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Abstract

In sample survey, we often need to adjust the weights of sur-
vey respondents to align marginal distributions of the sample
to those of the population. Popular methods are poststratifica-
tion, raking, generalized raking, etc. In this paper we present a
new weighting method based on Tikhonov regularization and
provide a R package for its implementation.
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1 Introduction

The weighting of survey respondents is often used to improve
the accuracy of survey estimates. Typically each respondent
is assigned an initial weight that is equal to the inverse of her
sampling probability (inverse probability weighting). Further
weighting adjustments may follow. In particular, poststrati-
fication is frequently used to adjust the weights with the in-
formation of known population distributions (such as those
of Census). It works by multiplying the original weightwi

of each respondenti, who is in post-stratumh, by an adjust-
ment factorfh = ph/qh, whereph andqh are the population
and sample proportions of the post-stratumh, respectively.
This adjustment makes the sample distribution across the post-
strata align to the corresponding population distribution. In
general, there are two goals in the weight adjustments:

• Want alignment to known quantities (such as poststratifi-
cation adjustment).

• Want weight adjustment factors to be small in some
sense.

When there are multiple category variables to align to (such
as age, sex, race, etc.) and we only know their marginal distri-
butions, we can useraking, aka Iterative Proportional Fitting
(?), to successively align marginal distributions of the sample
to those of the population until convergence. Each raking step
introduces a new multiplicative adjustment factorfi. How-
ever, raking can be slow or fail to converge when there are
many categories and thus many empty cells. In this paper we
present a non-iterative weighting method based on Tikhonov
regularization. It is relatively faster than raking and can give
a reasonable result even when the sample is sparse across a
large number of post-strata. .

There are many other methods on the modification of the
original weights. The most notable one is the generalized rak-
ing procedure (??), which includes the classic raking method
and the generalized least square weighting (GLS) as its spe-
cial cases. Our approach differs from the above in that we use

a different criterion and technique to generate the solution,
which is unlikely to be a solution of the generalized raking.
Other relevant literature on weighting can be seen in?.

2 Model

Suppose we collect a sample of sizen. Each survey respon-
dent i is assigned an initial design-based weightwi, i =
1, 2, . . . , n, which are assumed to be the inverse sampling
probabilities. Suppose there arem categorical variables in the
survey with known population distributions. We intend to ad-
just the initial weights such that the sample distribution in each
category is as close to the corresponding population distribu-
tion as possible. With such adjusted weights, we can obtain an
estimate of certain population total in the same manner as that
of a Horvitz-Thompson estimator. That is, letyi be the value
of the variable of interest, and̃wi be the new weight, then we
use

t̂w̃ =
n∑

i=1

w̃iyi (1)

to estimate the corresponding population totalt. We will show
this t̂w̃ is asymptotically equivalent to the Horvitz-Thompson
estimatort̂w. For the following discussion, without loss of
generality we scalewi’s so that

∑n
i=1 wi = 1. Let Aj

(Aj ≥ 2) be the number of category levels for categoryj
(j = 1, 2, . . . ,m). Then there areH =

∏m
j=1 Aj post-strata.

Each respondent falls into one and only one stratum. With-
out loss of generality, assume each stratum has at least one
respondent. Lethi be the stratum to which respondenti be-
longs. Then the total initial weights in stratumh is

uh =
∑

i:hi=h

wi, h = 1, 2, . . . ,H

Suppose we adjust each respondent weightwi by a multiplica-
tive factorfh (calledweight ratio), wherehi = h. We wish to
restrictfh to a narrow range around one so as to make small
weight adjustment. If we writefh = 1 + βh whereβh ≥ −1,
then we wantβh to be close to zero. The total adjusted weights
in stratumh is now

Sh =
∑

i:hi=h

wifh = (1 + βh)uh, h = 1, 2, . . . ,H.

Like the original weightwi, we require the new weightwifh,
along withSh, to sum up to one. This gives

H∑
h=1

βhuh = 0, (2)



since
∑H

h=1 uh =
∑n

i=1 wi = 1. Let Ihjk be a 0-1 indica-
tor variable that is one if stratumh sets categoryj at level
k, wherek = 1, 2, . . . , Aj . Let pjk be the population pro-

portion of levelk in categoryj. Note
∑Aj

k=1 pjk = 1 for
j = 1, 2, . . . ,m. Then the requirement that the sample distri-
bution be close to the population distribution in each category
can be written as

H∑
h=1

ShIhjk =
H∑

h=1

(1 + βh)uhIhjk = pjk,

which can be rearranged as

H∑
h=1

βhuhIhjk = pjk −
H∑

h=1

uhIhjk,

j = 1, 2, . . . ,m, k = 1, 2, . . . , Aj . (3)

Note the right hand side of (3) is the difference between the ex-
pected proportion from the population and the observed pro-
portion from the sample. Combining (2) and (3) gives us a
linear system

Z = Xβ, (4)

where, if we letL = 1 +
∑m

j=1 Aj , β = [β1, β2, . . . , βH ]′,

Z =


0

p11 −
∑H

h=1 uhIh11

...
pmAm −

∑H
h=1 uhIhmAm


L×1

,

and

X =


u1 u2 · · · uH

u1I111 u2I211 · · · uHIH11

...
...

...
...

u1I1mAm u2I2mAm · · · uHIHmAm


L×H

.

