
Using Poole’s Optimal Classification in R

March 28, 2011

1 Introduction

This package estimates Poole’s Optimal Classification scores from roll call
votes supplied though a rollcall object from package pscl.1 Optimal Clas-
sification fits a Euclidean spatial model that places legislators in a specified
number of dimensions (usually one or two). It maximizes the correct classi-
fication of legislative choices, whereas W-NOMINATE maximizes the prob-
abilities of legislative choices given its error framework. It also differs from
W-NOMINATE because it is a non-parametric procedure that requires no as-
sumptions about the parametric form of the legislators’ preference functions,
other than assuming that they are symmetric and single–peaked. However,
legislator coordinates recovered using OC are virtually identical to those re-
covered by parametric procedures.

The R version of Optimal Classification improves upon the earlier software
in three ways. First, it is now considerably easier to input new data for
estimation, as the current software no longer relies exclusively on the old ORD
file format for data input. Secondly, roll call data can now be formatted and
subsetted more easily using R’s data manipulation capabilities. Finally, the
oc package includes a full suite of graphics functions to analyze the results.

This section briefly outlines the method by which OC scores are calcu-
lated. For a full description, readers are referred to chapters 1 through 3 of
Keith Poole’s Spatial Models of Parliamentary Voting. and Poole’s article in
Political Analysis [1] [2].

We begin this discussion by considering how OC works in one dimension.
The one-dimensional optimal classification method can be summarized as

1Production of this package is supported by NSF Grant SES-0611974.

1

follows:

1. Generate a starting estimate of the legislator rank ordering using sin-
gular value decomposition.

2. Holding the legislator rank ordering fixed, use the Janice algorithm
(described below) to find the optimal cutting point ordering.

3. Holding the cutting point ordering fixed, use the Janice algorithm to
find the optimal legislator ordering.

4. Return to step 2 to iterate if the results change from the previous
iteration

Together, steps 2-4 constitute what is know as the Edith algorithm.
To understand the Janice algorithm, we provide a useful example. Sup-

pose we have six legislators who vote on 5 roll calls as follows:

Legislators 1 2 3 4 5
One Y Y N Y Y
Two N Y Y Y Y

Three N N Y Y Y
Four N N N Y Y
Five N N N N Y
Six N N N N N

To recover the legislator ideal points X1... X6 with voting error, we gen-
erate an agreement score matrix and extract the first eigenvector from the
double–centered agreement score matrix (not shown) as follows. The result
here transposes the ideal points of legislators X1 and X2, demonstrating how
Janice orders the legislator ideal points.

Agreement Scores
1
.6 1
.4 .8 1
.6 .6 .8 1
.4 .4 .6 .8 1.0
.2 .2 .4 .6 .8 1.0

2

First Eigenvector
X1 = −.44512
X2 = −.48973
X3 = −.11093
X4 = .04431
X5 = .34859
X6 = .65288

To see how Janice chooses the cutting lines to minimize the number of
classification errors, we first observe that the ideal points of the legislators
are ordered such that X2 < X1 < X3 < X4 < X5 < X6. From this ordering,
we take the predicted votes conditional on the j th cutline zj as follows, and
simply measure the actual number of errors on the roll calls. In this example,
we show only a table with Yeas on the Left and Nays on the Right; however,
this procedure is usually also repeated with a table where Yeas are on the
Right and Nays are on the Left.

Cutline placement Predicted Vote Errors on Roll calls
1 2 3 4 5

Zj < X2 N N N N N N 1 2 2 4 5
X2 < Zj < X1 Y N N N N N 2 1 1 3 4
X1 < Zj < X3 Y Y N N N N 1 0 2 2 3
X3 < Zj < X4 Y Y Y N N N 2 1 1 1 2
X4 < Zj < X5 Y Y Y Y N N 3 2 2 0 1
X5 < Zj < X6 Y Y Y Y Y N 4 3 3 1 0

X6 < Zj Y Y Y Y Y Y 5 4 4 2 1

The underlined placements of the five roll call cutlines thus minimize
the number of classification errors in this example, and the application of
the Janice algorithm produces the following joint ordering of legislators and
cutting points:

X1 < X2 < Z1 = Z2 < X3 < Z3 < X4 < Z4 < X5 < Z5 < X6

In multiple dimensions, OC shares the same core algorithm as its single-
dimension counterpart. The major difference in multiple dimensions is that
cutting lines can no longer be tested exhaustively as in the one-dimensional
case. Instead, the optimal cutting lines Nj for a roll call matrix with p
legislators, s roll calls, and d dimensions are derived through projection onto
a least squares line as follows:

3

1. Obtain a starting estimate of Nj, usually through least squares regres-
sion.

2. Calculate the correct classifications associated with Nj.

3. Construct Ψ∗, where:

• Ψi = Xi + (cj − wi)Nj if correctly classified and Ψi = Xi if incor-
rectly classified. Ψi is the sx1 vector that is the ith row of Ψ, Xi

is the ideal point of legislator i, cj is the midpoint of roll call j,
and wi = X ′iNj.

