
Regression Models for Count Data in R

Achim Zeileis
Universität Innsbruck

Christian Kleiber
Universität Basel

Simon Jackman
Stanford University

Abstract

The classical Poisson, geometric and negative binomial regression models for count
data belong to the family of generalized linear models and are available at the core of
the statistics toolbox in the R system for statistical computing. After reviewing the
conceptual and computational features of these methods, a new implementation of hurdle
and zero-inflated regression models in the functions hurdle() and zeroinfl() from the
package pscl is introduced. It re-uses design and functionality of the basic R functions
just as the underlying conceptual tools extend the classical models. Both hurdle and zero-
inflated model, are able to incorporate over-dispersion and excess zeros—two problems
that typically occur in count data sets in economics and the social sciences—better than
their classical counterparts. Using cross-section data on the demand for medical care, it is
illustrated how the classical as well as the zero-augmented models can be fitted, inspected
and tested in practice.

Keywords: GLM, Poisson model, negative binomial model, hurdle model, zero-inflated model.

1. Introduction

Modeling count variables is a common task in economics and the social sciences. The classical
Poisson regression model for count data is often of limited use in these disciplines because
empirical count data sets typically exhibit over-dispersion and/or an excess number of zeros.
The former issue can be addressed by extending the plain Poisson regression model in various
directions: e.g., using sandwich covariances or estimating an additional dispersion parameter
(in a so-called quasi-Poisson model). Another more formal way is to use a negative bino-
mial (NB) regression. All of these models belong to the family of generalized linear models
(GLMs, see Nelder and Wedderburn 1972; McCullagh and Nelder 1989). However, although
these models typically can capture over-dispersion rather well, they are in many applications
not sufficient for modeling excess zeros. Since Mullahy (1986) and Lambert (1992) there is in-
creased interest, both in the econometrics and statistics literature, in zero-augmented models
that address this issue by a second model component capturing zero counts. Hurdle models
(Mullahy 1986) combine a left-truncated count component with a right-censored hurdle com-
ponent. Zero-inflation models (Lambert 1992) take a somewhat different approach: they are
mixture models that combine a count component and a point mass at zero. An overview of
count data models in econometrics, including hurdle and zero-inflated models, is provided in
Cameron and Trivedi (1998, 2005).

In R (R Development Core Team 2008), GLMs are provided by the model fitting functions
glm() (Chambers and Hastie 1992) in the stats package and glm.nb() in the MASS package

2 Regression Models for Count Data in R

(Venables and Ripley 2002) along with associated methods for diagnostics and inference. Here,
we discuss the implementation of hurdle and zero-inflated models in the functions hurdle()

and zeroinfl() in the pscl package (Jackman 2008), available from the Comprehensive R
Archive Network (CRAN) at http://CRAN.R-project.org/package=pscl. The design of
both modeling functions as well as the methods operating on the associated fitted model
objects follows that of the base R functionality so that the new software integrates easily into
the computational toolbox for modeling count data in R.

The remainder of this paper is organized as follows: Section 2 discusses both the classical
and zero-augmented count data models and their R implementations. In Section 3, all count
regression models discussed are applied to a microeconomic cross-section data set on the
demand for medical care. The summary in Section 4 concludes the main part of the paper;
further technical details are presented in the appendix.

2. Models and software

In this section, we briefly outline the theory and its implementation in R (R Development
Core Team 2008) for some basic count data regression models as well as their zero-augmented
extensions (see Table 1 for an overview). The classical Poisson, geometric and negative
binomial models are described in a generalized linear model (GLM) framework; they are
implemented in R by the glm() function (Chambers and Hastie 1992) in the stats package
and the glm.nb() function in the MASS package (Venables and Ripley 2002). The hurdle
and zero-inflated extensions of these models are provided by the functions hurdle() and
zeroinfl() in package pscl (Jackman 2008). The original implementation of Jackman (2008)
was improved by Kleiber and Zeileis (2008) for pscl to make the fitting functions and the fitted

Type Distribution Method Description

GLM Poisson ML Poisson regression: classical GLM, estimated
by maximum likelihood (ML)

quasi “quasi-Poisson regression”: same mean func-
tion, estimated by quasi-ML (QML) or
equivalently generalized estimating equa-
tions (GEE), inference adjustment via esti-
mated dispersion parameter

adjusted “adjusted Poisson regression”: same mean
function, estimated by QML/GEE, inference
adjustment via sandwich covariances

NB ML NB regression: extended GLM, estimated by
ML including additional shape parameter

zero-augmented Poisson ML zero-inflated Poisson (ZIP), hurdle Poisson
NB ML zero-inflated NB (ZINB), hurdle NB

Table 1: Overview of discussed count regression models. All GLMs use the same log-linear
mean function (log(µ) = x>β) but make different assumptions about the remaining likelihood.
The zero-augmented models extend the mean function by modifying (typically, increasing)
the likelihood of zero counts.

http://CRAN.R-project.org/package=pscl

Achim Zeileis, Christian Kleiber, Simon Jackman 3

model objects more similar to their glm() and glm.nb() counterparts. The most important
features of the new hurdle() and zeroinfl() functions are discussed below while some
technical aspects are deferred to the appendix.

An alternative implementation of zero-inflated count models is available in the currently
orphaned package zicounts (Mwalili 2007). Another extension of zero-inflated Poisson models
is available in package ZIGP (Erhardt 2008) which allows dispersion—in addition to mean
and zero-inflation level—to depend on regressors. However, the interfaces of both packages
are less standard with fewer (or no) standard methods provided. Therefore, re-using generic
inference tools is more cumbersome and hence these packages are not discussed here.

Two packages that embed zero-inflated models into more general implementations of GLMs
and GAMs (generalized additive models) are gamlss (Stasinopoulos and Rigby 2007) and
VGAM (Yee 2008). The latter also provides hurdle models (under the name zero-altered
models). Both implementations allow specification of only one set of regressors.

In addition to zero-augmented models, there are many further extensions to the classical
Poisson model which are not discussed here. Some important model classes include finite
mixture models—implemented in R in package flexmix (Leisch 2004)—and generalized esti-
mating equations (GEE)—provided in R by package geepack (Halekoh, Højsgaard, and Yan
2006)—and mixed-effects models—available in R in packages lme4 and nlme (see Pinheiro
and Bates 2000). Further information about the models and alternative R implementations
can be found in the respective references.

2.1. Generalized linear models

Model frame

The basic count data regression models can be represented and understood using the GLM
framework that emerged in the statistical literature in the early 1970s (Nelder and Wedderburn
1972). In the following, we briefly sketch some important aspects relating to the unifying
conceptual properties and their implementation in R—for a detailed theoretical account of
GLMs see McCullagh and Nelder (1989).

GLMs describe the dependence of a scalar variable yi (i = 1, . . . , n) on a vector of regressors
xi. The conditional distribution of yi|xi is a linear exponential family with probability density
function

f(y;λ, φ) = exp

(
y · λ− b(λ)

φ
+ c(y, φ)

)
, (1)

where λ is the canonical parameter that depends on the regressors via a linear predictor
and φ is a dispersion parameter that is often known. The functions b(·) and c(·) are known
and determine which member of the family is used, e.g., the normal, binomial or Poisson
distribution. Conditional mean and variance of yi are given by E[yi |xi] = µi = b′(λi) and
VAR[yi |xi] = φ ·b′′(λi). Thus, up to a scale or dispersion parameter φ, the distribution of yi is
determined by its mean. Its variance is proportional to V (µ) = b′′(λ(µ)), also called variance
function.

The dependence of the conditional mean E[yi |xi] = µi on the regressors xi is specified via

g(µi) = x>i β, (2)

4 Regression Models for Count Data in R

where g(·) is a known link function and β is the vector of regression coefficients which are
typically estimated by maximum likelihood (ML) using the iterative weighted least squares
(IWLS) algorithm.

Instead of viewing GLMs as models for the full likelihood (as determined by Equation 1), they
can also be regarded as regression models for the mean only (as specified in Equation 2) where
the estimating functions used for fitting the model are derived from a particular family. As
illustrated in the remainder of this section, the estimating function point of view is particularly
useful for relaxing the assumptions imposed by the Poisson likelihood.

R provides a very flexible implementation of the general GLM framework in the function glm()

(Chambers and Hastie 1992) contained in the stats package. Its most important arguments
are

glm(formula, data, subset, na.action, weights, offset,

family = gaussian, start = NULL, control = glm.control(...),

model = TRUE, y = TRUE, x = FALSE, ...)

where formula plus data is the now standard way of specifying regression relationships in
R/S introduced in Chambers and Hastie (1992). The remaining arguments in the first line
(subset, na.action, weights, and offset) are also standard for setting up formula-based
regression models in R/S. The arguments in the second line control aspects specific to GLMs
while the arguments in the last line specify which components are returned in the fitted model
object (of class “glm” which inherits from “lm”). By default the model frame (model) and the
vector (y1, . . . , yn)> (y) but not the model matrix (x, containing x1, . . . , xn combined row-
wise) are included. The family argument specifies the link g(µ) and variance function V (µ)
of the model, start can be used to set starting values for β, and control contains control
parameters for the IWLS algorithm. For further arguments to glm() (including alternative
specifications of starting values) see ?glm. The high-level glm() interface relies on the function
glm.fit() which carries out the actual model fitting (without taking a formula-based input
or returning classed output).

