
Estimating phylogenetic trees with phangorn (Version
1.4-0)

Klaus P. Schliep∗

March 27, 2011

1 Introduction

These notes should enable the user to estimate phylogenetic trees from alignment data
with different methods using the phangorn package [7]. For more background on all the
methods see e.g. [2, 9]. This document illustrates some of the phangorn features to
estimate phylogenetic trees using different reconstruction methods. Small adaptations
to the scripts in section 6 should enable the user to perform phylogenetic analyses.

2 Getting started

The first thing we have to do is to read in an alignment. Unfortunately there exists many
different file formats that alignments can be stored in. The function read.phyDat is used
to read in an alignment. There are several functions to read in alignments depending
on the format of the dataset (nexus, phylip, fasta) and the kind of data (amino acid
or nucleotides) in the ape package [4] and phangorn. The function read.phyDat calls
these other functions. For the specific parameter settings available look in the help files
of the function read.dna (for phylip, fasta, clustal format), read.nexus.data for nexus
files. For amino acid data additional read.aa is called. We start our analysis loading
the phangorn package and then reading in an alignment.

> library(phangorn)

> primates = read.phyDat("primates.dna", format = "phylip",

+ type = "DNA")

∗mailto:kschliep@snv.jussieu.fr

1

mailto:kschliep@snv.jussieu.fr

3 Distance based methods

After reading in the alignment we can build a first tree with distance based methods. The
function dist.dna from the ape package computes distances for many DNA substitution
models. To use the function dist.dna we have to transform the data to class DNAbin. For
amino acids the function dist.ml offers common substitution models (”WAG”, ”Dayhoff”,
”JTT” and ”LG”). After constructing a distance matrix we reconstruct a rooted tree
with UPGMA and alternatively an unrooted tree using Neighbor Joining [6, 8].

> dm = dist.dna(as.DNAbin(primates))

> treeUPGMA = upgma(dm)

> treeNJ = NJ(dm)

We can plot the trees treeUPGMA and treeNJ (figure 1) with the commands:

> par(mfrow = c(1, 2), mar = c(1, 1, 4, 1))

> plot(treeUPGMA, main = "UPGMA")

> plot(treeNJ, "unrooted", main = "NJ")

Distance based methods are very fast and we will use the UPGMA and NJ tree as
starting trees for the maximum parsimony and maximum likelihood analyses.

4 Parsimony

The function parsimony returns the parsimony score, that is the number of changes
which are at least necessary to describe the data for a given tree. We can compare the
parsimony score or the two trees we computed so far:

> parsimony(treeUPGMA, primates)

[1] 751

> parsimony(treeNJ, primates)

[1] 746

The function optim.parsimony performs tree rearrangements to find trees with a lower
parsimony score. So far the only tree rearrangement implemented is nearest-neighbor
interchanges (NNI). However is also a version of the parsimony ratchet [3] implemented,
which is likely to find better trees than just doing NNI rearrangements.

> treePars = optim.parsimony(treeUPGMA, primates)

Final p-score 746 after 1 nni operations

> treeRatchet = pratchet(primates, trace = 0)

> parsimony(c(treePars, treeRatchet), primates)

[1] 746 746

2

Mouse

Bovine

Lemur

Tarsier

Squir Monk

Jpn Macaq

Rhesus Mac

Crab−E.Mac

BarbMacaq

Gibbon

Orang

Gorilla

Chimp

Human

Mouse

Bovine
Lemur

Tarsier

Squir Monk
Jpn MacaqRhesus Mac

Crab−E.Mac
BarbMacaq

Gibbon

Orang
Gorilla

ChimpHuman

Figure 1: Rooted UPGMA tree and unrooted NJ tree

3

5 Maximum likelihood

The last method we will describe in this vignette is Maximum Likelihood (ML) as in-
troduced by Felsenstein [1]. We can easily compute the likelihood for a tree given the
data

> fit = pml(treeNJ, data = primates)

> fit

loglikelihood: -3077.846

unconstrained loglikelihood: -1230.335

Rate matrix:

a c g t

a 0 1 1 1

c 1 0 1 1

g 1 1 0 1

t 1 1 1 0

Base frequencies:

0.25 0.25 0.25 0.25

The function pml returns an object of class pml. This object contains the data, the
tree and many different parameters of the model like the likelihood etc. There are many
generic functions for the class pml available, which allow the handling of these objects.

> methods(class = "pml")

[1] anova.pml* logLik.pml* plot.pml* print.pml* update.pml*

[6] vcov.pml*

Non-visible functions are asterisked

The object fit just estimated the likelihood for the tree it got supplied, but the branch
length are not optimized for the Jukes-Cantor model yet, which can be done with the
function optim.pml.

> fitJC = optim.pml(fit, TRUE)

> logLik(fitJC)

With the default values pml will estimate a Jukes-Cantor model. The function up-

date.pml allows to change parameters. We will change the model to the GTR + Γ(4)
+ I model and then optimize all the parameters.