• Ψ∗ = Ψ - Jpu
′, where Jp is a px1 vector of 1s and u is a dx1 vector

of means.

4. Perform the singular value decomposition UΛV ′ of Ψ∗.

5. Use the sth singular vector (sth column) vs of V as the new estimate
of Nj.

The starting value generator, cutting line algorithm, and legislator order-
ing algorithm collectively consitute the OC algorithm that is implemented in
this R package.

2 Usage Overview

The oc package was designed for use in one of three ways. First, users can
estimate ideal points from a set of Congressional roll call votes stored in the
traditional ORD file format. Secondly, users can generate a vote matrix of
their own, and feed it directly into oc for analysis. Finally, users can also
generate test data with ideal points and bill parameters arbitrarily speci-
fied as arguments by the user for analysis with oc. Each of these cases are
supported by a similar sequence of function calls, as shown in the diagrams
below:

ORD file
readKH()−−−−−→ rollcall object

oc()−−−→ OCobject

Vote matrix
rollcall()−−−−−−→ rollcall object

oc()−−−→ OCobject

Following generation of an OCobject, the user then analyzes the results
using the plot and summary methods, including:

4

• plot.OCcoords(): Plots ideal points in one or two dimensions.

• plot.OCangles(): Plots a histogram of cut lines.

• plot.OCcutlines(): Plots a specified percentage of cutlines (a Coombs
mesh).

• plot.OCskree(): Plots a Skree plot with the first 20 eigenvalues.

• plot.OCobject(): S3 method for an OCobject that combines the four
plots described above.

• summary.OCobject(): S3 method for an OCobject that summarizes
the estimates.

Examples of each of the three cases described here are presented in the
following sections.

3 Optimal Classification with ORD files

This is the use case that the majority of oc users are likely to fall into. Roll
call votes in a fixed width format ORD format for all U.S. Congresses are
stored online for download at:

• http://www.voteview.com/

• http://www.polisci.ucla.edu/faculty/lewis/rollcall/ (latest Congress only,
updates votes in real time)

oc takes rollcall objects from Simon Jackman’s pscl package as in-
put. The package includes a function, readKH(), that takes an ORD file
and automatically transforms it into a rollcall object as desired. Refer to
the documentation in pscl for more detailed information on readKH() and
rollcall(). Using the 90th Senate as an example, we can download the file
sen90kh.ord and read the data in R as follows:

> library(oc)

5

Classes and Methods for R developed in the

Political Science Computational Laboratory

Department of Political Science

Stanford University

Simon Jackman

hurdle and zeroinfl functions by Achim Zeileis

Optimal Classification Ideal Point Package

Copyright 2007 - 2011

Keith Poole, Jeffrey Lewis, James Lo, and Royce Carroll

Support provided by the U.S. National Science Foundation

NSF Grant SES-0611974

> data(sen90)

> sen90

Source: C:/sen90kh.ord

Number of Legislators: 102

Number of Votes: 596

Using the following codes to represent roll call votes:

Yea: 1 2 3

Nay: 4 5 6

Abstentions: 7 8 9

Not In Legislature: 0

Legislator-specific variables:

[1] "state" "icpsrState" "cd" "icpsrLegis" "party"

[6] "partyCode"

Detailed information is available via the summary function.

To make this example more interesting, suppose we were interested in
applying oc() only to bills that pertained in some way to agriculture. Keith
Poole and Howard Rosenthal’s VOTEVIEW software allows us to quickly
determine which bills in the 90th Senate pertain to agriculture.2 Using this
information, we create a vector of roll calls that we wish to select, then select
for them in the rollcall object. In doing so, we should also take care to

2VOTEVIEW for Windows can be downloaded at www.voteview.com.