For “glm” objects, a set of standard methods (including print(), predict(), logLik() and
many others) are provided. Inference can easily be performed using the summary() method for
assessing the regression coefficients via partial Wald tests or the anova() method for compar-
ing nested models via an analysis of deviance. These inference functions are complemented by
further generic inference functions in contributed packages: e.g., lmtest (Zeileis and Hothorn
2002) provides a coeftest() function that also computes partial Wald tests but allows for
specification of alternative (robust) standard errors. Similarly, waldtest() from lmtest and
linearHypothesis() from car (Fox 2002) assess nested models via Wald tests (using different
specifications for the nested models). Finally, lrtest() from lmtest compares nested models
via likelihood ratio (LR) tests based on an interface similar to waldtest() and anova().

Poisson model

The simplest distribution used for modeling count data is the Poisson distribution with prob-
ability density function

f(y;µ) =
exp(−µ) · µy

y!
, (3)

which is of type (1) and thus Poisson regression is a special case of the GLM framework. The

Achim Zeileis, Christian Kleiber, Simon Jackman 5

canonical link is g(µ) = log(µ) resulting in a log-linear relationship between mean and linear
predictor. The variance in the Poisson model is identical to the mean, thus the dispersion is
fixed at φ = 1 and the variance function is V (µ) = µ.

In R, this can easily be specified in the glm() call just by setting family = poisson (where
the default log link could also be changed in the poisson() call).

In practice, the Poisson model is often useful for describing the mean µi but underestimates
the variance in the data, rendering all model-based tests liberal. One way of dealing with this
is to use the same estimating functions for the mean, but to base inference on the more robust
sandwich covariance matrix estimator. In R, this estimator is provided by the sandwich()

function in the sandwich package (Zeileis 2004, 2006).

Quasi-Poisson model

Another way of dealing with over-dispersion is to use the mean regression function and the
variance function from the Poisson GLM but to leave the dispersion parameter φ unrestricted.
Thus, φ is not assumed to be fixed at 1 but is estimated from the data. This strategy leads
to the same coefficient estimates as the standard Poisson model but inference is adjusted for
over-dispersion. Consequently, both models (quasi-Poisson and sandwich-adjusted Poisson)
adopt the estimating function view of the Poisson model and do not correspond to models
with fully specified likelihoods.

In R, the quasi-Poisson model with estimated dispersion parameter can also be fitted with
the glm() function, simply setting family = quasipoisson.

Negative binomial models

A third way of modeling over-dispersed count data is to assume a negative binomial (NB)
distribution for yi|xi which can arise as a gamma mixture of Poisson distributions. One
parameterization of its probability density function is

f(y;µ, θ) =
Γ(y + θ)

Γ(θ) · y!
· µy · θθ

(µ+ θ)y+θ
, (4)

with mean µ and shape parameter θ; Γ(·) is the gamma function. For every fixed θ, this is of
type (1) and thus is another special case of the GLM framework. It also has φ = 1 but with

variance function V (µ) = µ+ µ2

θ .

Package MASS (Venables and Ripley 2002) provides the family function negative.binomial()

that can directly be plugged into glm() provided the argument theta is specified. One appli-
cation would be the geometric model, the special case where θ = 1, which can consequently
be fitted in R by setting family = negative.binomial(theta = 1) in the glm() call.

If θ is not known but to be estimated from the data, the negative binomial model is not a
special case of the general GLM—however, an ML fit can easily be computed re-using GLM
methodology by iterating estimation of β given θ and vice versa. This leads to ML estimates
for both β and θ which can be computed using the function glm.nb() from the package MASS.
It returns a model of class “negbin” inheriting from “glm” for which appropriate methods to
the generic functions described above are again available.

6 Regression Models for Count Data in R

2.2. Hurdle models

In addition to over-dispersion, many empirical count data sets exhibit more zero observations
than would be allowed for by the Poisson model. One model class capable of capturing both
properties is the hurdle model, originally proposed by Mullahy (1986) in the econometrics
literature (see Cameron and Trivedi 1998, 2005, for an overview). They are two-component
models: A truncated count component, such as Poisson, geometric or negative binomial, is
employed for positive counts, and a hurdle component models zero vs. larger counts. For the
latter, either a binomial model or a censored count distribution can be employed.

More formally, the hurdle model combines a count data model fcount(y;x, β) (that is left-
truncated at y = 1) and a zero hurdle model fzero(y; z, γ) (right-censored at y = 1):

fhurdle(y;x, z, β, γ) =

{
fzero(0; z, γ) if y = 0,
(1− fzero(0; z, γ)) · fcount(y;x, β)/(1− fcount(0;x, β)) if y > 0

(5)
The model parameters β, γ, and potentially one or two additional dispersion parameters θ
(if fcount or fzero or both are negative binomial densities) are estimated by ML, where the
specification of the likelihood has the advantage that the count and the hurdle component
can be maximized separately. The corresponding mean regression relationship is given by

log(µi) = x>i β + log(1− fzero(0; zi, γ))− log(1− fcount(0;xi, β)), (6)

again using the canonical log link. For interpreting the zero model as a hurdle, a binomial
GLM is probably the most intuitive specification1. Another useful interpretation arises if the
same regressors xi = zi are used in the same count model in both components fcount = fzero:
A test of the hypothesis β = γ then tests whether the hurdle is needed or not.

In R, hurdle count data models can be fitted with the hurdle() function from the pscl package
(Jackman 2008). Both its fitting function and the returned model objects of class “hurdle”
are modelled after the corresponding GLM functionality in R. The arguments of hurdle()
are given by

hurdle(formula, data, subset, na.action, weights, offset,

dist = "poisson", zero.dist = "binomial", link = "logit",

control = hurdle.control(...),

model = TRUE, y = TRUE, x = FALSE, ...)

where the first line contains the standard model-frame specifications, the second and third
lines have the arguments specific to hurdle models and the arguments in the last line control
some components of the return value.

If a formula of type y ~ x1 + x2 is supplied, it not only describes the count regression
relationship of yi and xi but also implies that the same set of regressors is used for the zero
hurdle component zi = xi. This is could be made more explicit by equivalently writing the
formula as y ~ x1 + x2 | x1 + x2. Of course, a different set of regressors could be specified
for the zero hurdle component, e.g., y ~ x1 + x2 | z1 + z2 + z3, giving the count data
model y ~ x1 + x2 conditional on (|) the zero hurdle model y ~ z1 + z2 + z3.

1Note that binomial logit and censored geometric models as the hurdle part both lead to the same likelihood
function and thus to the same coefficient estimates (Mullahy 1986).

Achim Zeileis, Christian Kleiber, Simon Jackman 7

The model likelihood can be specified by the dist, zero.dist and link arguments. The
count data distribution dist is "poisson" by default (it can also be set to "negbin" or
"geometric"), for which the canonical log link is always used. The distribution for the zero
hurdle model can be specified via zero.dist. The default is a binomial model with link

(defaulting to "logit", but all link functions of the binomial() family are also supported),
alternatively a right-censored count distribution (Poisson, negative binomial or geometric, all
with log link) could be specified.

ML estimation of all parameters employing analytical gradients is carried out using R’s
optim() with control options set in hurdle.control(). Starting values can be user-supplied,
otherwise they are estimated by glm.fit() (the default). The covariance matrix estimate
is derived numerically using the Hessian matrix returned by optim(). See Appendix A for
further technical details.

The returned fitted-model object of class “hurdle” is a list similar to “glm” objects. Some of
its elements—such as coefficients or terms—are lists with a zero and count component,
respectively. For details see Appendix A.

A set of standard extractor functions for fitted model objects is available for objects of class
“hurdle”, including the usual summary() method that provides partial Wald tests for all
coefficients. No anova() method is provided, but the general coeftest(), waldtest() from
lmtest, and linearHypothesis() from car can be used for Wald tests and lrtest() from
lmtest for LR tests of nested models. The function hurdletest() is a convenience interface
to linearHypothesis() for testing for the presence of a hurdle (which is only applicable if
the same regressors and the same count distribution are used in both components).

2.3. Zero-inflated models

Zero-inflated models (Mullahy 1986; Lambert 1992) are another model class capable of dealing
with excess zero counts (see Cameron and Trivedi 1998, 2005, for an overview). They are
two-component mixture models combining a point mass at zero with a count distribution such
as Poisson, geometric or negative binomial. Thus, there are two sources of zeros: zeros may
come from both the point mass and from the count component. For modeling the unobserved
state (zero vs. count), a binary model is used: in the simplest case only with an intercept but
potentially containing regressors.

