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Abstract a different criterion and technique to generate the solution,
which is unlikely to be a solution of the generalized raking.

In sample survey, we often need to adjust the weights of s@ither relevant literature on weighting can be seeh in
vey respondents to align marginal distributions of the sample

to those of the population. Popular methods are poststratifica-
tion, raking, generalized raking, etc. In this paper we present a

new weighting method based on Tikhonov regularization agd .
. g A uppose we collect a sample of size Each survey respon-
provide a R package for its implementation.

dent: is assigned an initial design-based weighyt i =
Keywords: sample survey, poststratification, raking, singular 2, ..., n, which are assumed to be the inverse sampling

2 Model

value decomposition, Tikhonov regularization. probabilities. Suppose there arecategorical variables in the
survey with known population distributions. We intend to ad-
1 Introduction just the initial weights such that the sample distribution in each

category is as close to the corresponding population distribu-
The weighting of survey respondents is often used to imprdi@n as possible. With such adjusted weights, we can obtain an
the accuracy of survey estimates. Typically each respondegiimate of certain population total in the same manner as that
is assigned an initial weight that is equal to the inverse of lra Horvitz-Thompson estimator. That is, lgtbe the value
sampling probability (inverse probability weighting). Furthedf the variable of interest, and; be the new weight, then we
weighting adjustments may follow. In particular, poststratisse
fication is frequently used to adjust the weights with the in- P iwy
formation of known population distributions (such as those v P
of Census). It works by multiplying the original weight;
of each responderit who is in post-stratum, by an adjust- © estimate the corresponding population totae will show
ment factorf, = pn/qn, Wherep, andg, are the population this s is asymptotically equivalent to the Horvitz-Thompson
and sample proportions of the post-stratémrespectively. €stimatort,,. For the following discussion, without loss of
This adjustment makes the sample distribution across the pg§erality we scale;’s so that}>" , w; = 1. Let 4;
strata align to the corresponding population distribution. (rﬁ‘j > 2) be the number of category levels for categgry

general, there are two goals in the weight adjustments; ~ (/ = 1,2,...,m). Then there arél = [['_, A; post-strata.
Each respondent falls into one and only one stratum. With-

* Want alignment to known quantities (such as poststratiffy; |oss of generality, assume each stratum has at least one
cation adjustment). respondent. Lek; be the stratum to which responderte-

e Want weight adjustment factors to be small in son{@ngs. Then the total initial weights in stratufims
sense.

(1)

up = Z w;, h=1,2,...,H

When there are multiple category variables to align to (such Nty

as age, sex, race, etc.) and we only know their marginal distri-

butions, we can uskmaking, aka Iterative Proportional Fitting Suppose we adjust each respondent weiglity a multiplica-
(?), to successively align marginal distributions of the sampige factor f;, (calledweight ratig, whereh; = h. We wish to

to those of the population until convergence. Each raking stegtrict f;, to a narrow range around one so as to make small
introduces a new multiplicative adjustment facfpr How- weight adjustment. If we writ¢, = 1 + 3;, wheregs;, > —1,
ever, raking can be slow or fail to converge when there ahen we wang;, to be close to zero. The total adjusted weights
many categories and thus many empty cells. In this paperiwsatratumh is now

present a non-iterative weighting method based on Tikhonov

regularization. It is relatively faster than raking and can give Sj, = Z wifn =1+ Bu)un, h=12,...,H.

a reasonable result even when the sample is sparse across a ihi=h

large number of post-strata. .

There are many other methods on the modification of t|'1 ]
original weights. The most notable one is the generalized r&nd WithSy,,
ing procedure T?), which includes the classic raking method I
and the generalized least square weighting (GLS) as its spe- Zﬁhw -0, )
cial cases. Our approach differs from the above in that we use Pyt

ike the original weightw;, we require the new weight; f,,
to sum up to one. This gives



sinceX 7 up = S, w; = 1. Let I, be a 0-1 indica- where
tor variable that is one if straturh sets category at level b= o? @
k, wherek = 1,2,...,A;. Letp,; be the population pro- v

o2 +r2’
i ; : A ’
portion of levelk in categoryj. Note ) ,”, pjr = Lfor . cwore ot right singular vectoig’s for which the ratio

j =1,2,...,m. Then the requirement that the sample distij signalo? to noiser? is much smaller than one. Remember
bution be close to the population distribution in each categop/ A .
can be written as the elements of3,. should be no less than1, so our final

estimate is3, = max(3,, —1p), wherel ; is a H-dim vector

=l A of one’s and the functiomax is applied element-wise.
Z Snlnjr = Z(l + Bn)unlnjk = pjk, Note the storage space Bfis H x L and the computation
h=1 h=1 time of the SVD isO(6H L? + 20L?) (?, R-SVD, page 254),
which can be rearranged as which is acceptable iff is not too large. For example, if
we have 8 categories, each of which has 5 levels, thea
A l 41, H = 5% = 390625. The storage o’ is about 130MB with
Z Buuunlnjk = ik — Z unlnj, single precision (8 bytes) for each element. The computation
h=1 h=1 of SVD takes about 40 seconds on a PC with 1.6GHz CPU.

j=12....,m, k=12...,4; (3)  The choice of the regularization parameteran be deter-
Note the right hand side of (3) is the difference between the 8kned via Generalized Cross Validation (GCV) &s the min-
pected proportion from the population and the observed pf@izer of the cross-validated prediction error. Equivalently,
portion from the sample. Combining (2) and (3) gives us'&the minimizer of the GCV function
linear system

YA l2
Z=XB, (@) g = (H”y Z)L(‘ﬁdé 7
where, if we letl = 1+ 37", A;, 3 = [61, B2, ..., Bu]', =1
0 where the denominator is the square of the effective number

e of degrees of freedom angl’s are the filter factors in (7). We
g P11 = 2 pe Unlhn use a golden section search to select the minimizer.