6

update the variable in the rollcall object that counts the total number of
bills, as follows:

> selector <- c(21, 22, 44, 45, 46, 47, 48, 49, 50, 53, 54, 55,

+ 56, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73,

+ 74, 75, 77, 78, 80, 81, 82, 83, 84, 87, 99, 100, 101, 105,

+ 118, 119, 120, 128, 129, 130, 131, 132, 133, 134, 135, 141,

+ 142, 143, 144, 145, 147, 149, 151, 204, 209, 211, 218, 219,

+ 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 237, 238,

+ 239, 252, 253, 257, 260, 261, 265, 266, 268, 269, 270, 276,

+ 281, 290, 292, 293, 294, 295, 296, 302, 309, 319, 321, 322,

+ 323, 324, 325, 327, 330, 331, 332, 333, 335, 336, 337, 339,

+ 340, 346, 347, 357, 359, 367, 375, 377, 378, 379, 381, 384,

+ 386, 392, 393, 394, 405, 406, 410, 418, 427, 437, 442, 443,

+ 444, 448, 449, 450, 454, 455, 456, 459, 460, 461, 464, 465,

+ 467, 481, 487, 489, 490, 491, 492, 493, 495, 497, 501, 502,

+ 503, 504, 505, 506, 507, 514, 515, 522, 523, 529, 539, 540,

+ 541, 542, 543, 544, 546, 548, 549, 550, 551, 552, 553, 554,

+ 555, 556, 557, 558, 559, 560, 561, 562, 565, 566, 567, 568,

+ 569, 571, 584, 585, 586, 589, 590, 592, 593, 594, 595)

> sen90$m <- length(selector)

> sen90$votes <- sen90$votes[, selector]

oc() takes a number of arguments described fully in the documentation.
Most of the arguments can (and probably should) be left at their defaults,
particularly when estimating ideal points from U.S. Congresses. The default
options estimate ideal points in two dimensions without standard errors, us-
ing the same beta and weight parameters as described in the introduction.
Votes where the losing side has less than 2.5 per cent of the vote, and legis-
lators who vote less than 20 times are excluded from analysis.

The most important argument that oc() requires is a set of legislators
who have positive ideal points in each dimension. This is the polarity ar-
gument to oc(). In two dimensions, this might mean a fiscally conservative
legislator on the first dimension, and a socially conservative legislator on the
second dimension. Polarity can be set in a number of ways, such as a vector
of row indices (the recommended method), a vector of names, or by any arbi-
trary column in the legis.data element of the rollcall object. Here, we use
Senators Sparkman and Bartlett to set the polarity for the estimation. The

7

names of the first 12 legislators are shown, and we can see that Sparkman
and Bartlett are the second and fifth legislators respectively.

> rownames(sen90$votes)[1:12]

[1] "JOHNSON (D USA)" "SPARKMAN (D AL)" "HILL (D AL)" "GRUENING (D AK)"

[5] "BARTLETT (D AK)" "HAYDEN (D AZ)" "FANNIN (R AZ)" "FULBRIGHT (D AR)"

[9] "MCCLELLAN (D AR)" "KUCHEL (R CA)" "MURPHY (R CA)" "DOMINICK (R CO)"

> result <- oc(sen90, polarity = c(2, 5))

Preparing to run Optimal Classification...

Checking data...

... 1 of 102 total members dropped.

Votes dropped:

... 36 of 208 total votes dropped.

Running Optimal Classification...

Generating Start Coordinates...

Running Edith Algorithm...

Getting normal vectors...

Getting legislator coordinates...

Getting normal vectors...

Getting legislator coordinates...

Getting normal vectors...

Getting legislator coordinates...

Getting normal vectors...

Getting legislator coordinates...

Getting normal vectors...

Getting legislator coordinates...

Getting normal vectors...

Getting legislator coordinates...

Getting normal vectors...

Getting legislator coordinates...

8

Getting normal vectors...

Getting legislator coordinates...

Getting normal vectors...

Getting legislator coordinates...

Getting normal vectors...

Getting legislator coordinates...

Optimal Classification completed successfully.

