
Package ‘secr’
August 30, 2010

Type Package

Title Spatially explicit capture-recapture

Version 1.4.1

Depends R (>= 2.10.0), abind, MASS, nlme, stats

Date 2010-08-29

Author Murray Efford

Maintainer Murray Efford <murray.efford@otago.ac.nz>

Description Estimate animal population density with capture–recapture data from an array of passive
detectors (traps). Models incorporating distance-dependent detection are fitted by maximizing
the likelihood. Tools are included for data manipulation and model selection.

License GPL (>=2)

ZipData yes

URL http://www.otago.ac.nz/density

R topics documented:
secr-package . 3
AIC.secr . 5
autoini . 7
capthist . 8
capthist.parts . 9
closedN . 10
closure.test . 13
coef.secr . 14
confint.secr . 15
covariates . 17
D.designdata . 17
deermouse . 18
derived . 20
detectfn . 22
detector . 24
deviance . 26
distancetotrap . 27

1

http://www.otago.ac.nz/density

2 R topics documented:

ellipse.secr . 28
empirical.varD . 29
FAQ . 31
flip . 33
flip.traps . 34
homerange . 35
housemouse . 37
ip.secr . 38
LLsurface.secr . 42
logit . 43
logmultinom . 44
LR.test . 46
make.capthist . 47
make.mask . 49
make.traps . 50
make.tri . 53
mask . 55
model.average . 56
ovenbird . 58
ovensong . 61
pdot . 63
plot.capthist . 64
plot.mask . 66
plot.popn . 67
plot.secr . 68
plot.traps . 70
popn . 71
possum . 72
predict.secr . 74
print.capthist . 75
print.secr . 76
print.traps . 78
rbind.capthist . 78
rbind.popn . 80
rbind.traps . 81
read.capthist . 82
read.mask . 84
read.traps . 85
reduce . 86
reduce.capthist . 87
rotate . 88
rotate.traps . 89
score.test . 90
secr.design.MS . 92
secr.fit . 94
secr.make.newdata . 98
secr.model . 99
secr.model.density . 100
secr.model.detection . 101
secrdemo . 104
session . 105
shift . 106

secr-package 3

shift.traps . 107
sim.capthist . 108
sim.popn . 110
sim.secr . 113
skink . 115
SPACECAP . 117
stoatDNA . 119
subset.capthist . 120
subset.mask . 122
subset.traps . 123
summary.capthist . 124
summary.mask . 126
summary.traps . 127
traps . 128
traps.info . 129
trim . 130
usage . 131
vcov.secr . 132
verify . 133
write.captures . 135

Index 137

secr-package Spatially Explicit Capture–Recapture Models

Description

Analyse data from a spatially distributed animal population sampled with an array of passive detec-
tors, such as traps.

Details

Package: secr
Type: Package
Version: 1.4.1
Date: 2010-08-29
License: GNU General Public License Version 2 or later

Data comprise the locations of detectors (traps) in an object of class ’traps’ and the detection his-
tories of individually marked animals; both are stored in an object of class ’capthist’. Models for
population density (animals per hectare) and detection are defined using symbolic formula notation.
Possible predictors for detection probability include several pre-defined variables (t, b etc.) corre-
sponding to ’time’, ’behaviour’ and other effects. Habitat is distinguished from nonhabitat with an
object of class ’mask’. Models are fitted by maximizing either the full likelihood or the likelihood
conditional on the number of individuals observed (n). Conditional likelihood models, while lim-
ited to homogeneous Poisson density, allow continuous individual covariates for detection. Fitting
creates an object of class secr. Generic methods (plot, print, summary etc.) are available for each
object class.

A more extensive overview can be found here ../doc/secr-overview.pdf

../doc/secr-overview.pdf

4 secr-package

secr is also the class of object that is produced by secr.fit, the central function of the package.

The analyses in secr extend those available in the software Density (see www.otago.ac.nz/
density for the most recent version of Density). Feedback is very welcome, including sugges-
tions for additional documentation or new features consistent with the overall design.

Acknowledgements

David Borchers made these methods possible with his work on the likelihood, and I’m grateful for
his continuing advice. Jeff Laake provided encouragement and reviewed an early version. Ray
Brownrigg got my Windows code running under Unix. Deanna Dawson editted some of the docu-
mentation (the cleaner bits!) and her support and collaboration were important throughout.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture–recapture studies. Biometrics 64, 377–385.

Efford, M. G. (2004) Density estimation in live-trapping studies. Oikos 106, 598–610.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit
capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy
(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255–269.

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009) Population density estimated from loca-
tions of individuals on a passive detector array. Ecology 90, 2676–2682.

Efford, M. G., Dawson, D. K. and Robbins C. S. (2004) DENSITY: software for analysing capture-
recapture data from passive detector arrays. Animal Biodiversity and Conservation 27, 217–228.

See Also

secr.fit, traps, capthist, mask

Examples

Not run:

generate some data & plot
detectors <- make.grid (nx = 10, ny = 10, spacing = 20,

detector = 'multi')
plot(detectors, label = TRUE, border = 0, gridspace = 20)
detections <- sim.capthist (detectors, noccasions = 5,

popn = list(D = 5, buffer = 100),
detectpar = list(g0 = 0.2, sigma = 25))

session(detections) <- 'Simulated data'
plot(detections, border = 20, tracks = TRUE, varycol = TRUE)

generate habitat mask
mask <- make.mask (detectors, buffer = 100, nx = 48)

fit model and display results
secr.model <- secr.fit (detections, model = g0~b, mask = mask)
secr.model

www.otago.ac.nz/density
www.otago.ac.nz/density

AIC.secr 5

End(Not run)

AIC.secr Compare SECR Models

Description

Terse report on the fit of one or more spatially explicit capture–recapture models. Models with
smaller values of AIC (Akaike’s Information Criterion) are preferred.