Formally, the zero-inflated density is a mixture of a point mass at zero I{0}(y) and a count dis-
tribution fcount(y;x, β). The probability of observing a zero count is inflated with probability
π = fzero(0; z, γ):

fzeroinfl(y;x, z, β, γ) = fzero(0; z, γ) · I{0}(y) + (1− fzero(0; z, γ)) · fcount(y;x, β), (7)

where I(·) is the indicator function and the unobserved probability π of belonging to the
point mass component is modelled by a binomial GLM π = g−1(z>γ). The corresponding
regression equation for the mean is

µi = πi · 0 + (1− πi) · exp(x>i β), (8)

using the canonical log link. The vector of regressors in the zero-inflation model zi and the
regressors in the count component xi need not to be distinct—in the simplest case, zi = 1 is
just an intercept. The default link function g(π) in binomial GLMs is the logit link, but other

8 Regression Models for Count Data in R

links such as the probit are also available. The full set of parameters of β, γ, and potentially
the dispersion parameter θ (if a negative binomial count model is used) can be estimated by
ML. Inference is typically performed for β and γ, while θ is treated as a nuisance parameter
even if a negative binomial model is used.

In R, zero-inflated count data models can be fitted with the zeroinfl() function from the
pscl package. Both the fitting function interface and the returned model objects of class
“zeroinfl” are almost identical to the corresponding hurdle() functionality and again mod-
elled after the corresponding GLM functionality in R. The arguments of zeroinfl() are given
by

zeroinfl(formula, data, subset, na.action, weights, offset,

dist = "poisson", link = "logit", control = zeroinfl.control(...),

model = TRUE, y = TRUE, x = FALSE, ...)

where all arguments have almost the same meaning as for hurdle(). The main difference is
that there is no zero.dist argument: a binomial model is always used for distribution in the
zero-inflation component.

Again, ML estimates of all parameters are obtained from optim(), with control options set
in zeroinfl.control() and employing analytical gradients. Starting values can be user-
supplied, estimated by the expectation maximization (EM) algorithm, or by glm.fit() (the
default). The covariance matrix estimate is derived numerically using the Hessian matrix
returned by optim(). Using EM estimation for deriving starting values is typically slower
but can be numerically more stable. It already maximizes the likelihood, but a single optim()
iteration is used for determining the covariance matrix estimate. See Appendix B for further
technical details.

The returned fitted model object is of class “zeroinfl” whose structure is virtually identical
to that of “hurdle” models. As above, a set of standard extractor functions for fitted model
objects is available for objects of class“zeroinfl”, including the usual summary() method that
provides partial Wald tests for all coefficients. Again, no anova() method is provided, but the
general functions coeftest() and waldtest() from lmtest, as well as linearHypothesis()
from car can be used for Wald tests, and lrtest() from lmtest for LR tests of nested models.

3. Application and illustrations

In the following, we illustrate all models described above by applying them to a cross-sectional
data set from health economics. Before the parametric models are fitted, a basic exploratory
analysis of the data set is carried out that addresses some problems typically encountered when
visualizing count data. At the end of the section, all fitted models are compared highlighting
that the modelled mean function is similar but the fitted likelihood is different and thus, the
models differ with respect to explaining over-dispersion and/or the number of zero counts.

3.1. Demand for medical care by the elderly

Deb and Trivedi (1997) analyze data on 4406 individuals, aged 66 and over, who are covered
by Medicare, a public insurance program. Originally obtained from the US National Medical
Expenditure Survey (NMES) for 1987/88, the data are available from the data archive of

Achim Zeileis, Christian Kleiber, Simon Jackman 9

the Journal of Applied Econometrics at http://www.econ.queensu.ca/jae/1997-v12.3/

deb-trivedi/. It was prepared for an R package accompanying Kleiber and Zeileis (2008)
and is also available as DebTrivedi.rda in the Journal of Statistical Software together with
Zeileis (2006). The objective is to model the demand for medical care—as captured by the
number of physician/non-physician office and hospital outpatient visits—by the covariates
available for the patients. Here, we adopt the number of physician office visits ofp as the
dependent variable and use the health status variables hosp (number of hospital stays), health
(self-perceived health status), numchron (number of chronic conditions), as well as the socio-
economic variables gender, school (number of years of education), and privins (private
insurance indicator) as regressors. For convenience, we select the variables used from the full
data set:

R> dt <- DebTrivedi[, c(1, 6:8, 13, 15, 18)]

To obtain a first overview of the dependent variable, we employ a histogram of the observed
count frequencies. In R various tools could be used, e.g., hist(dt$ofp, breaks = 0:90 -

0.5) for a histogram with rectangles or

R> plot(table(dt$ofp))

(see Figure 1) for a histogram with lines which brings out the extremely large counts somewhat
better. The histogram illustrates that the marginal distribution exhibits both substantial
variation and a rather large number of zeros.

A natural second step in the exploratory analysis is to look at pairwise bivariate displays of
the dependent variable against each of the regressors bringing out the partial relationships.
In R, such bivariate displays can easily be generated with the plot() method for formulas,
e.g., via plot(y ~ x). This chooses different types of displays depending on the combina-
tion of quantitative and qualitative variables as dependent or regressor variable, respectively.
However, count variables are treated as all numerical variables and therefore the command

R> plot(ofp ~ numchron, data = dt)

produces a simple scatterplot as shown in the left panel of Figure 2. This is clearly not useful
as both variables are count variables producing numerous ties in the bivariate distribution and
thus obscuring a large number of points in the display. To overcome the problem, it is useful
to group the number of chronic conditions into a factor with levels ‘0’, ‘1’, ‘2’, and ‘3 or more’
and produce a boxplot instead of a scatterplot. Furthermore, the picture is much clearer if
the dependent variable is log-transformed (just as all count regression models discussed above
also use a log link by default). As there are zero counts as well, we use a convenience function
clog() providing a continuity-corrected logarithm.

R> clog <- function(x) log(x + 0.5)

For transforming a count variable to a factor (for visualization purposes only), we define
another convenience function cfac()

http://www.econ.queensu.ca/jae/1997-v12.3/deb-trivedi/
http://www.econ.queensu.ca/jae/1997-v12.3/deb-trivedi/

10 Regression Models for Count Data in R

Number of physician office visits

F
re

qu
en

cy

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

0 10 20 30 40 50 60 70 80 90

Figure 1: Frequency distribution for number of physician office visits.

●

●

●
●

●

●

●

●
●● ●

●

●●

●●

●
● ●

●

● ●
● ●

●

●

●

●

●
●

●● ●●●
●

●

●
●● ●

●
●

●

●●

●

● ●

●
●

●
●●●

● ●
●●
● ●

●
●

●

●●

●

●

●

●●

●
●

●

●
●

● ●

●

●

●

●

●●

●
●

●

●

●
●

●
●
●

●

●

●

●

●
●

●●

●● ●

●

●

●

●

●

● ●
●

●

●

●

●

●
●●●

●
●

●

●

●
●

●

●

●

● ●

●●●

●
●

●

●

●

●

●

●●

●

●●

●
●
●

●●
●

●● ●

●

●
●

●

●

●

● ●
● ●●

●

●

●●● ●

●

●

●

●

● ●
●●

●

●

●

●

●●
●

●

●

● ●
●

●
●

●
●● ●●●●● ●

●

●

●
●●

● ●
●

●
● ●

●

●

●
● ●●●●

●
●●
● ●●

●

●● ●
●

●
●

●

●
●

●

●

●

●

●

● ●

●●
●

●
●

●

●
●

●

●

●● ●

●

●

●

●
●

●●●

●
●

●

●

●

●●
●

●
●

● ●
●

●

●●●
●

● ●

●

●
●●

●
●● ● ●

●

●

●

●
●

●
●●

●

●

●
●

●

●

● ●
●

●

●

●

●
●

●

●●
●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●
●●
●

●●

●

●●
●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●● ●

●

●
●●

●

●●

●

●●
●

●

●●
●

●

●

● ●●● ●
●
●

●●●●
●●

● ●

●

●
●

●

●

●

●

●●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●

●
●

●

●

●

●
●●

●
●

●
●
●

●

●
●

●
●

●

●

●
●●

●

●
●

●●

●

●

●

●

●

●●●●

●

●

● ●

●
●

●●●
●●

● ●●●● ●
● ●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●●
●●

●

●

● ●

●●

●

●
●●●●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●●
●

● ● ●

●●●

●

●

● ●
●

●
●

●

●
●

●

●

●
● ●

●

● ●
●

●
● ●

● ● ●
●

●

●

●
●

●

●

●

●

●● ●●● ● ●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●●
●

●

●

●

●

●

●●

●●

●

●
●

●

● ●

●

●

●

●●
● ●●

●

●

●

● ●●

●

●
●
● ●

●
●

●

●
● ●

●

●
●
●

●
●

●

●●
● ●●

● ●

●

●

●●

●

●

●
●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●
●●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●
●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●
● ●●