The rank ofX is at mostL − m, so (4) is under-determined
(in contrast to a usual regression) for solvingβ. However,
since we wantβh’s to be close to zero, we can use the so-
calledTikhonov regularization(?) to penalize the least square
solution that gives a large norm ofβ (this technique has also
been used in ridge regression). Thus we minimize the object
function

χ2 = ||Z −Xβ||2 + r2||β||2, (5)

where|| · || represents the Euclidean norm. The regularization
parameterr (r > 0) determines the trade-off between mini-
mizing the residual sum of squares and minimizing the norm
of the estimate. The minimizer̂βr of (5) can be expressed
in terms of the Singular Value Decomposition (SVD) ofX
(?). Let the SVD ofX (noteH ≥ L − m) beX = UΣV ′,
whereU = (U1, . . . , UL)L×L, V = (V1, . . . , VL)H×H and
Σ = diag(σ1, . . . , σL−m)L×L (assumerk(X) = L − m).
Then we have

β̂r = (X ′X + r2I)−1X ′Z

=
L−m∑
i=1

φi
U ′

iZ

σi
Vi,

(6)

where

φi =
σ2

i

σ2
i + r2

, (7)

which filters out right singular vectorsVi’s for which the ratio
of signalσ2

i to noiser2 is much smaller than one. Remember
the elements of̂βr should be no less than−1, so our final
estimate is̃βr = max(β̂r,−1H), where1H is aH-dim vector
of one’s and the functionmax is applied element-wise.

Note the storage space ofV is H × L and the computation
time of the SVD isO(6HL2 + 20L3) (?, R-SVD, page 254),
which is acceptable ifH is not too large. For example, if
we have 8 categories, each of which has 5 levels, thenL =
41,H = 58 = 390625. The storage ofV is about 130MB with
single precision (8 bytes) for each element. The computation
of SVD takes about 40 seconds on a PC with 1.6GHz CPU.

The choice of the regularization parameterr can be deter-
mined via Generalized Cross Validation (GCV) (?) as the min-
imizer of the cross-validated prediction error. Equivalently,r
is the minimizer of the GCV function

G =
||y −Xβ̃r||2

(H −
∑L−m

i=1 φi)2
,

where the denominator is the square of the effective number
of degrees of freedom andφi’s are the filter factors in (7). We
use a golden section search to select the minimizer.

In practice, people may want as few zero weights as possi-
ble. Thus we may increase the selectedr to reduce the number
of elements of̂βr ’s hitting the−1 floor, at the expense of com-
promising the marginal fitting result somewhat. Alternatively
post hoc we can reset those small weight ratios to be at least
as large as a specified non-zero number (say 0.01).

Although H is a large number when there are many cate-
gories, in reality not all post-strata are non-empty. Thus we
can significantly reduce the number of elements inβ (hence
the size ofX) by dropping theβi’s whose corresponding post-
strata are empty, as shown in the second example in section 3.

Because of the explicit solution of̂βr in (6), it is straight-
forward to observe that as sample size increases,Z goes to0
while other terms in (6) are bounded, soβ̂r goes to0 too. In
more exact terms, assume the finite population sizeN , along
with the sample sizen, tends to infinity. Also assume that

1. Z → 0 in design probability.

2. Z = Op(n−1/2).

Then, by noting thatUi andVi are orthonormal vectors and
thatφi/σi is bounded, we have

Result 1. β̃r tends to0 in design probability, and̃βr =
Op(n−1/2).

Result 2. The estimator̂tw̃ given by (1) is design-consistent,
andN−1(t̂w̃ − t̂w) = Op(n−1/2).

Note Result 2 holds because of Result 1 and thatt̂w is design-
consistent andN−1(t̂w − t) = Op(n−1/2).



Table 1: Household Counts by Tenure and Household Size in
Florida (Source: ACS PUMS 2004, SF1 2000 from US Census
Bureau)

Size Tenure “True” Marginals

Owner (1) Renter (2)

1 Person (1) 1185571 707097 1687303

2 Person (2) 1955017 568304 2330104

3 Person (3) 695037 356139 977117

4 Person (4) 605659 211830 776458

5+ Person (5) 363346 167639 566947

“True” Marginals 4441799 1896130 6337929

Figure 1: Diagnostic Plots for the Alignment to Two Cate-
gories.
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3 Two Examples

We have implemented the above method in a R pack-
age calledreweight , which can be downloaded from
http://www.r-project.org . In the following we use
this package to analyze two surveys. Table 1 presents a sim-
ple problem of marginal counts alignment for two categorical
variables. Figure 1 shows the diagnostic plots for the weight
adjustment. NoteRelative Deviationis the relative deviation
of each marginal count under the new weights away from
the marginal count under the initial weights. For this “nice”
data we can see the method fits to the “true” marginal counts
closely. However, for a more complex data, the method per-
forms less well, as shown in Figure 2. It is from a large survey
that post-stratifies on 7 categories (the number of category lev-
els are 5, 8, 6, 4, 4, 2, 5, respectively). Note there is only 1119
non-empty strata out of 38400 possible ones.

Figure 2: Diagnostic Plots for the Alignment to Seven Cate-
gories.
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4 Conclusion

We have presented a new experimental method for reweight-
ing survey data. It works by satisfying a set of constraints
while at the same time controlling the size of the weight ra-
tios with the method of Tikhonov regularization. We set the
model up to address the common problem of marginal counts
alignment in survey data. But in principal it can take any lin-
ear constraints. There are two drawbacks of this method when
applied to a large survey data with many categories to align to.
Firstly it cannot entirely close the gap between the observed
marginal counts and the target ones. Secondly the computa-
tion of SVD may demand much computer resources. Never-
theless we encourage the reader to try out the R package to see
how it performs on your problem.