Usage

S3 method for class 'secr':
AIC(object, ..., sort = TRUE, k = 2, dmax = 10)

Arguments

object secr object output from the function secr.fit

... other secr objects

sort logical for whether rows should be sorted by ascending AICc

k numeric, the penalty per parameter to be used; always k = 2 in this method

dmax numeric, the maximum AIC difference for inclusion in confidence set

Details

Models to be compared must have been fitted to the same data and use the same likelihood method
(full vs conditional).

AIC with small sample adjustment is given by

AICc = −2 log(L(θ̂)) + 2K +
2K(K + 1)

n−K − 1

where K is the number of ’beta’ parameters estimated. The sample size n is the number of individ-
uals observed at least once (i.e. the number of rows in capthist).

Model weights are calculated as

wi =
exp(−∆i/2)∑

exp(−∆i/2)

Models for which dAICc > dmax are given a weight of zero and are excluded from the summation.
Model weights may be used to form model-averaged estimates of real or beta parameters with
model.average (see also Buckland et al. 1997, Burnham and Anderson 2002).

The argument k is included for consistency with the generic method AIC.

6 AIC.secr

Value

A data frame with one row per model. By default, rows are sorted by ascending AICc.

model character string describing the fitted model

detectfn shape of detection function fitted (halfnormal vs hazard-rate)

npar number of parameters estimated

logLik maximized log likelihood

AIC Akaike’s Information Criterion

AICc AIC with small-sample adjustment of Hurvich & Tsai (1989)

dAICc difference between AICc of this model and the one with smallest AICc

AICwt AICc model weight

Note

The issue of goodness-of-fit and possible adjustment of AIC for overdispersion has yet to be ad-
dressed (cf QAIC in MARK).

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Buckland S. T., Burnham K. P. and Augustin, N. H. (1997) Model selection: an integral part of
inference. Biometrics 53, 603–618.

Burnham, K. P. and Anderson, D. R. (2002) Model Selection and Multimodel Inference: A Practical
Information-Theoretic Approach. Second edition. New York: Springer-Verlag.

Hurvich, C. M. and Tsai, C. L. (1989) Regression and time series model selection in small samples.
Biometrika 76, 297–307.

See Also

model.average, AIC, secr.fit, print.secr, score.test, LR.test, deviance.secr

Examples

Compare two models fitted previously
secrdemo.0 is a null model
secrdemo.b has a learned trap response

data(secrdemo)
AIC(secrdemo.0, secrdemo.b)

autoini 7

autoini Initial Parameter Values for SECR

Description

Find plausible initial parameter values for secr.fit. A simplified model is fitted by a fast ad hoc
method.

Usage

autoini(capthist, mask, detectfn = 0, thin = 0.2)

Arguments

capthist capthist object

mask mask object compatible with the detector layout in capthist

detectfn integer code or character string for shape of detection function 0 = halfnormal

thin proportion of points to retain in mask

Details

Plausible starting values are needed to avoid numerical problems when fitting SECR models. Actual
models to be fitted will usually have more than the three basic parameters output by autoini;
other initial values can usually be set to zero for secr.fit. If the algorithm encounters problems
obtaining a value for g0, the default value of 0.1 is returned.

Only the halfnormal detection function is currently available in autoini (cf other options in e.g.
detectfn and sim.capthist).

autoini implements a modified version of the algorithm proposed by Efford et al. (2004). In
outline, the algorithm is

1. Find value of sigma that predicts the 2-D dispersion of individual locations (see RPSV)

2. Find value of g0 that, with sigma, predicts the observed mean number of captures per individ-
ual (by algorithm of Efford et al. (2009, Appendix 2))

3. Compute the effective sampling area from g0, sigma, using thinned mask (see esa)

4. Compute D = n/esa(g0, sigma), where n is the number of individuals detected

Here ’find’ means solve numerically for zero difference between the observed and predicted values,
using uniroot.

If RPSV cannot be computed the algorithm tries to use observed mean recapture distance d̄. Com-
putation of d̄ fails if there no recaptures, and all returned values are NA.

A proportion 1–thin of the points in the mask may be discarded at random to speed execution.

Value

A list of parameter values :

D Density (animals per hectare)

g0 Magnitude (intercept) of detection function

sigma Spatial scale of detection function (m)

8 capthist

Note

autoini may in future include an option to use RPSV instead of dbar.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Efford, M. G., Dawson, D. K. and Robbins C. S. (2004) DENSITY: software for analysing capture–
recapture data from passive detector arrays. Animal Biodiversity and Conservation 27, 217–228.

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009) Population density estimated from loca-
tions of individuals on a passive detector array. Ecology 90, 2676–2682.

See Also

capthist, mask, secr.fit, dbar

Examples

demotraps <- make.grid()
demomask <- make.mask(demotraps)
demoCH <- sim.capthist (demotraps, popn = list(D = 5, buffer = 100))
autoini (demoCH, demomask)

capthist Spatial Capture History Object

Description

A capthist object encapsulates all data needed by secr.fit, except for the optional habitat
mask.

Details

An object of class capthist holds spatial capture histories, detector (trap) locations, individual
covariates and other data needed for a spatially explicit capture-recapture analysis with secr.fit.

For ’single’ and ’multi’ detectors, capthist is a matrix with one row per animal and one column
per occasion (i.e. dim(capthist) = c(nc, noccasions)); each element is either zero (no detection) or
a detector number. For other detectors (’proximity’, ’count’, ’signal’ etc.), capthist is an array
of values and dim(capthist) = c(nc, noccasions, ntraps); values maybe binary ({–1, 0, 1}) or integer
depending on the detector type.