●

●
●

●

●●●

● ●

●

● ●
●●

●

●
●

●●

●

● ●● ●
●

●

●

●

●

●

● ●●●●

●

●

●

●

●

●●
●

●
●

●

●
●

●●

● ●●

●

●

●

●

●
●●

●

●

●

●
●

●

●● ●

●

●
● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●
●●

●

●

●●
●

●
●

●
●

●

●●●

●

●

●

●

●●

●

●

●

●

●
●

●●

●●

●

●

● ●●

●

●

●

●
●●

●
●
●

●

●●●
●

●

● ●● ●
●
●●

●

●

●
●

●
●

●
●

●● ●

●

●
●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

● ●

●●

●●

●

●

●●

●

●

●
●

●

● ●● ●

●

●

●
●
●●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●
●

●

●● ●

●●
●

●

●

●●

●

●

●
●

●

● ●
●●

●

● ●

●

●

●● ●

●
●

●●

●

● ●●

●

●

●
●
●

●

●

●●
●●

●
●

●
●

● ●
●

●
●

●●
●●
● ●
●

●
●

●

● ●

●
●

●
●

●●
●

● ●●

●
●

●

●● ●
●●

●●

● ●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●

● ●

●

●

●

●●

●

●
●●●

●
● ●●

● ●

●●●

●

●
●●

● ●
● ●

●

●
●

●
●

●

●

●●

●

●

●
●●

●
●
●

●
●

●

●
● ●

●

● ●●

●●

●
●

●
●

●●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●
●

●
● ●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●●

●

●

●

●

●

●●
●

●

●● ●
● ●
●

●●

●

●

●
● ●

●
●

●

●

●
●

●

●

● ●●

●

●

●
●

● ●

●

●

●

●

● ●

●

● ●

●

●
● ●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

● ●

● ●●●
●

●

●

●

● ●
●

●

●

●
●

●

●

●●

●●

●
●

●●

●

●
●

●

●

●

●● ●
●

●
● ●●
●●

●●

●

● ●

●
●

●●●●
●●

●●

●

●

●

●

●
●

●

●

●
● ●

●● ●
●

●

●

●●

●

●

●

●

●

●

● ●

●●

●

●

●
●●●●●

●

● ●
●

●

●

●

●

●
●

●

●
●
●

●

● ●

●●

●

●

● ●

●
●●● ●

● ●● ●

●

●

●
●
●● ●

●

●

●

●
●●●

●

●●

●
●

●

●

●

●

●●

●

●

●
●●

●

●
●

●●●

●

●

●
●

●●

●

●
●

●
●
● ●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●

● ●

●
●

●

●

●●

●

●
●

●

●

●●

●

●

●

● ●●
●

●

●

●● ●● ●

●

●
●

●

●

●

●

●● ●●
● ●●

●

●●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●
●●●

●●

●●

●

●
●●

●

●

●
●

●

●

●

●●

●●
●
●

●
●

●

●

●
●
●

●●

●

●

●

●
● ●●

● ●●

●
●

●
●

● ●●●

●

●

●
●

● ●●

●
● ●●● ●

●

●●
●

●

●

●

●
●●

●
●

●
●

●●

● ●

●
●

●

●●

●

●

● ●

●●

●
●

●

●●
●

●
●

●●

● ●
●

●
●

●
●

●

●
●
●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●
● ●

●

●

●

●
●

●●

●

●

●

●

●●●●
● ●

●

●
● ●

●

●

●

● ●

●

●

●

●

●

●●●

●
●

●
●

●

●

●●

●

● ●●
●

●●

●

●

●

●

●●

●

●
●●

●●

● ●

●

●

● ●

●

●●

●

●● ●● ●
●
● ●

●

●

● ●●●●

●

●● ●

●

●

●●

●

●

●

●

● ●●

●●

●

●

●

●

●

●

●
●
●

●
● ●

●
●

●

● ●●

●●●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●
●

●

●●

●● ●

●
●●

●
●

●

●●●
●

●● ●●

●

●

●
●

●

●
●●

● ●
●

●●
●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●●
●

●
●

●
●

●●

●

●
●

●
●

●
●

●

●

●

●
●
●●

●

●●
●● ●

●
●

●
●●
●
●

●
●

●

●●
●

●●

●

●●
●

●
●

●

●
●

●

●● ●● ●
●● ●

●
●

●

●
●

●●
●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●
● ●

●
●●

●

●

●●● ●
● ●

●
●

●

●

●

●

●

●
●

●

●●

●

● ●
●

●

●

● ●
●

●

● ●

●●
●●

●

●

●

●

●
●

●

●
●

●● ● ●
● ●●●

●

●

●
●●

●

● ●

●

●

● ●
●

●●
●

●
● ●

●

●
●
●

●

●

●

●
●

●
●

●
●

●

●●
●●
● ●

●

●●
●

●

●

●

●

●
●

●
●

●●

● ●
●
●
●

●
● ●

●
●

●● ●
●

● ●
●

●

●

●
●●

●
●● ●●

●

●

●
●

●

● ●

●
● ●

●

●
●

●

●

●

● ●
●

●
●

●

●

●● ●●●

●

●
●

●

●●●

●
●

● ●

●
●

●

●●●
●

●

●●●
●

●

●●

● ●●
●●

●

●

●●

● ●●

●

●●

●

●

●

●●

●

●● ●

●
●

●

●
●●

●

●
●

●
●

● ●

●

●

●

●
●

●

●

●●●

● ●

●

● ●

●

●

●

●

●●

●
●
●

●
●

●●

●

●
●

●
●

●

●

● ●
●

●

●
●

●

●

●●

●●
●●

●●●
● ●

●
●

●●

●

●●
●

●
●

●●

●

●

●

●
●

●

●

●●

●

●●

●● ●
●
●
●

●

●
●
●

●
●

●

●

●●
● ●

●

●●

●

●
●●

●●
●

●
●●

●

●

●

●

● ●

● ●

●

●

●

●

●
●

● ●

●

●

●

●● ● ●

●

●

●●

●

● ●

●
● ●

●

●
●
●

●

●

●

●
●

●
●●

● ●
●

●
●

●
●●

●

●

●

●

●

●

●

●●

●

●●
●

●●
●

●

●●

●
●

●

●
●

●

●●

●

●
●
●

●

●●

●●●

●
●

●

●

●
●

●●

●

●●
●

●

●●

●
●

●
●

●

●

●
●
●

●

●
●●●●

●

●

●

●

●
●

●●

●

● ●●

●

●

●

●
●

●

● ●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●●
●

● ●

●

● ●●
●● ● ●●●

●

●

●

●

●●● ●
●

●●

● ●
●

●
●

●
●
●

●
●

●

●

●

●

●

●● ●

●

●

●

●●
●●

● ●

●

●
●

●●
●

●
●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●● ● ●

●

●

●●●

●● ●●

●

●

●

●

● ●●

●

●

●

● ● ●●

●

●●
● ●

●
●

●

●

●
●
●

●
●

●

●●

●
●

●
●

●

●
●

●

●

●

● ●

●●

●

●

●●

●

●
●

●

●

●

●

●● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
● ●

● ●
●

●

●
●

●

●

●

●
●
●●

●

●

●

●●● ●

●

●
● ●

●

●

● ●

●

●

●

●

●
●
●
●

●

●

● ●
●

●

●

●

●

●
● ● ●

●
● ●

●

●
●●

●

●●

●

● ●
●

●

●
●
●

●

●

●

●
● ●

●

●●
●

●

●
●
●

●
●●

● ●

●

● ●●

●

●
● ●

●

●
● ●

●

●●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●

●

●

●● ●●●
●

●

●

●● ●●

●

●
● ●

●

●
●●●

●

●
●

●

●
●

●●

●

●

●

●●

●

●

●● ●

●

●
●

●

●●

●

●
●

● ●

●

●●
●●

●●
●

●
●

●

●
●
●

●

●●

●

●

●

●
●
●

●

●
● ●

●
●● ●

●
●
●

● ●●

●

●
●●

●
●

●●
●

● ●

●

●● ●

●
●

●

●

●

●

●
●
●

●●

●
●

●

●
●

●

●
●● ●●

●

●●
●
●

●●

●
●

●
●

●

● ●
●

●

●●●
● ●

●

●
●

●

●●

●

●

●
●

●

●

●●
●

●

●
●

●

●
●

●

●●

●

●
●

●●

●

●

●

●●

●

●
●

●

●●●●

●

●

●

●●●
●

●

● ● ●

●

●

●

●● ●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●
●●●● ● ●

●

●●

●

●●

●

●

●

●

●
●
●
●●

●

●

●
●●

●

●

●

●

●
●●

●
●

●

●

●
●
●●

●● ●●●

●●

●●●
●

●

●
●

●

●

●
●

●

● ●●
●

●

●

●

●
●
●●

●

●

●

●

●

●● ●

●●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●●

●●
●● ●● ●

●
●

●●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●
●

● ●

●●

●
●

●

●

●

●

●

●

● ●
●

●● ●
●

●

●
● ●●

●

●

●●

●

●
●

●
●
●●
●

●

●

●

●●

●●
●

●
●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●
● ●●●

●

●●

●

●

●

●

●

●
●
●

● ●
●

●

●

●

●
●●

●

●

●

●

● ●● ●

●

●

●●

●●

●

●

● ●
●

●

●

●

●
●

●
●

●●
●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●● ●●

● ●●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●
●
●●●

●

●

●

●

●●

●

●

●

●

●

●●
●

● ●
●

●
●

●
●

●

● ●

●

●

●

● ●●

●

●●

●

●●

●

●

●

● ●
●●

●

●

●
●

●

●

●

● ●

●

●●
●

●
●

●
●●

●

●
●

●

●
●

●

●
●

●

●

● ●●

●

●

● ●
●

●

●

●

●

●

●

●
●

● ●

●

●

●●● ●

●

●

●●

●
●●

●
●

●

●

●

●

●●● ●

●

●●
●

●●

●

● ●
●

●

●

●

●

●●
●

●

●●
●

●

●
●

●

●

●

●
●

●
●

● ●

●
●● ●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

● ●

●

●
●

●●
●●

●●●

●

●

●

●

●

●

●

● ●

●●

● ●●

●

●
●● ●

●

●

●

●
●

●
●

●
●●

●

●

●●
●

●
●

●●
●

●●●

●
●

●

●

●

●●
●

● ● ●

●

● ●

●
●● ●●

●

●

●

●
●

● ●

●●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●●●

●

●

●●

●

● ●

●

●●

●

●

●

●

●
●

● ●● ●●

●
● ●
●

● ●
●

●
●●
●

●
●

●

●
●

●●● ●

● ●

● ●

●

●

●
●

●

●
●

●

●

●

● ●

●●
●

●

●

● ●
●

●
●

●

●

●● ●
●

●

●

●●
●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

● ●● ●
●

●
●

●

●

●
●

●

●

●
●

●
● ●

●
●

●

●

●
●

●
●

●

●

●

●●●●

●

●

●