: In practice, people may want as few zero weights as possi-
ble. Thus we may increase the seleatéd reduce the number

of elements oﬁr's hitting the—1 floor, at the expense of com-
and promising the marginal fitting result somewhat. Alternatively
post hoc we can reset those small weight ratios to be at least

H
PmA,, — Zh:l uh[hmAnL Lx1

(U5} U9 ce Uy i
w I werl as large as a specified non-zero number (say 0.01).
14111 U21211 uglH1l .
X = ) ) _ ) ) Although H is a large number when there are many cate-
: : K : gories, in reality not all post-strata are non-empty. Thus we
urlima,, u2loma, -+ ubnloma, |;.n  can significantly reduce the number of elementgithence

The rank ofX is at mostL — m, so (4) is under-determinedthe size ofX) by dropping thg@i s whose correspondllng po;t-
(in contrast to a usual regression) for solvidg However strata are empty, as shown in the second example in section 3.
9 9 ' Because of the explicit solution @f. in (6), it is straight-

since we wantj,’s 1o be close to zero, we can use the S?érward to observe that as sample size increa8gges to0
calledTikhonov regularizatiorf?) to penalize the least square | . . -
9 ) to p q while other terms in (6) are bounded, 8pgoes to0 too. In

solution that gives a large norm ¢f (this technique has also o ;
.2 . . .more exact terms, assume the finite population 8izelong
been used in ridge regression). Thus we minimize the objec ; L

th the sample size, tends to infinity. Also assume that

e
. Wi
function

2 2 2 2

X° =12 = XBII7 + 716115 () 1. Z — 0in design probability.
where|| - || represents the Euclidean norm. The regularization
parameter (r > 0) determines the trade-off between mini- 2. Z = Op(n’l/Q).
mizing the residual sum of squares and minimizing the norm )
of the estimate. The minimize#, of (5) can be expressedThe”: by _notmg that/; andV; are orthonormal vectors and
in terms of the Singular Value Decomposition (SVD) &f that¢;/o; is bounded, we have
(?). Let the SVD ofX (noteH > L —m) beX = UXV’, - . . - s
wherell = (Us,...Up)iuzs V = (Viser o Vidiwn and ResuOIt %ﬁ@g/ginds to0 in design probability, and?, =
¥ = diag(o1,...,0L—m)Lxr (@ssumek(X) = L — m). p )

Then we have Result 2. The estimator; given by (1) is design-consistent,

BT = (X’X + r2[)—1X/Z andN—l(fﬁ, _ fw) _ Op(n—l/Q).

L—m R
=3 & viz,, 6)  Note Result 2 holds because of Result 1 and thas design-
i=1 foi consistent andV ! (t,, — t) = O,(n~1/2).



Table 1: Household Counts by Tenure and Household Sizd-igure 2: Diagnostic Plots for the Alignment to Seven Cate-
Florida (Source: ACS PUMS 2004, SF1 2000 from US Censyisries.
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B e S = We have presented a new experimental method for reweight-
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ing survey data. It works by satisfying a set of constraints
Weiant Rato Regularization Parameter while at the same time controlling the size of the weight ra-
_ _ . _ _ _ _ tios with the method of Tikhonov regularization. We set the
Fit to Marginals (Original Weights) Fit to Marginals (New Weights) .
model up to address the common problem of marginal counts
&7 s ] alignment in survey data. But in principal it can take any lin-
> 9 > 8 ear constraints. There are two drawbacks of this method when
5 %7 8 §- applied to a large survey data with many categories to align to.
© A . Firstly it cannot entirely close the gap between the observed
° M R e B B B marginal counts and the target ones. Secondly the computa-
00 02 04 06 08 10 00 02 04 06 08 10 tion of SVD may demand much computer resources. Never-
Relative Deviation Relative Deviation

3 Two Examples

theless we encourage the reader to try out the R package to see
how it performs on your problem.

We have implemented the above method in a R pack-
age calledreweight , which can be downloaded from

http://www.r-project.org . In the following we use

this package to analyze two surveys. Table 1 presents a sim-
ple problem of marginal counts alignment for two categorical
variables. Figure 1 shows the diagnostic plots for the weight

adjustment. Not&elative Deviationis the relative deviation

of each marginal count under the new weights away from
the marginal count under the initial weights. For this “nice”
data we can see the method fits to the “true” marginal counts
closely. However, for a more complex data, the method per-
forms less well, as shown in Figure 2. It is from a large survey
that post-stratifies on 7 categories (the number of category lev-
elsare5, 8, 6, 4, 4, 2, 5, respectively). Note there is only 1119

non-empty strata out of 38400 possible ones.