Deaths during the experiment are represented as negative values.

Ancillary data are retained as attributes of a capthist object as follows:

• traps – object of class traps (required)

• session – session identifier (required)

• covariates – dataframe of individual covariates (optional)

• cutval – threshold of signal strength for detection (’signal’ only)

capthist.parts 9

• signal – signal strength values, one per detection (’signal’ only)

• detectedXY – dataframe of coordinates for location within polygon (’polygon’ only)

The parts of a capthist object can be assembled with the function make.capthist. Use sim.capthist
for Monte Carlo simulation (simple models only). Methods are provided to display and manipulate
capthist objects (print, summary, plot, rbind, subset, reduce) and to extract and replace attributes
(covariates, traps, xy).

A multi-session capthist object is a list in which each component is a capthist for a single
session. The list maybe derived directly from multi-session input in Density format, or by combin-
ing existing capthist objects with MS.capthist.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture–recapture studies. Biometrics 64, 377–385.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit
capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy
(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255–269.

See Also

traps, secr.fit, read.capthist, make.capthist, sim.capthist, subset.capthist,
rbind.capthist, MS.capthist, reduce.capthist, mask

capthist.parts Dissect Spatial Capture History Object

Description

Extract parts of an object of class ’capthist’.

Usage

animalID(object, names = TRUE)
occasion(object)
trap(object, names = TRUE)
xy(object)
signal(object)
xy(object) <- value
signal(object) <- value

10 closedN

Arguments

object a ’capthist’ object

names if FALSE the values returned are numeric indices rather than names

value replacement value (see Details)

Details

These functions extract data on detections, ignoring occasions when an animal was not detected.

trap returns polygon or transect numbers if traps(object) has detector type ’polygon’ or
’transect’.

Replacement values must precisely match object in number of detections in their order. xy<-
expects a dataframe of x and y coordinates for points of detection within a ’polygon’ or ’transect’
detector.

Value

For animalID and trap a vector of numeric or character values, one per detection.

For occasion, a vector of numeric values, one per detection.

For xy, a dataframe with one row per detection and columns ’x’ and ’y’.

For signal, a numeric vector with one element per detection.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

capthist, polyID

Examples

data(secrdemo)
animalID(captdata)

temp <- sim.capthist(popn=list(D=1), make.grid(detector='count'))
cbind(ID=as.numeric(animalID(temp)), occ=occasion(temp), trap=trap(temp))

closedN Closed population estimates

Description

Estimate N, the size of a closed population, by several conventional non-spatial capture–recapture
methods.

closedN 11

Usage

closedN(object, estimator = NULL, level = 0.95, maxN = 1e+07)

Arguments

object capthist object

estimator character; name of estimator (see Details)

level confidence level (1 – alpha)

maxN upper bound for population size

Details

Data are provided as spatial capture histories, but the spatial information (trapping locations) is
ignored.

AIC-based model selection is available for the maximum-likelihood estimators null, zippin,
darroch, h2, and betabinomial.

Computation of null, zippin and darroch estimates differs slightly from Otis et al. (1978) in
that the likelihood is maximized over real values of N between Mt1 and maxN, whereas Otis et al.
considered only integer values.

Asymmetric confidence intervals are obtained in the same way for all estimators, using a log trans-
formation of N̂ −Mt1 following Burnham et al. (1987), Chao (1987) and Rexstad and Burnham
(1991).

The available estimators are

Name Model Description Reference
null M0 null Otis et al. 1978 p.105
zippin Mb removal Otis et al. 1978 p.108
darroch Mt Darroch Otis et al. 1978 p.106-7
h2 Mh 2-part finite mixture Pledger 2000
betabinomial Mh Beta-binomial continuous mixture Dorazio and Royle 2003
jackknife Mh jackknife Burnham and Overton 1978
chao Mh Chao’s Mh estimator Chao 1987
chaomod Mh Chao’s modified Mh estimator Chao 1987
chao.th1 Mth sample coverage estimator 1 Lee and Chao 1994
chao.th2 Mth sample coverage estimator 2 Lee and Chao 1994

Value

A dataframe with one row per estimator and columns

model model in the sense of Otis et al. 1978

npar number of parameters estimated

loglik maximized log likelihood

AIC Akaike’s information criterion

AICc AIC with small-sample adjustment of Hurvich & Tsai (1989)

dAICc difference between AICc of this model and the one with smallest AICc

12 closedN

Mt1 number of distinct individuals caught

Nhat estimate of population size

seNhat estimated standard error of Nhat

lclNhat lower 100 x level % confidence limit

uclNhat upper 100 x level % confidence limit

Note

Prof. Anne Chao generously allowed me to adapt her code for the variance of the ‘chao.th1’ and
‘chao.th2’ estimators.

Chao’s estimators have been subject to various improvements not included here; please see Chao
and Shen (2010) for details.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Burnham, K. P. and Overton, W. S. (1978) Estimating the size of a closed population when capture
probabilities vary among animals. Biometrika 65, 625–633.

Chao, A. (1987) Estimating the population size for capture–recapture data with unequal catchability.
Biometrics 43, 783–791.

Chao, A. and Shen, T.-J. (2010) Program SPADE (Species Prediction And Diversity Estimation).
Program and User’s Guide available online at http://chao.stat.nthu.edu.tw.

Dorazio, R. M. and Royle, J. A. (2003) Mixture models for estimating the size of a closed population
when capture rates vary among individuals. Biometrics 59, 351–364.

Hurvich, C. M. and Tsai, C. L. (1989) Regression and time series model selection in small samples.
Biometrika 76, 297–307.

Lee, S.-M. and Chao, A. (1994) Estimating population size via sample coverage for closed capture-
recapture models. Biometrics 50, 88–97.

Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978) Statistical inference from
capture data on closed animal populations. Wildlife Monographs 62, 1–135.

Pledger, S. (2000) Unified maximum likelihood estimates for closed capture-recapture models using
mixtures. Biometrics 56, 434–442.

Rexstad, E. and Burnham, K. (1991) User’s guide for interactive program CAPTURE. Colorado
Cooperative Fish and Wildlife Research Unit, Fort Collins, Colorado, USA.

See Also

capthist, closure.test

Examples

data(deermouse)
closedN(deermouse.ESG)

http://chao.stat.nthu.edu.tw

closure.test 13

closure.test Closure tests

Description

Perform tests to determine whether a population sampled by capture-recapture is closed to gains
and losses over the period of sampling.

Usage

closure.test(object, SB = FALSE, min.expected = 2)

Arguments

object capthist object

SB logical, if TRUE then test of Stanley and Burnham 1999 is calculated in addition
to that of Otis et al. 1978

min.expected integer for the minimum expected count in any cell of a component 2x2 table

Details

The test of Stanley and Burnham in part uses a sum over 2x2 contingency tables; any table with a
cell whose expected count is less than min.expected is dropped from the sum. The default value of
2 is that used by CloseTest (Stanley and Richards 2005, T. Stanley pers. comm.; see also Stanley
and Burnham 1999 p. 203).

Value

In the case of a single-session capthist object, either a vector with the statistic (z-value) and p-value
for the test of Otis et al. (1978 p. 120) or a list whose components are data frames with the statistics
and p-values for various tests and test components as follows –

Otis Test of Otis et al. 1978

Xc Overall test of Stanley and Burnham 1999

NRvsJS Stanley and Burnham 1999

NMvsJS Stanley and Burnham 1999

MtvsNR Stanley and Burnham 1999

MtvsNM Stanley and Burnham 1999

compNRvsJS Occasion-specific components of NRvsJS

compNMvsJS Occasion-specific components of NMvsJS

Check the original papers for an explanation of the components of the Stanley and Burnham test.

In the case of a multi-session object, a list with one component (as above) for each session.

14 coef.secr

Note

No omnibus test exists for closure: the existing tests may indicate nonclosure even when a popu-
lation is closed if other effects such as trap response are present (see White et al. 1982 pp 96–97).
The test of Stanley and Burnham is sensitive to individual heterogeneity which is inevitable in most
spatial sampling, and it should not in general be used for this sort of data.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978) Statistical inference from
capture data on closed animal populations. Wildlife Monographs 62, 1–135.

Stanley, T. R. and Burnham, K. P. (1999) A closure test for time-specific capture–recapture data.
Environmental and Ecological Statistics 6, 197–209.

Stanley, T. R. and Richards, J. D. (2005) A program for testing capture–recapture data for closure.
Wildlife Society Bulletin 33, 782–785.

White, G. C., Anderson, D. R., Burnham, K. P. and Otis, D. L. (1982) Capture-recapture and
removal methods for sampling closed populations. Los Alamos National Laboratory, Los Alamos,
New Mexico.

See Also

capthist

Examples

data(secrdemo)
closure.test(captdata)

coef.secr Coefficients of secr Object

Description

Extract coefficients (estimated beta parameters) from a spatially explicit capture–recapture model.

Usage

S3 method for class 'secr':
coef (object, alpha = 0.05, ...)

Arguments

object secr object output from secr.fit

alpha alpha level

... other arguments (not used currently)

confint.secr 15

Value

A data frame with one row per beta parameter and columns for the coefficient, SE(coefficient),
asymptotic lower and upper 100(1–alpha) confidence limits.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

secr.fit

Examples

load & extract coefficients of previously fitted null model
data(secrdemo)
coef(secrdemo.0)

confint.secr Profile Likelihood Confidence Intervals

Description

Compute profile likelihood confidence intervals for ’beta’ or ’real’ parameters of a spatially explicit
capture-recapture model,

Usage

S3 method for class 'secr':
confint (object, parm, level = 0.95, newdata = NULL,
tracelevel = 1, tol = 0.0001, ...)

Arguments

object secr model object

parm numeric or character vector of parameters

level confidence level (1 – alpha)

newdata optional dataframe of values at which to evaluate model

tracelevel integer for level of detail in reporting (0,1,2)

tol absolute tolerance (passed to uniroot)

... other arguments (not used)

16 confint.secr

Details

If parm is numeric its elements are interpreted as the indices of ’beta’ parameters; character values
are interpreted as ’real’ parameters. Different methods are used for beta parameters and real param-
eters. Limits for the j-th beta parameter are found by a numerical search for the value satisfying
−2(lj(βj) − l) = q, where l is the maximized log likelihood, lj(βj) is the maximized profile log
likelihood with βj fixed, and q is the 100(1− α) quantile of the χ2 distribution with one degree of
freedom. Limits for real parameters use the method of Lagrange multipliers (Fletcher and Faddy
2007), except that limits for constant real parameters are backtransformed from the limits for the
relevant beta parameter.

Value

A matrix with one row for each parameter in parm, and columns giving the lower (lcl) and upper
(ucl) 100*level

Note

Calculation may take a long time, so probably you will do it only after selecting a final model.

The R function uniroot is used to search for the roots of −2(lj(βj) − l) = q within a suitable
interval. The interval is anchored at one end by the MLE, and at the other end by the MLE inflated
by a small multiple of the asymptotic standard error (1, 2, 4 or 8 SE are tried in turn, using the
smallest for which the interval includes a valid solution).