●

●

●

● ●

●

●
●

● ●
● ●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●●
● ●

●
●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●●

●

●

●
●

●●

●
●

●

●
●

●●● ●

●

●

●

●
●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●●
●● ●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

● ●

●

●
●

●●

●
●

●

●
●●

●

●
●

●
● ●

●
●

●

●

●

●
●

●

●
●

●● ●

●

●●
●●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

● ●

●
●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●●

● ●●

●
●

●

●

●

●●

●

●
●

●●
●

●

● ●●
●●● ●

●
●●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●
●

●

●
●●

●● ●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●
●

●
●●●

●●●

●●

●
● ●
●

●

●

●

●

●

●

●

●

●
●●
●
●

●

●

●
●

●

●
●

● ●● ●
●●

●●●
●

●●

● ●

●

● ●●
●

●
●

● ●
●●

●●

●

●●

●
●

●● ●●

●

●

●

●

●

●

●

●●

●

●●
● ●

●

● ●

● ●●
●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●

● ●●
●

●

●

●

●●

●

●

●

●

●

●

●● ●●●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●●

● ●
●●

●●

● ●

●

●●
●

● ●

●●

●

●●
●●●

●● ●
●

●●

●
●

●
●

●

●

●
●●

●

●

●●

●●●●
●●

●
●

●●

●

●
●

●
●

●● ●● ●

●

●

●● ●
●

●

●

0 2 4 6 8

0
20

40
60

80

numchron

of
p

●

●●●

0 1 2 3+

0
1

2
3

4

cfac(numchron)

cl
og

(o
fp

)

Figure 2: Bivariate explorative displays for number of physician office visits plotted against
number of chronic conditions.

Achim Zeileis, Christian Kleiber, Simon Jackman 11

R> cfac <- function(x, breaks = NULL) {

+ if(is.null(breaks)) breaks <- unique(quantile(x, 0:10/10))

+ x <- cut(x, breaks, include.lowest = TRUE, right = FALSE)

+ levels(x) <- paste(breaks[-length(breaks)], ifelse(diff(breaks) > 1,

+ c(paste("-", breaks[-c(1, length(breaks))] - 1, sep = ""), "+"), ""),

+ sep = "")

+ return(x)

+ }

which by default tries to take an educated guess how to choose the breaks between the
categories. Clearly, the resulting exploratory display of the transformed variables produced
by

R> plot(clog(ofp) ~ cfac(numchron), data = dt)

(shown in the right panel of Figure 2) brings out much better how the number of doctor visits
increases with the number of chronic conditions.

Analogous displays for the number of physician office visits against all regressors can be
produced via

R> plot(clog(ofp) ~ health, data = dt, varwidth = TRUE)

R> plot(clog(ofp) ~ cfac(numchron), data = dt)

R> plot(clog(ofp) ~ privins, data = dt, varwidth = TRUE)

R> plot(clog(ofp) ~ cfac(hosp, c(0:2, 8)), data = dt)

R> plot(clog(ofp) ~ gender, data = dt, varwidth = TRUE)

R> plot(cfac(ofp, c(0:2, 4, 6, 10, 100)) ~ school, data = dt, breaks = 9)

and are shown (with slightly enhanced labeling) in Figure 3. The last plot uses a different
type of display. Here, the dependent count variable is not log-transformed but grouped into a
factor and then a spinogram is produced. This also groups the regressor (as in a histogram)
and then produces a highlighted mosaic plot. All displays show that the number of doctor
visits increases or decreases with the regressors as expected: ofp decreases with the general
health status but increases with the number of chronic conditions or hospital stays. The
median number of visits is also slightly higher for patients with a private insurance and
higher level of education. It is slightly lower for male compared to female patients. The
overall impression from all displays is that the changes in the mean can only explain a modest
amount of variation in the data.

3.2. Poisson regression

As a first attempt to capture the relationship between the number of physician office visits
and all regressors—described in R by the formula ofp ~ .—in a parametric regression model,
we fit the basic Poisson regression model

R> fm_pois <- glm(ofp ~ ., data = dt, family = poisson)

and obtain the coefficient estimates along with associated partial Wald tests

12 Regression Models for Count Data in R

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

poor average excellent

0
1

2
3

4

health

Self−perceived health status

P
hy

si
ci

an
 o

ffi
ce

 v
is

its
 (

in
 c

lo
gs

)

●

●●●

0 1 2 3+

0
1

2
3

4

numchron

Number of chronic conditions
P

hy
si

ci
an

 o
ffi

ce
 v

is
its

 (
in

 c
lo

gs
)

●●●
●

●●

●

●●

●●

no yes

0
1

2
3

4

privins

Covered by private insurance

P
hy

si
ci

an
 o

ffi
ce

 v
is

its
 (

in
 c

lo
gs

)

●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●

●

●●●●●●●●●●●●●

0 1 2+

0
1

2
3

4
hosp

Number of hospital stays

P
hy

si
ci

an
 o

ffi
ce

 v
is

its
 (

in
 c

lo
gs

)

●●
●

●

female male

0
1

2
3

4

gender

Gender

P
hy

si
ci

an
 o

ffi
ce

 v
is

its
 (

in
 c

lo
gs

)

school

Number of years of education

P
hy

si
ci

an
 o

ffi
ce

 v
is

its
 (

nu
m

be
r

of
 v

is
its

)

0 4 8 10 12 14 18

0
1

2−
3

6−
9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3: Number of physician office visits plotted against regressors used.

Achim Zeileis, Christian Kleiber, Simon Jackman 13

R> summary(fm_pois)

Call:

glm(formula = ofp ~ ., family = poisson, data = dt)

Deviance Residuals:

Min 1Q Median 3Q Max

-8.4055 -1.9962 -0.6737 0.7049 16.3620

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.028874 0.023785 43.258 <2e-16 ***

hosp 0.164797 0.005997 27.478 <2e-16 ***

healthpoor 0.248307 0.017845 13.915 <2e-16 ***

healthexcellent -0.361993 0.030304 -11.945 <2e-16 ***

numchron 0.146639 0.004580 32.020 <2e-16 ***

gendermale -0.112320 0.012945 -8.677 <2e-16 ***

school 0.026143 0.001843 14.182 <2e-16 ***

privinsyes 0.201687 0.016860 11.963 <2e-16 ***

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 26943 on 4405 degrees of freedom

Residual deviance: 23168 on 4398 degrees of freedom

AIC: 35959

Number of Fisher Scoring iterations: 5

All coefficient estimates confirm the results from the exploratory analysis in Figure 3. All
coefficients are highly significant with the health variables leading to somewhat larger Wald
statistics compared to the socio-economic variables. However, the Wald test results might
be too optimistic due to a misspecification of the likelihood. As the exploratory analysis
suggested that over-dispersion is present in this data set, we re-compute the Wald tests using
sandwich standard errors via

R> coeftest(fm_pois, vcov = sandwich)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.028874 0.064530 15.9442 < 2.2e-16 ***

hosp 0.164797 0.021945 7.5095 5.935e-14 ***

healthpoor 0.248307 0.054022 4.5964 4.298e-06 ***

healthexcellent -0.361993 0.077449 -4.6740 2.954e-06 ***

numchron 0.146639 0.012908 11.3605 < 2.2e-16 ***

14 Regression Models for Count Data in R

gendermale -0.112320 0.035343 -3.1780 0.001483 **

school 0.026143 0.005084 5.1422 2.715e-07 ***

privinsyes 0.201687 0.043128 4.6765 2.919e-06 ***

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

All regressors are still significant but the standard errors seem to be more appropriate. This
will also be confirmed by the following models that deal with over-dispersion (and excess
zeros) in a more formal way.

