Cambridge CB3 9EP
United Kingdom
E-mail: rksh1@cam.ac.uk
URL: http://www.landecon.cam.ac.uk/staff/profiles/rhankin.htm

http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://www.research.att.com/~njas/sequences/A110058
http://CRAN.R-project.org/
http://CRAN.R-project.org/
mailto:rksh1@cam.ac.uk
http://www.landecon.cam.ac.uk/staff/profiles/rhankin.htm

	Univariate polynomials
	The polynom package

	Multivariate polynomials
	Multivariate polynomial multiplication
	Multivariate polynomial multiplication in multipol

	Multipols as functions
	Multipol extraction and replacement

	The elephant in the room
	A challenge

	Conclusions
	An example