A more efficient algorithm was proposed by Venzon and Moolgavkar (1988); it has yet to be imple-
mented in secr, but see plkhci in the package Bhat for another R implementation.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Evans, M. A., Kim, H.-M. and O’Brien, T. E. (1996) An application of profile-likelihood based
confidence interval to capture–recapture estimators. Journal of Agricultural, Biological and Exper-
imental Statistics 1, 131–140.

Fletcher, D. and Faddy, M. (2007) Confidence intervals for expected abundance of rare species.
Journal of Agricultural, Biological and Experimental Statistics 12, 315–324.

Venzon, D. J. and Moolgavkar, S. H. (1988) A method for computing profile-likelihood-based con-
fidence intervals. Applied Statistics 37, 87–94.

Examples

Not run:
data (secrdemo)
Limits for the constant real parameter 'D'
confint(secrdemo.0, 'D')

End(Not run)

covariates 17

covariates Covariates Attribute

Description

Extract or replace covariates

Usage

covariates(object, ...)
covariates(object) <- value

Arguments

object an object of class traps, popn, capthist, or mask

value a dataframe of covariates

... other arguments (not used)

Details

For replacement, the number of rows of valuemust match exactly the number of rows in object.

Value

covariates(object) returns the dataframe of covariates associated with object. covariates(object)
may be NULL.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

Examples

temptrap <- make.grid(nx = 6, ny = 8)
covariates (temptrap) <- data.frame(halfnhalf =

factor(rep(c('left','right'),c(24,24))))
summary(covariates(temptrap))

D.designdata Construct Density Design Data

Description

Internal function used by secr.fit, confint.secr, and score.test.

Usage

D.designdata (mask, Dmodel, grps, sessionlevels, sessioncov = NULL)

18 deermouse

Arguments

mask mask object.

Dmodel formula for density model

grps vector of group names
sessionlevels

vector of character values for session names

sessioncov optional dataframe of values of session-specific covariate(s).

Details

This is an internal secr function that you are unlikely ever to use. Unlike secr.design.MS, this
function does not call model.matrix.

Value

Dataframe with one row for each combination of mask point, group and session. The dataframe
has an attribute ’dimD’ that gives the relevant dimensions: attr(dframe, ’dimD’) =
c(nmask, ngrp, R), where nmask is the number of mask points, ngrp is the number of
groups, and R is the number of sessions. Columns correspond to predictor variables in Dmodel.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

secr.design.MS

deermouse Deermouse Live-trapping Datasets

Description

Data of V. H. Reid from live trapping of deermice (Peromyscus maniculatus) at two sites in Col-
orado, USA.

Usage

data(deermouse)

Details

Two datasets of V. H. Reid were described by Otis et al. (1978) and distributed with their CAP-
TURE software (now available from www.mbr-pwrc.usgs.gov/software.html). They
have been used in several other papers on closed population methods (e.g., Huggins 1991, Stanley
and Richards 2005). This description is based on pages 32 and 87–93 of Otis et al. (1978).

Both datasets are from studies in Rio Blanco County, Colorado, in the summer of 1975. Trapping
was for 6 consecutive nights. Traps were arranged in a 9 x 11 grid and spaced 50 feet (15.2 m)
apart.

www.mbr-pwrc.usgs.gov/software.html

deermouse 19

The first dataset was described by Otis et al. (1978: 32) as from ’a drainage bottom of sagebrush,
gambel oak, and serviceberry with pinyon pine and juniper on the uplands’. By matching with the
’examples’ file of CAPTURE this was from East Stuart Gulch (ESG).

The second dataset (Otis et al. 1978: 87) was from Wet Swizer Creek or Gulch (WSG) in August
1975. No specific vegetation description is given for this site, but it is stated that Sherman traps
were used and trapping was done twice daily.

Two minor inconsistencies should be noted. Although Otis et al. (1978) said they used data from
morning trap clearances, the capture histories in ’examples’ from CAPTURE include a ’pm’ tag
on each record. We assume the error was in the text description, as their numerical results can be
reproduced from the data file. Huggins (1991) reproduced the East Stuart Gulch dataset (omitting
spatial data that were not relevant to his method), but omitted two capture histories.

The data are provided as two single-session capthist objects ’deermouse.ESG’ and ’deermouse.WSG’.
Each has a dataframe of individual covariates, but the fields differ between the two study areas. The
individual covariates of deermouse.ESG are sex (factor levels ’f’, ’m’), age class (factor levels ’y’,
’sa’, ’a’) and body weight in grams. The individual covariates of deermouse.WSG are sex (factor
levels ’f’,’m’) and age class (factor levels ’j’, ’y’, ’sa’, ’a’) (no data on body weight). The aging
criteria used by Reid are not recorded.

The datasets were originally in the CAPTURE ’xy complete’ format which for each detection gives
the ’column’ and ’row’ numbers of the trap (e.g. ’ 9 5’ for a capture in the trap at position (x=9,
y=5) on the grid). Trap identifiers have been recoded as strings with no spaces by inserting zeros
(e.g. ’905’ in this example).

Sherman traps are designed to capture one animal at a time, but the data include double captures (1
at ESG and 8 at WSG – see Examples). The true detector type therefore falls between ’single’ and
’multi’. Detector type is set to ’multi’ in the distributed data objects.

Some fitted secr models are included (ESG.0, ESG.b, ESG.t, ESG.h2, WSG.0, WSG.b, WSG.t,
WSG.h2, each with the indicated effect on g0). Otis et al. (1978) draw attention to the tendency
of Peromyscus to become ’trap happy’, and we observe that models with a behavioural response
(ESG.b, WSG.b) have the lowest AIC among those fitted here.