3.3. Quasi-Poisson regression

The quasi-Poisson model

R> fm_qpois <- glm(ofp ~ ., data = dt, family = quasipoisson)

leads to an estimated dispersion of φ̂ = 6.706 which is clearly larger than 1 confirming that
over-dispersion is present in the data.2 The resulting partial Wald tests of the coefficients
are rather similar to the results obtained from the Poisson regression with sandwich standard
errors, leading to the same conclusions. As before, they can be obtained via

R> summary(fm_qpois)

The output is suppressed here and is presented in tabular form in Table 2.

3.4. Negative binomial regression

A more formal way to accommodate over-dispersion in a count data regression model is to
use a negative binomial model, as in

R> fm_nbin <- glm.nb(ofp ~ ., data = dt)

R> summary(fm_nbin)

As shown in Table 2, both regression coefficients and standard errors are rather similar to the
quasi-Poisson and the sandwich-adjusted Poisson results above. Thus, in terms of predicted
means all three models give very similar results; the associated partial Wald tests also lead
to the same conclusions.

One advantage of the negative binomial model is that it is associated with a formal likelihood
so that information criteria are readily available. Furthermore, the expected number of zeros
can be computed from the fitted densities via

∑
i f(0, µ̂i, θ̂).

3.5. Hurdle regression

The exploratory analysis conveyed the impression that there might be more zero observations
than explained by the basic count data distributions, hence a negative binomial hurdle model
is fitted via

2Alternatively, over-dispersion can be confirmed by comparison of the log-likelihoods of the Poisson and
negative binomial model.

Achim Zeileis, Christian Kleiber, Simon Jackman 15

R> fm_hurdle0 <- hurdle(ofp ~ ., data = dt, dist = "negbin")

This uses the same type of count data model as in the preceeding section but it is now
truncated for ofp < 1 and has an additional hurdle component modeling zero vs. count
observations. By default, the hurdle component is a binomial GLM with logit link which
contains all regressors used in the count model. The associated coefficient estimates and
partial Wald tests for both model components are displayed via

R> summary(fm_hurdle0)

Call:

hurdle(formula = ofp ~ ., data = dt, dist = "negbin")

Pearson residuals:

Min 1Q Median 3Q Max

-1.1718 -0.7080 -0.2737 0.3196 18.0092

Count model coefficients (truncated negbin with log link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.197699 0.058973 20.309 < 2e-16 ***

hosp 0.211898 0.021396 9.904 < 2e-16 ***

healthpoor 0.315958 0.048056 6.575 4.87e-11 ***

healthexcellent -0.331861 0.066093 -5.021 5.14e-07 ***

numchron 0.126421 0.012452 10.152 < 2e-16 ***

gendermale -0.068317 0.032416 -2.108 0.0351 *

school 0.020693 0.004535 4.563 5.04e-06 ***

privinsyes 0.100172 0.042619 2.350 0.0188 *

Log(theta) 0.333255 0.042754 7.795 6.46e-15 ***

Zero hurdle model coefficients (binomial with logit link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.043147 0.139852 0.309 0.757688

hosp 0.312449 0.091437 3.417 0.000633 ***

healthpoor -0.008716 0.161024 -0.054 0.956833

healthexcellent -0.289570 0.142682 -2.029 0.042409 *

numchron 0.535213 0.045378 11.794 < 2e-16 ***

gendermale -0.415658 0.087608 -4.745 2.09e-06 ***

school 0.058541 0.011989 4.883 1.05e-06 ***

privinsyes 0.747120 0.100880 7.406 1.30e-13 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Theta: count = 1.3955

Number of iterations in BFGS optimization: 16

Log-likelihood: -1.209e+04 on 17 Df

The coefficients in the count component resemble those from the previous models, but the
increase in the log-likelihood (see also Table 2) conveys that the model has improved by

16 Regression Models for Count Data in R

including the hurdle component. However, it might be possible to omit the health variable
from the hurdle model. To test this hypothesis, the reduced model is fitted via

R> fm_hurdle <- hurdle(ofp ~ . | hosp + numchron + privins + school + gender,

+ data = dt, dist = "negbin")

and can then be compared to the full model in a Wald test

R> waldtest(fm_hurdle0, fm_hurdle)

Wald test

Model 1: ofp ~ .

Model 2: ofp ~ . | hosp + numchron + privins + school + gender

Res.Df Df Chisq Pr(>Chisq)

1 4389

2 4391 -2 4.1213 0.1274

or an LR test

R> lrtest(fm_hurdle0, fm_hurdle)

which leads to virtually identical results.

3.6. Zero-inflated regression

A different way of augmenting the negative binomial count model fm_nbin with additional
probability weight for zero counts is a zero-inflated negative binomial (ZINB) regression. The
default model is fitted via

R> fm_zinb0 <- zeroinfl(ofp ~ ., data = dt, dist = "negbin")

As for the hurdle model above, all regressors from the count model are also used in the zero-
inflation model. Again, we can modify the regressors in the zero-inflation part, e.g., by fitting
a second model

R> fm_zinb <- zeroinfl(ofp ~ . | hosp + numchron + privins + school + gender,

+ data = dt, dist = "negbin")

that has the same variables in the zero-inflation part as the hurdle component in fm_hurdle.
By omitting the health variable, the fit does not change significantly which can again be
brought out by a Wald test

R> waldtest(fm_zinb0, fm_zinb)

Wald test

Model 1: ofp ~ .

Model 2: ofp ~ . | hosp + numchron + privins + school + gender

Res.Df Df Chisq Pr(>Chisq)

1 4389

2 4391 -2 0.1584 0.9238

Achim Zeileis, Christian Kleiber, Simon Jackman 17

Type GLM zero-augmented
Distribution Poisson NB Hurdle-NB ZINB
Method ML adjusted quasi ML ML ML
Object fm_pois fm_pois fm_qpois fm_nbin fm_hurdle fm_zinb

(Intercept) 1.029 1.029 1.029 0.929 1.198 1.194
(0.024) (0.065) (0.062) (0.055) (0.059) (0.057)

hosp 0.165 0.165 0.165 0.218 0.212 0.201
(0.006) (0.022) (0.016) (0.020) (0.021) (0.020)

healthpoor 0.248 0.248 0.248 0.305 0.316 0.285
(0.018) (0.054) (0.046) (0.049) (0.048) (0.045)

healthexcellent −0.362 −0.362 −0.362 −0.342 −0.332 −0.319
(0.030) (0.077) (0.078) (0.061) (0.066) (0.060)

numchron 0.147 0.147 0.147 0.175 0.126 0.129
(0.005) (0.013) (0.012) (0.012) (0.012) (0.012)

gendermale −0.112 −0.112 −0.112 −0.126 −0.068 −0.080
(0.013) (0.035) (0.034) (0.031) (0.032) (0.031)

school 0.026 0.026 0.026 0.027 0.021 0.021
(0.002) (0.005) (0.005) (0.004) (0.005) (0.004)

privinsyes 0.202 0.202 0.202 0.224 0.100 0.126
(0.017) (0.043) (0.044) (0.039) (0.043) (0.042)

(Intercept) 0.016 −0.047
(0.138) (0.269)

hosp 0.318 −0.800
(0.091) (0.421)

numchron 0.548 −1.248
(0.044) (0.178)

privinsyes 0.746 −1.176
(0.100) (0.220)

school 0.057 −0.084
(0.012) (0.026)

gendermale −0.419 0.648
(0.088) (0.200)

no. parameters 8 8 8 9 15 15
logL −17971.6 −12170.6 −12090.1 −12090.7
AIC 35959.2 24359.1 24210.1 24211.4
BIC 36010.4 24416.6 24306.0 24307.3∑
i f̂i(0) 47 608 683 709

Table 2: Summary of fitted count regression models for NMES data: coefficient estimates
from count model, zero-inflation model (both with standard errors in parantheses), number
of estimated parameters, maximized log-likelihood, AIC, BIC and expected number of zeros
(sum of fitted densities evaluated at zero). The observed number of zeros is 683 in 4406
observations.

18 Regression Models for Count Data in R

or an LR test lrtest(fm_zinb0, fm_zinb) that produces virtually identical results. The
chosen fitted model can again be inspected via

R> summary(fm_zinb)

See Table 2 for a more concise summary.

3.7. Comparison

Having fitted several count data regression models to the demand for medical care in the
NMES data, it is, of course, of interest to understand what these models have in common
and what their differences are. In this section, we show how to compute the components of
Table 2 and provide some further comments and interpretations.

As a first comparison, it is of natural interest to inspect the estimated regression coefficients
in the count data model

R> fm <- list("ML-Pois" = fm_pois, "Quasi-Pois" = fm_qpois, "NB" = fm_nbin,

+ "Hurdle-NB" = fm_hurdle, "ZINB" = fm_zinb)

R> sapply(fm, function(x) coef(x)[1:8])

The result (see Table 2) shows that there are some small differences, especially between the
GLMs and the zero-augmented models. However, the zero-augmented models have to be
interpreted slightly differently: While the GLMs all have the same mean function (2), the
zero-augmentation also enters the mean function, see (8) and (6). Nevertheless, the overall
impression is that the estimated mean functions are rather similar. Moreover, the associated
estimated standard errors are very similar as well (see Table 2):

R> cbind("ML-Pois" = sqrt(diag(vcov(fm_pois))),

+ "Adj-Pois" = sqrt(diag(sandwich(fm_pois))),

+ sapply(fm[-1], function(x) sqrt(diag(vcov(x)))[1:8]))

The only exception are the model-based standard errors for the Poisson model, when treated
as a fully specified model, which is obviously not appropriate for this data set.