4

> fitGTR = update(fit, k = 4, inv = 0.2)

> fitGTR = optim.pml(fitGTR, TRUE, TRUE, TRUE, TRUE, TRUE,

+ control = pml.control(trace = 0))

> fitGTR

loglikelihood: -2609.593

unconstrained loglikelihood: -1230.335

Proportion of invariant sites: 0.006054315

Discrete gamma model

Number of rate categories: 4

Shape parameter: 3.175014

Rate matrix:

a c g t

a 0.0000000 0.646823179 33.615422352 0.4052626

c 0.6468232 0.000000000 0.008337983 14.3652676

g 33.6154224 0.008337983 0.000000000 1.0000000

t 0.4052626 14.365267635 1.000000000 0.0000000

Base frequencies:

0.3917047 0.3796838 0.04024865 0.1883629

We can compare the objects for the JC and GTR + Γ(4) + I model using likelihood
ratio statistic

> anova(fitJC, fitGTR)

Likelihood Ratio Test Table

Log lik. Df Df change Diff log lik. Pr(>|Chi|)

1 -3068.3 25

2 -2609.6 35 10 917.4 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

with the AIC

> AIC(fitGTR)

[1] 5289.186

> AIC(fitJC)

[1] 6186.59

or the Shimodaira-Hasegawa test.

> SH.test(fitGTR, fitJC)

5

Mouse

Bovine

Lemur
Tarsier

Squir Monk

Jpn MacaqRhesus Mac

Crab−E.Mac

BarbMacaq

Gibbon

Orang

Gorilla

Chimp

Human878569

99
99

99

89
86

72

69
41

Figure 2: Unrooted tree with bootstrap support values

Trees ln L Diff ln L p-value

[1,] 1 -2609.593 0.0000 0.5011

[2,] 2 -3068.295 458.7019 0.0000

At last we may want to apply bootstrap to test which how well the edges of the tree are
supported:

> bs = bootstrap.pml(fitJC, bs = 100, optNni = TRUE, control = pml.control(trace = 0))

At last we plot the tree with the bootstrap support values on the edges

> par(mar = c(0.1, 0.1, 0.1, 0.1))

> plotBS(fitJC$tree, bs)

The bootstrap analysis can be computationally demanding, but on UNIX systems
the bootstrap functions will distributed the computations using the multicore package.

6

6 Appendix: Standard scripts for nucleotide or amino

acid analysis

Here we provide two standard scripts which can be adapted for the most common tasks.
Most likely the arguments for read.phyDat have to be adapted to accommodate your
file format.

library(multicore)

library(phangorn)

file = "myfile"

dat = read.phyDat(file)

dm = dist.ml(dat)

tree = NJ(dm)

fitNJ = pml(tree, dat, k = 4, inv = 0.2)

fit = optim.pml(fitNJ, TRUE, TRUE, TRUE, TRUE, TRUE)

fit

bs = bootstrap.pml(fit, bs = 100, optNni = TRUE)

You can specify different several models build in which you can specify ”WAG”,
”JTT”, ”Dayhoff”, ”LG”. Optimising the rate matrix for amino acids is possible, but
would take a long, a very long time. So make sure to set optBf=FALSE and optQ=FALSE
in the function optim.pml, which is also the default.

library(multicore)

library(phangorn)

file = "myfile"

dat = read.phyDat(file, type = "AA")

dm = dist.ml(dat, model = "JTT")

tree = NJ(dm)

fitNJ = pml(tree, dat, model = "JTT", k = 4, inv = 0.2)

fit = optim.pml(fitNJ, optNni = TRUE, optInv = TRUE,

optGamma = TRUE)

fit

bs = bootstrap.pml(fit, bs = 100, optNni = TRUE)

References

[1] Joseph Felsenstein. Evolutionary trees from dna sequences: a maxumum likelihood
approach. Journal of Molecular Evolution, 17:368–376, 1981.

[2] Joseph Felsenstein. Inferring Phylogenies. Sinauer Associates, Sunderland, 2004.

7

[3] K. Nixon. The parsimony ratchet, a new method for rapid rarsimony analysis. Cladis-
tics, 15:407–414, 1999.

[4] E. Paradis, J. Claude, and K. Strimmer. Ape: Analyses of phylogenetics and evolu-
tion in r language. Bioinformatics, 20(2):289–290, 2004.

[5] Emmanuel Paradis. Analysis of Phylogenetics and Evolution with R. Springer, New
York, 2006.

[6] N. Saitou and M. Nei. The neighbor-joining method - a new method for reconstruct-
ing phylogenetic trees. Molecular Biology and Evolution, 4(4):406–425, 1987.

[7] Klaus Peter Schliep. phangorn: Phylogenetic analysis in R. Bioinformatics,
27(4):592–593, 2011.

[8] J. A. Studier and K. J. Keppler. A note on the neighbor-joining algorithm of saitou
and nei. Molecular Biology and Evolution, 5(6):729–731, 1988.

[9] Ziheng Yang. Computational Molecular evolution. Oxford University Press, Oxford,
2006.

7 Session Information

The version number of R and packages loaded for generating the vignette were:

� R version 2.12.2 (2011-02-25), i386-pc-mingw32

� Locale: LC_COLLATE=C, LC_CTYPE=English_New Zealand.1252,
LC_MONETARY=English_New Zealand.1252, LC_NUMERIC=C,
LC_TIME=English_New Zealand.1252

� Base packages: base, datasets, grDevices, graphics, grid, methods, stats, utils

� Other packages: ape 2.7, igraph 0.5.5-1, phangorn 1.4-0, quadprog 1.5-3,
rgl 0.92.798, seqLogo 1.16.0

� Loaded via a namespace (and not attached): Matrix 0.999375-48, gee 4.13-16,
lattice 0.19-19, nlme 3.1-98, tools 2.12.2

8

	Introduction
	Getting started
	Distance based methods
	Parsimony
	Maximum likelihood
	Appendix: Standard scripts for nucleotide or amino acid analysis
	Session Information