Object Description
deermouse.ESG capthist object, East Stuart Gulch
deermouse.WSG capthist object, Wet Swizer Gulch
ESG.0 fitted secr model – ESG null
ESG.b fitted secr model – ESG trap response g0
ESG.h2 fitted secr model – ESG finite mixture g0
ESG.t fitted secr model – ESG time-varying g0
WSG.0 fitted secr model – WSG null
WSG.b fitted secr model – WSG trap response g0
WSG.h2 fitted secr model – WSG finite mixture g0
WSG.t fitted secr model – WSG time-varying g0

Source

File ’examples’ distributed with program CAPTURE.

References

Huggins, R. M. (1991) Some practical aspects of a conditional likelihood approach to capture ex-
periments. Biometrics 47, 725–732.

20 derived

Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978) Statistical inference from
capture data on closed animal populations. Wildlife Monographs 62, 1–135.

Stanley, T. R. and Richards, J. D. (2005) A program for testing capture–recapture data for closure.
Wildlife Society Bulletin 33, 782–785.

See Also

closure.test

Examples

require (graphics)
data(deermouse)
par(mfrow = c(1,2), mar = c(1,1,4,1))
plot(deermouse.ESG, title = 'Peromyscus data from East Stuart Gulch',

border = 10, gridlines = FALSE, tracks = TRUE)
plot(deermouse.WSG, title = 'Peromyscus data from West Swizer Gulch',

border = 10, gridlines = FALSE, tracks = TRUE)

closure.test(deermouse.ESG, SB = TRUE)

reveal multiple captures
table(trap(deermouse.ESG), occasion(deermouse.ESG))
table(trap(deermouse.WSG), occasion(deermouse.WSG))

derived Derived Parameters of Fitted SECR Model

Description

Compute derived parameters of spatially explicit capture-recapture model. Density is a derived
parameter when a model is fitted by maximizing the conditional likelihood. So also is the effective
sampling area (in the sense of Borchers and Efford 2008).

Usage

derived(object, sessnum = NULL, groups = NULL, alpha = 0.05,
se.esa = FALSE, se.D = TRUE, loginterval = TRUE,
distribution = NULL)

esa(object, sessnum = 1, beta = NULL, real = NULL)

Arguments

object secr object output from secr.fit

sessnum index of session in object$capthist for which output required

groups indices defining group(s) (see Details)

alpha alpha level for confidence intervals

se.esa logical for whether to calculate SE(mean(esa))

se.D logical for whether to calculate SE(D-hat)

derived 21

loginterval logical for whether to base interval on log(D)
distribution character string for distribution of the number of individuals detected
beta vector of fitted parameters on transformed (link) scale
real vector of ‘real’ parameters

Details

The derived estimate of density is a Horvitz-Thompson-like estimate:

D̂ =

n∑
i=1

ai(θ̂)
−1

where ai(θ̂) is the estimate of effective sampling area for animal i with detection parameter vector
θ.

A non-null value of the argument distribution overrides the value in object$details.
The sampling variance of D̂ from secr.fit by default is spatially unconditional (distribution
= ‘Poisson’). For sampling variance conditional on the population of the habitat mask (and there-
fore dependent on the mask area), specify distribution = ‘binomial’. The equation for the
conditional variance includes a factor (1 − a/A) that disappears in the unconditional (Poisson)
variance (Borchers and Efford 2007). Thus the conditional variance is always less than the uncon-
ditional variance. The unconditional variance may in turn be an overestimate or (more likely) an
underestimate if the true spatial variance is non-Poisson.

Derived parameters may be estimated for population subclasses (groups) defined by the user with
the groups argument. Each named factor in groups should appear in the covariates dataframe
of object$capthist (or each of its components, in the case of a multi-session dataset).

esa is used by derived to compute individual-specific effective sampling areas:

ai(θ̂) =

∫
A

p.(X; zi, θ̂) dX

where p.(X) is the probability an individual at X is detected at least once and the zi are optional
individual covariates. Integration is over the area A of the habitat mask.

The effective sampling area ‘esa’ (a(θ̂)) reported by derived is equal to the arithmetic mean of
the ai(θ̂). The sampling variance of a(θ̂) is estimated by

v̂ar(a(θ̂)) = ĜTθ V̂θĜθ,

where V̂ is the asymptotic estimate of the variance-covariance matrix of the beta detection param-
eters (θ) and Ĝ is a numerical estimate of the gradient of a(θ) with respect to θ, evaluated at θ̂.

A 100(1–alpha)% asymptotic confidence interval is reported for density. By default, this is asym-
metric about the estimate because the variance is computed by backtransforming from the log scale.
You may also choose a symmetric interval (variance obtained on natural scale).

The vector of detection parameters for esa may be specified via beta or real, with the former
taking precedence. If neither is provided then the fitted values in objectfitpar are used.
Specifying real parameter values bypasses the various linear predictors. Strictly, the ‘real’ pa-
rameters are for a naive capture (animal not detected previously).

The computation of sampling variances is relatively slow and may be suppressed with se.esa and
se.D as desired.

Value

Dataframe with one row for each derived parameter (‘esa’, ‘D’) and columns as below

22 detectfn

estimate estimate of derived parameter
SE.estimate standard error of the estimate
lcl lower 100(1–alpha)% confidence limit
ucl upper 100(1–alpha)% confidence limit
varcomp1 variance due to variation in n (Huggins’ s2)
varcomp2 variance due to uncertainty in estimates of detection parameters

For a multi-session or multi-group analysis the value is a list with one component for each session
and group.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Borchers, D. L. and Efford, M. G. (2007) Supplements to Biometrics paper. Available online at
http://www.otago.ac.nz/density.

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture–recapture studies. Biometrics, 64, 377–385.

Huggins, R. M. (1989) On the statistical analysis of capture experiments. Biometrika 76, 133–140.