Optimal Classification took 5.898 seconds to execute.

result now contains all of the information from the OC estimation, the
details of which are fully described in the documentation for oc(). result$legislators
contains all of the information from the PERF25.DAT file from the old Fortran
oc(), while result$rollcalls contains all of the information from the old
PERF21.DAT file. The information can be browsed using the fix() command
as follows (not run):

> legisdata <- result$legislators
> fix(legisdata)

For those interested in just the ideal points, a much better way to do this
is to use the summary() function:

> summary(result)

SUMMARY OF OPTIMAL CLASSIFICATION OBJECT

Number of Legislators: 101 (1 legislators deleted)

Number of Votes: 172 (36 votes deleted)

Number of Dimensions: 2

Predicted Yeas: 6829 of 7732 (88.3%) predictions correct

Predicted Nays: 6740 of 7570 (89%) predictions correct

The first 10 legislator estimates are:

coord1D coord2D

JOHNSON (D USA) -0.506 -0.322

9

SPARKMAN (D AL) 0.231 0.624

HILL (D AL) 0.387 0.732

GRUENING (D AK) -0.508 0.580

BARTLETT (D AK) -0.461 0.639

HAYDEN (D AZ) 0.203 0.585

FANNIN (R AZ) 0.600 -0.251

FULBRIGHT (D AR) 0.145 0.604

MCCLELLAN (D AR) 0.421 0.365

KUCHEL (R CA) -0.098 -0.432

result can also be plotted, with a basic summary plot achieved as follows
as shown Figure 1:

This basic plot splits the window into 4 parts and calls plot.OCcoords(),
plot.OCangles(), plot.OCskree(), and plot.OCcutlines() sequentially. Each of
these four functions can be called individually. In this example, the coordi-
nate plot on the top left plots each legislator with their party affiliation. A
unit circle is included to illustrate how OC scores are constrained to lie within
a unit circle. Observe that with agriculture votes, party affiliation does not
appear to be a strong predictor on the first dimension, although the second
dimension is largely divided by party line. The skree plot shows the first 20
eigenvalues, and the rapid decline after the second eigenvalue suggests that
a two-dimensional model describes the voting behavior of the 90th Senate
well. The final plot shows 50 random cutlines, and can be modified to show
any desired number of cutlines as necessary.

Three things should be noted about the use of the plot() functions. First,
the functions always plot the results from the first two dimensions, but the
dimensions used (as well as titles and subheadings) can all be changed by the
user if, for example, they wish to plot dimensions 2 and 3 instead. Secondly,
plots of one dimensional oc objects work somewhat differently than in two
dimensions and are covered in the example in the final section. Finally,
plot.OCcoords() can be modified to include cutlines from whichever votes
the user desires. The cutline of the 14th agricultural vote (corresponding to
the 58th actual vote) from the 90th Senate with ideal points is plotted below
in Figure 2, showing that the vote largely broke down along partisan lines.

10

> plot(result)

NULL

−1.0 0.0 0.5 1.0

−
1.

0
0.

0
0.

5
1.

0

OC Coordinates

First Dimension

S
ec

on
d

D
im

en
si

on ● D
R

●

●
●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●

●

● ●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●●
●

●

●●

●

Cutting Line Angles

Angle in Degrees

C
ou

nt

0 30 60 90 130 170

0
10

20

●

●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

1 4 7 10 13 16 19

1
2

3
4

5

Skree Plot

Dimension

E
ig

en
va

lu
e

−1.0 0.0 0.5 1.0

−
1.

0
0.

0
0.

5
1.

0

Cutting Lines

First Dimension

S
ec

on
d

D
im

en
si

on

Figure 1: Summary Plot of 90th Senate Agriculture Bill OC Scores

11

> par(mfrow = c(1, 1))

> plot.OCcoords(result, cutline = 14)

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

OC Coordinates

First Dimension

S
ec

on
d

D
im

en
si

on

● D
R

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

Figure 2: 90th Senate Agriculture Bill OC Scores with Cutline

12

4 Optimal Classification with arbitrary vote

matrix

This section describes an example of OC being used for roll call data not
already in ORD format. The example here is drawn from the first three ses-
sions of the United Nations, discussed further as Figure 5.8 in Keith Poole’s
Spatial Models of Parliamentary Voting [1].

To create a rollcall object for use with oc(), one ideally should have
three things:

• A matrix of votes from some source. The matrix should be arranged as
a legislators x votes matrix. It need not be in 1/6/9 or 1/0/NA format,
but users must be able to distinguish between Yea, Nay, and missing
votes.

• A vector of names for each member in the vote matrix.

• OPTIONAL: A vector describing the party or party-like memberships
for the legislator.