In summary, the models are not too different with respect to their fitted mean functions. The
differences become obvious if not only the mean but the full likelihood is considered:

R> rbind(logLik = sapply(fm, function(x) round(logLik(x), digits = 0)),

+ Df = sapply(fm, function(x) attr(logLik(x), "df")))

ML-Pois Quasi-Pois NB Hurdle-NB ZINB

logLik -17972 NA -12171 -12090 -12091

Df 8 8 9 15 15

The ML Poisson model is clearly inferior to all other fits. The quasi-Poisson model and the
sandwich-adjusted Poisson model are not associated with a fitted likelihood. The negative
binomial already improves the fit dramatically but can in turn be improved by the hurdle and
zero-inflated models which give almost identical fits. This also reflects that the over-dispersion

Achim Zeileis, Christian Kleiber, Simon Jackman 19

in the data is captured better by the negative-binomial-based models than the plain Poisson
model. Additionally, it is of interest how the zero counts are captured by the various models.
Therefore, the observed zero counts are compared to the expected number of zero counts for
the likelihood-based models:

R> round(c("Obs" = sum(dt$ofp < 1),

+ "ML-Pois" = sum(dpois(0, fitted(fm_pois))),

+ "NB" = sum(dnbinom(0, mu = fitted(fm_nbin), size = fm_nbin$theta)),

+ "NB-Hurdle" = sum(predict(fm_hurdle, type = "prob")[,1]),

+ "ZINB" = sum(predict(fm_zinb, type = "prob")[,1])))

Obs ML-Pois NB NB-Hurdle ZINB

683 47 608 683 709

Thus, the ML Poisson model is again not appropriate whereas the negative-binomial-based
models are much better in modeling the zero counts. By construction, the expected number
of zero counts in the hurdle model matches the observed number.

In summary, the hurdle and zero-inflation models lead to the best results (in terms of like-
lihood) on this data set. Above, their mean function for the count component was already
shown to be very similar, below we take a look at the fitted zero components:

R> t(sapply(fm[4:5], function(x) round(x$coefficients$zero, digits = 3)))

(Intercept) hosp numchron privinsyes school gendermale

Hurdle-NB 0.016 0.318 0.548 0.746 0.057 -0.419

ZINB -0.047 -0.800 -1.248 -1.176 -0.084 0.648

This shows that the absolute values are rather different—which is not surprising as they
pertain to slightly different ways of modeling zero counts—but the signs of the coefficients
match, i.e., are just inversed. For the hurdle model, the zero hurdle component describes
the probability of observing a positive count whereas, for the ZINB model, the zero-inflation
component predicts the probability of observing a zero count from the point mass component.
Overall, both models lead to the same qualitative results and very similar model fits. Perhaps
the hurdle model is slightly preferable because it has the nicer interpretation: there is one
process that controls whether a patient sees a physician or not, and a second process that
determines how many office visits are made.

4. Summary

The model frame for basic count data models from the GLM framework as well as their
implementation in the R system for statistical computing is reviewed. Starting from these
basic tools, it is presented how hurdle and zero-inflated models extend the classical models
and how likewise their R implementation in package pscl re-uses design and functionality
of the corresponding R software. Hence, the new functions hurdle() and zeroinfl() are
straightforward to apply for model fitting. Additionally, standard methods for diagnostics
are provided and generic inference tools from other packages can easily be re-used.

20 Regression Models for Count Data in R

Computational details

The results in this paper were obtained using R 2.14.0 with the packages MASS 7.3–12,
pscl 1.03.10, sandwich 2.2–6, car 2.0–9, lmtest 0.9–27. R itself and all packages used are
available from CRAN at http://CRAN.R-project.org/.

References

Cameron AC, Trivedi PK (1998). Regression Analysis of Count Data. Cambridge University
Press, Cambridge.

Cameron AC, Trivedi PK (2005). Microeconometrics: Methods and Applications. Cambridge
University Press, Cambridge.

Chambers JM, Hastie TJ (eds.) (1992). Statistical Models in S. Chapman & Hall, London.

Deb P, Trivedi PK (1997). “Demand for Medical Care by the Elderly: A Finite Mixture
Approach.” Journal of Applied Econometrics, 12, 313–336.

Erhardt V (2008). ZIGP: Zero-inflated Generalized Poisson Regression Models. R package
version 2.1, URL http://CRAN.R-project.org/package=ZIGP.

Fox J (2002). An R and S-PLUS Companion to Applied Regression. Sage Publications,
Thousand Oaks, CA.

Halekoh U, Højsgaard S, Yan J (2006). “The R Package geepack for Generalized Estimating
Equations.” Journal of Statistical Software, 15(2), 1–11. URL http://www.jstatsoft.

org/v15/i02/.

Jackman S (2008). pscl: Classes and Methods for R Developed in the Political Science Com-
putational Laboratory, Stanford University. Department of Political Science, Stanford Uni-
versity, Stanford, California. R package version 0.95, URL http://CRAN.R-project.org/

package=pscl.

Kleiber C, Zeileis A (2008). Applied Econometrics with R. Springer-Verlag, New York. ISBN
978-0-387-77316-2.

Lambert D (1992). “Zero-inflated Poisson Regression, With an Application to Defects in
Manufacturing.” Technometrics, 34, 1–14.

Leisch F (2004). “FlexMix: A General Framework for Finite Mixture Models and Latent
Class Regression in R.” Journal of Statistical Software, 11(8), 1–18. URL http://www.

jstatsoft.org/v11/i08/.

McCullagh P, Nelder JA (1989). Generalized Linear Models. Chapman & Hall, London, 2nd
edition.

Mullahy J (1986). “Specification and Testing of Some Modified Count Data Models.” Journal
of Econometrics, 33, 341–365.

http://CRAN.R-project.org/
http://CRAN.R-project.org/package=ZIGP
http://www.jstatsoft.org/v15/i02/
http://www.jstatsoft.org/v15/i02/
http://CRAN.R-project.org/package=pscl
http://CRAN.R-project.org/package=pscl
http://www.jstatsoft.org/v11/i08/
http://www.jstatsoft.org/v11/i08/

Achim Zeileis, Christian Kleiber, Simon Jackman 21

Mwalili SM (2007). zicounts: Classical and Censored Zero-inflated Count Data Models.
R package version 1.1.5 (orphaned), URL http://CRAN.R-project.org/src/contrib/

Archive/zicounts/.

Nelder JA, Wedderburn RWM (1972). “Generalized Linear Models.” Journal of the Royal
Statistical Society A, 135, 370–384.

Pinheiro JC, Bates DM (2000). ”Mixed-Effects Models in S and S-PLUS. Springer-Verlag,
New York.

R Development Core Team (2008). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-00-3, URL http:

//www.R-project.org/.

Stasinopoulos DM, Rigby RA (2007). “Generalized Additive Models for Location Scale
and Shape (GAMLSS) in R.” Journal of Statistical Software, 23(7). URL http://www.

jstatsoft.org/v23/i07/.

Venables WN, Ripley BD (2002). Modern Applied Statistics with S. Springer-Verlag, New
York, 4th edition.

Yee TW (2008). VGAM: Vector Generalized Linear and Additive Models. R package ver-
sion 0.7-7, URL http://CRAN.R-project.org/package=VGAM.

Zeileis A (2004). “Econometric Computing with HC and HAC Covariance Matrix Estimators.”
Journal of Statistical Software, 11(10), 1–17. URL http://www.jstatsoft.org/v11/i10/.

Zeileis A (2006). “Object-oriented Computation of Sandwich Estimators.” Journal of Statis-
tical Software, 16(9), 1–16. URL http://www.jstatsoft.org/v16/i09/.

Zeileis A, Hothorn T (2002). “Diagnostic Checking in Regression Relationships.” R News,
2(3), 7–10. URL http://CRAN.R-project.org/doc/Rnews/.

Zeileis A, Kleiber C (2008). AER: Applied Econometrics with R. R package version 0.9-0,
URL http://CRAN.R-project.org/package=AER.

http://CRAN.R-project.org/src/contrib/Archive/zicounts/
http://CRAN.R-project.org/src/contrib/Archive/zicounts/
http://www.R-project.org/
http://www.R-project.org/
http://www.jstatsoft.org/v23/i07/
http://www.jstatsoft.org/v23/i07/
http://CRAN.R-project.org/package=VGAM
http://www.jstatsoft.org/v11/i10/
http://www.jstatsoft.org/v16/i09/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/package=AER

22 Regression Models for Count Data in R

A. Technical details for hurdle models

The fitting of hurdle models via ML in hurdle() is controlled by the arguments in the
hurdle.control() wrapper function:

hurdle.control(method = "BFGS", maxit = 10000, trace = FALSE,

separate = TRUE, start = NULL, ...)