See Also

predict.secr, print.secr, secr.fit

Examples

extract derived parameters from a model fitted previously
by maximizing the conditional likelihood
data(secrdemo)
derived (secrdemo.CL)

what happens when sampling variance is conditional on mask N?
derived(secrdemo.CL, distribution = 'binomial')

fitted g0, sigma
esa(secrdemo.CL)
force different g0, sigma
esa(secrdemo.CL, real = c(0.2, 25))

detectfn Detection Functions

http://www.otago.ac.nz/density

detectfn 23

Description

A detection function relates the probability of detection to the distance of a detector from a point.
The reference point is usually thought of as an animal’s home-range centre. In secr only simple
2- or 3-parameter functions are used. Each type of function is identified by a numeric code (see
below). In most cases the name may also be used (as a quoted string).

Some functions are defined only for simulation: these either cannot be fitted by maximum likelihood
(uniform) or have yet to be implemented (compound halfnormal).

24 detector

Code Name Parameters Function

0 halfnormal g0, sigma g(d) = g0 exp
(

−d2
2σ2

)
1 hazard rate g0, sigma, z g(d) = g0[1− exp{−(d/σ)−z}]
2 exponential g0, sigma g(d) = g0 exp{−(d/σ)}
3 compound halfnormal g0, sigma, z g(d) = 1− (1− g0 exp

(
−d2
2σ2

)z
)

4 uniform g0, sigma g(d) = g0, d <= σ; g(d) = 0, otherwise}
5 w exponential g0, sigma, w g(d) = g0, d < w; g(d) = g0 exp{−((d− w)/σ), otherwise}
6 annular normal g0, sigma, w g(d) = g0 exp

(
−(d−w)2

2σ2

)
9 binary signal strength b0, b1 g(d) = F (b0 + b1d))
10 signal strength beta0, beta1, sdS g(d) = F ((c− (β0 + β1d))/sdS)
11 signal strength spherical beta0, beta1, sdS g(d) = F ((c− (β0 + β1(d− 1)− 10 ∗ log(d2)/log(10)))/sdS)

For functions (9), (10) and (11), ’F’ is the standard normal distribution function and ’c’ is an arbi-
trary signal threshold. The two parameters of (9) are functions of the parameters of (10) and (11):
b0 = (β0 − c)/sdS and b1 = β1/sdS (see Efford et al. 2009).

Function (11) includes an additional ’hard-wired’ term for sound attenuation due to spherical spread-
ing. Detection probability at distances less than 1 m is given by g(d) = F ((c− β0)/sdS)

The hazard-rate detection function was described by Hayes and Buckland (1983). The compound
halfnormal detection function follows Efford and Dawson (2009). The signal strength and binary
signal strength functions are from Efford et al. (2009).

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Efford, M. G. and Dawson, D. K. (2009) Effect of distance-related heterogeneity on population size
estimates from point counts. Auk 126, 100–111.

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009) Population density estimated from loca-
tions of individuals on a passive detector array. Ecology 90, 2676–2682.

Hayes, R. J. and Buckland, S. T. (1983) Radial-distance models for the line-transect method. Bio-
metrics 39, 29–42.

See Also

detectfnplot, secr detection models

detector Detector Type

Description

Extract or replace the detector type.

detector 25

Usage

detector(object, ...)
detector(object) <- value

Arguments

object object with ’detector’ attribute e.g. traps

value character string for detector type

... other arguments (not used)

Details

Valid detector types in version 1.4 are ’single’, ’multi’, ’proximity’, ’count’, ’signal’, ’quadrat-
binary’, ’quadratcount’, ’polygon’, and ’transect’ (the last four are undocumented in 1.4.0). The
detector type is stored as an attribute of a traps object. Detector types are mostly described by
Efford et al. (2009a,b). See also the documentation files ’secr-overview’ and ’secr-sound’.

Value

character string for detector type

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009a) Density estimation by spatially explicit
capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy
(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255–269.

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009b) Population density estimated from
locations of individuals on a passive detector array. Ecology 90, 2676–2682.

See Also

traps, RShowDoc

Examples

Default detector type is 'multi'
temptrap <- make.grid(nx = 6, ny = 8)
detector(temptrap) <- 'proximity'
summary(temptrap)

26 deviance

deviance Deviance of fitted secr model and residual degrees of freedom

Description

Compute the deviance or residual degrees of freedom of a fitted secr model, treating multiple ses-
sions and groups as independent. The likelihood of the saturated model depends on whether the
’conditional’ or ’full’ form was used, and on the distribution chosen for the number of individuals
observed (Poisson or binomial).

Usage

S3 method for class 'secr':
deviance(object, ...)
S3 method for class 'secr':
df.residual(object, ...)

Arguments

object secr object from secr.fit

... other arguments (not used)

Details

The deviance is −2log(L̂) + 2log(Lsat), where L̂ is the value of the log-likelihood evaluated at its
maximum, and Lsat is the log-likelihood of the saturated model, calculated thus:

Likelihood conditional on n -

Lsat = log(n!) +
∑
ω

[nωlog(nω

n)− log(nω!)]

Full likelihood, Poisson n -

Lsat = nlog(n)− n+
∑
ω

[nωlog(nω

n)− log(nω!)]

Full likelihood, binomial n -

Lsat = nlog(nN) + (N − n)log(N−n
N) + log(N !

(N−n)!) +
∑
ω

[nωlog(nω

n)− log(nω!)]

n is the number of individuals observed at least once, nω is the number of distinct histories, and N
is the number in a chosen area A that we estimate by N̂ = D̂A.

The residual degrees of freedom is the number of distinct detection histories minus the number of
parameters estimated. The detection histories of two animals are always considered distinct if they
belong to different groups.