The oc package includes all three of these items for the United Nations,
which can be loaded and browsed with the code shown below. The data
comes from Eric Voeten at George Washington University. In practice, one
would prepare a roll call data set in a spreadsheet, like the one available one
www.voteview.com/UN.csv, and read it into R using read.csv(). The csv file
is also stored in this package and can be read using:

UN<-read.csv(“library/oc/data/UN.csv”,header=FALSE,strip.white=TRUE)

The line above reads the exact same data as what is stored in this package
as R data, which can be obtained using the following commands:

> rm(list = ls(all = TRUE))

> data(UN)

> UN <- as.matrix(UN)

> UN[1:5, 1:6]

V1 V2 V3 V4 V5 V6

1 "United States" "Other" "1" "6" "6" "6"

13

2 "Canada" "Other" "6" "6" "6" "6"

3 "Cuba" "Other" "1" "6" "1" "1"

4 "Haiti" "Other" "1" "6" "6" "9"

5 "Dominican Rep" "Other" "1" "6" "6" "7"

Observe that the first column are the names of the legislators (in this
case, countries), and the second column lists whether a country is a “Warsaw
Pact” country or “Other”, which in this case can be thought of as a ‘party’
variable. All other observations are votes. Our objective here is to use this
data to create a rollcall object through the rollcall function in pscl. The
object can then be used with oc() and its plot/summary functions as in the
previous ORD example.

To do this, we want to extract a vector of names (UNnames) and party
memberships (party), then delete them from the original matrix so we have a
matrix of nothing but votes. The party variable must be rolled into a matrix
as well for inclusion in the rollcall object as follows:

> UNnames <- UN[, 1]

> legData <- matrix(UN[, 2], length(UN[, 2]), 1)

> colnames(legData) <- "party"

> UN <- UN[, -c(1, 2)]

In this particular vote matrix, Yeas are numbered 1, 2, and 3, Nays are 4,
5, and 6, abstentions are 7, 8, and 9, and 0s are missing. Other vote matrices
are likely different so the call to rollcall will be slightly different depending
on how votes are coded. Party identification is included in the function call
through legData, and a rollcall object is generated and applied to OC
as follows. A one dimensional OC model is fitted, and result is summarized
below and plotted in Figure 3:

> rc <- rollcall(UN, yea = c(1, 2, 3), nay = c(4, 5, 6), missing = c(7,

+ 8, 9), notInLegis = 0, legis.names = UNnames, legis.data = legData,

+ desc = "UN Votes", source = "www.voteview.com")

> result <- oc(rc, polarity = 1, dims = 1)

Preparing to run Optimal Classification...

Checking data...

14

All members meet minimum vote requirements.

Votes dropped:

... 18 of 237 total votes dropped.

Running Optimal Classification...

Generating Start Coordinates...

Running Edith Algorithm...

Permuting adjacent legislator pairs...

Permuting adjacent legislator triples...

Optimal Classification completed successfully.

Optimal Classification took 1.137 seconds to execute.

> summary(result)

SUMMARY OF OPTIMAL CLASSIFICATION OBJECT

Number of Legislators: 59 (0 legislators deleted)

Number of Votes: 219 (18 votes deleted)

Number of Dimensions: 1

Predicted Yeas: 4762 of 5039 (94.5%) predictions correct

Predicted Nays: 4061 of 4488 (90.5%) predictions correct

The first 10 legislator estimates are:

coord1D

United States 50.0

Canada 57.0

Cuba 30.0

Haiti 24.0

Dominican Rep 40.0

Mexico 25.5

Guatemala 9.0

Honduras 27.0

El Salvador 41.5

Nicaragua 41.5

15

> plot(result)

0 10 30 50

0
10

20
30

40
50

60
1D Optimal Classification Plot

Rank

R
an

k

● Other
WP

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●
●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●●●●●●●●●●●●●

1 4 7 11 15 19

1
2

3

Skree Plot

Dimension

E
ig

en
va

lu
e

Figure 3: Summary Plot of UN Data

Note that the one dimensional plot differs considerably from the previous
two dimensional plots, since only a coordinate plot and a Skree plot are
shown. This is because in one dimension, all cutlines are angled at 90◦, so
there is no need to plot either the cutlines or a histogram of cutline angles.
Also, the plot appears to be compressed, so users need to expand the image
manually by using their mouse and dragging along the corner of the plot to
expand it.

16

References

[1] Poole, Keith (2000) “Non-Parametric Unfolding of Binary Choice Data.”
Political Analysis 8: 211-237.

[2] Poole, Keith (2005) Spatial Models of Parliamentary Voting. Cambridge:
Cambridge University Press.

17