This modifies some default arguments passed on to the optimizer optim(), such as method,
maxit and trace. The latter is also used within hurdle() and can be set to produce more
verbose output concerning the fitting process. The argument separate controls whether the
two components of the model are optimized separately (the default) or not. This is possible
because there are no mixed sources for the zeros in the data (unlike in zero-inflation models).
The argument start controls the choice of starting values for calling optim(), all remaining
arguments passed through ... are directly passed on to optim().

By default, starting values are estimated by calling glm.fit() for both components of the
model separately, once for the counts and once for zero vs. non-zero counts. If starting values
are supplied, start needs to be set to a named list with the parameters for the $count and
$zero part of the model (and potentially a $theta dispersion parameter if a negative binomial
distribution is used).

The fitted model object of class “hurdle” is similar to “glm” objects and contains sufficient
information on all aspects of the fitting process. In particular, the estimated parameters
and associated covariances are included as well as the result from the optim() call. Further-
more, the call, formula, terms structure etc. is contained, potentially also the model frame,
dependent variable and regressor matrices.

Following glm.nb(), the θ parameter of the negative binomial distribution is treated as a
nuisance parameter. Thus, the $coefficients component of the fitted model object just
contains estimates of β and γ while the estimate of θ and its standard deviation (on a log
scale) are kept in extra list elements $theta and $SE.logtheta.

B. Technical details for zero-inflated models

Both the interface of the zeroinfl() function as well as its fitted model objects are virtually
identical to the corresponding “hurdle” functionality. Hence, we only provide some additional
information for those aspects that differ from those discussed above. The details of the ML
optimization are again provided by a zeroinfl.control() wrapper:

zeroinfl.control(method = "BFGS", maxit = 10000, trace = FALSE,

EM = FALSE, start = NULL, ...)

The only new argument here is the argument EM which allows for EM estimation of the starting
values. Instead of calling glm.fit() only once for both components of the model, this process
can be iterated until convergence of the parameters to the ML estimates. The optimizer is
still called subsequently (for a single iteration) to obtain the Hessian matrix from which the
estimated covariance matrix can be computed.

Achim Zeileis, Christian Kleiber, Simon Jackman 23

C. Methods for fitted zero-inflated and hurdle models

Users typically should not need to compute on the internal structure of“hurdle”or“zeroinfl”
objects because a set of standard extractor functions is provided, an overview is given in
Table 3. This includes methods to the generic functions print() and summary() which
print the estimated coefficients along with further information. The summary() in particular
supplies partial Wald tests based on the coefficients and the covariance matrix. As usual,
the summary() method returns an object of class “summary.hurdle” or “summary.zeroinfl”,
respectively, containing the relevant summary statistics which can subsequently be printed
using the associated print() method.

The methods for coef() and vcov() by default return a single vector of coefficients and their
associated covariance matrix, respectively, i.e., all coefficients are concatenated. By setting
their model argument, the estimates for a single component can be extracted. Concatenating
the parameters by default and providing a matching covariance matrix estimate (that does not
contain the covariances of further nuisance parameters) facilitates the application of generic
inference functions such as coeftest(), waldtest(), and linearHypothesis(). All of these
compute Wald tests for which coefficient estimates and associated covariances is essentially all
information required and can therefore be queried in an object-oriented way with the coef()

and vcov() methods.

Similarly, the terms() and model.matrix() extractors can be used to extract the relevant
information for either component of the model. A logLik() method is provided, hence AIC()
can be called to compute information criteria and lrtest() for conducting LR tests of nested
models.

The predict() method computes predicted means (default) or probabilities (i.e., likelihood
contributions) for observed or new data. Additionally, the means from the count and zero
component, respectively, can be predicted. For the count component, this is the predicted
count mean (without hurdle/inflation): exp(x>i β). For the zero component, this is the the
ratio of probabilities (1 − fzero(0; zi, γ))/(1 − fcount(0;xi, β)) of observing non-zero counts in
hurdle models. In zero-inflation models, it is the probability fzero(0; zi, γ) of observing a zero
from the point mass component in zero-inflated models

Predicted means for the observed data can also be obtained by the fitted() method. Devia-
tions between observed counts yi and predicted means µ̂i can be obtained by the residuals()
method returning either raw residuals yi − µ̂i or the Pearson residuals (raw residuals stan-
dardized by square root of the variance function) with the latter being the default.

D. Replication of textbook results

Cameron and Trivedi (1998, p. 204) use a somewhat extended version of the model employed
above. Because not all variables in that extended model are significant, a reduced set of
variables was used throughout the main paper. Here, however, we use the full model to show
that the tools in pscl reproduce the results of Cameron and Trivedi (1998).

After omitting the responses other than ofp and setting "other" as the reference category
for region using

R> dt2 <- DebTrivedi[, -(2:6)]

R> dt2$region <- relevel(dt2$region, "other")

24 Regression Models for Count Data in R

Function Description

print() simple printed display with coefficient estimates
summary() standard regression output (coefficient estimates,

standard errors, partial Wald tests); returns an ob-
ject of class “summary.class” containing the relevant
summary statistics (which has a print() method)

coef() extract coefficients of model (full or components), a
single vector of all coefficients by default

vcov() associated covariance matrix (with matching names)
predict() predictions (means or probabilities) for new data
fitted() fitted means for observed data
residuals() extract residuals (response or Pearson)

terms() extract terms of model components
model.matrix() extract model matrix of model components
logLik() extract fitted log-likelihood

coeftest() partial Wald tests of coefficients
waldtest() Wald tests of nested models
linearHypothesis() Wald tests of linear hypotheses
lrtest() likelihood ratio tests of nested models
AIC() compute information criteria (AIC, BIC, . . .)

Table 3: Functions and methods for objects of class “zeroinfl” and “hurdle”. The first
three blocks refer to methods, the last block contains generic functions whose default methods
work because of the information supplied by the methods above.

we fit a model that contains all explanatory variables, both in the count model and the zero
hurdle model:

R> fm_hurdle2 <- hurdle(ofp ~ ., data = dt2, dist = "negbin")

The resulting coefficient estimates are virtually identical to those published in Cameron and
Trivedi (1998, p. 204). The associated Wald statistics are also very similar provided that
sandwich standard errors are used (which is not stated explicitely in Cameron and Trivedi
1998).

R> cfz <- coef(fm_hurdle2, model = "zero")

R> cfc <- coef(fm_hurdle2, model = "count")

R> se <- sqrt(diag(sandwich(fm_hurdle2)))

R> round(cbind(zero = cfz, zero_t = cfz/se[-seq(along = cfc)],

+ count = cfc, count_t = cfc/se[seq(along = cfc)]),

+ digits = 3)[c(3, 2, 4, 5, 7, 6, 8, 9:17, 1),]

zero zero_t count count_t

healthexcellent -0.329 -2.310 -0.378 -4.312

healthpoor 0.071 0.420 0.333 5.863

numchron 0.557 10.547 0.143 10.520

Achim Zeileis, Christian Kleiber, Simon Jackman 25

adldiffyes -0.188 -1.448 0.129 2.504

regionnoreast 0.129 1.033 0.104 1.974

regionmidwest 0.101 0.880 -0.016 -0.344

regionwest 0.202 1.509 0.123 2.444

age 0.190 2.348 -0.075 -2.339

blackyes -0.327 -2.450 0.002 0.023

gendermale -0.464 -4.715 0.004 0.098

marriedyes 0.247 2.379 -0.092 -2.110

school 0.054 4.109 0.022 3.824

faminc 0.007 0.365 -0.002 -0.380

employedyes -0.012 -0.085 0.030 0.401

privinsyes 0.762 6.501 0.227 4.007

medicaidyes 0.554 3.055 0.185 2.777

(Intercept) -1.475 -2.283 1.631 6.017

R> logLik(fm_hurdle2)

'log Lik.' -12110.49 (df=35)

R> 1/fm_hurdle2$theta

count

0.7437966

There are some small and very few larger deviations in the Wald statistics which are probably
explicable by different approximations to the gradient of θ (or 1/θ or log(θ)) and the usage
of different non-linear optimizers (and at least ten years of software development).

More replication exercises are performed in the example sections of AER (Zeileis and Kleiber
2008), the software package accompanying Kleiber and Zeileis (2008).

Affiliation:

Achim Zeileis
Department of Statistics
Universität Innsbruck
Universitätsstr. 15
6020 Innsbruck, Austria
E-mail: Achim.Zeileis@R-project.org
URL: http://statmath.wu-wien.ac.at/~zeileis/

mailto:Achim.Zeileis@R-project.org
http://statmath.wu-wien.ac.at/~zeileis/

	Introduction
	Models and software
	Generalized linear models
	Model frame
	Poisson model
	Quasi-Poisson model
	Negative binomial models

	Hurdle models
	Zero-inflated models

	Application and illustrations
	Demand for medical care by the elderly
	Poisson regression
	Quasi-Poisson regression
	Negative binomial regression
	Hurdle regression
	Zero-inflated regression
	Comparison

	Summary
	Technical details for hurdle models
	Technical details for zero-inflated models
	Methods for fitted zero-inflated and hurdle models
	Replication of textbook results