When samples are (very) large the deviance is expected to be distributed as χ2 with nω − p degrees
of freedom when p parameters are estimated. In reality, simulation is needed to assess whether a
given value of the deviance indicates a satisfactory fit, or to estimate the overdispersion parameter
c. sim.secr is a convenient tool.

Value

The scalar numeric value of the deviance or the residual degress of freedom extracted from the fitted
model.

distancetotrap 27

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture–recapture studies. Biometrics 64, 377–385.

See Also

secr.fit, sim.secr

Examples

data(secrdemo)
deviance(secrdemo.0)
df.residual(secrdemo.0)

distancetotrap Distance To Nearest Detector

Description

Compute distance from each of a set of points to the nearest detector in an array, or return the
sequence number of the detector nearest each point.

Usage

distancetotrap(X, traps)

nearesttrap(X, traps)

Arguments

X coordinates

traps traps object

Details

distancetotrap returns the distance from each point in X to the nearest detector in traps. It
may be used to restrict the points on a habitat mask.

Value

distancetotrap returns a vector of distances (assumed to be in metres).

nearesttrap returns the index of the nearest trap.

28 ellipse.secr

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

make.mask

Examples

restrict a habitat mask to points within 70 m of traps
this is nearly equivalent to using make.mask with the
'trapbuffer' option
temptrap <- make.grid()
tempmask <- make.mask(temptrap)
d <- distancetotrap(tempmask, temptrap)
tempmask <- subset(tempmask, d < 70)

ellipse.secr Confidence ellipse

Description

Plot joint confidence ellipse for two parameters of secr model

Usage

ellipse.secr(object, par = c("g0", "sigma"), alpha = 0.05,
npts = 100, plot = TRUE, linkscale = TRUE, add = FALSE,
col = palette(), ...)

Arguments

object secr object output from secr.fit

par character vector of length two, the names of two ’beta’ parameters

alpha alpha level for confidence intervals

npts number of points on perimeter of ellipse

plot logical for whether ellipse should be plotted

linkscale logical; if FALSE then coordinates will be backtransformed from the link scale

add logical to add ellipse to an existing plot

col vector of one or more plotting colours

... arguments to pass to plot functions

Details

A confidence ellipse is calculated from the asymptotic variance-covariance matrix of the beta pa-
rameters (coefficients), and optionally plotted.

If linkscale == FALSE, the inverse of the appropriate link transformation is applied to the
coordinates of the ellipse, causing it to deform.

If object is a list of secr models then one ellipse is constructed for each model. Colours are
recycled as needed.

empirical.varD 29

Value

A list containing the x and y coordinates is returned invisibly

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

Examples

data(secrdemo)
ellipse.secr(secrdemo.0)

empirical.varD Design-based Variance of Density

Description

Compute the variance of a density estimate from a fitted spatially explicit model, using the empirical
spatial variance of the number observed in replicated sampling units.

Usage

empirical.varD(object, esa = NULL, se.esa = NULL)

Arguments

object fitted secr model object or vector of number observed in each sampling unit

esa scalar estimate of effective sampling area (â)

se.esa estimated standard error of effective sampling area (ŜE(â))

Details

The variance of a Horvitz-Thompson-like estimate of density may be estimated as the sum of two
components, one due to uncertainty in the estimate of effective sampling area (â) and the other due
to spatial variance in the total number of animals n observed on J replicate sampling units (n =∑J
j=1 nj). We use a delta-method approximation that assumes independence of the components:

v̂ar(D̂) = D̂2{ v̂ar(n)

n2
+

v̂ar(â)

â
}

where v̂ar(n) = J
J−1

∑J
j=1(nj−n/J)2. The estimate of var(â) is model-based while that of var(n)

is design-based. This formulation follows that of Buckland et al. (2001, p. 78) for conventional dis-
tance sampling. Given sufficient independent replicates, it is a robust way to allow for unmodelled
spatial overdispersion.

There is a complication in SECR owing to the fact that â is a derived quantity (actually an integral)
rather than a model parameter. Its sampling variance var(â) is estimated indirectly in secr by
combining the asymptotic estimate of the covariance matrix of the fitted detection parameters θ
with a numerical estimate of the gradient of a(θ) with respect to θ. This calculation is performed in
derived.

30 empirical.varD

Input may be either a single fitted model or a vector of counts (the nj) along with â and ŜE(â). If
object is a single fitted model then it must span multiple sessions and each session is interpreted
as a replicate sample. This form does not allow zero counts; if some units have zero counts use the
second style of input.

Value

A vector of values –

D Horvitz-Thompson-like estimate of population density

seD SE of density estimate

CVD relative SE of density estimate

CVn relative SE of number observed (across sampling units)

CVa relative SE of effective sampling area

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L. and Thomas,
L. (2001) Introduction to Distance Sampling: Estimating Abundance of Biological Populations.
Oxford University Press, Oxford.

See Also

derived, esa

Examples

The `ovensong' data are pooled from 75 replicate positions
of a 4-microphone array. The array positions are coded as
the first 4 digits of each sound identifier. We first
impose a 52.5 dB signal threshold as in Dawson & Efford
(2009, J. Appl. Ecol. 46:1201--1209). The vector nj includes
33 positions at which no ovenbird was heard. The first and
second columns of `temp' hold the estimated effective
sampling area and its standard error.

data(ovensong)
signalCH.525 <- subset(signalCH, cutval = 52.5)
nonzero.counts <- table(substring(rownames(signalCH.525),1,4))
nj <- c(nonzero.counts, rep(0, 75 - length(nonzero.counts)))
temp <- derived(ovensong.model.1, se.esa = TRUE)
empirical.varD(nj, temp['esa',1], temp['esa',2])

The result is very close to that reported by Dawson & Efford
from a 2-D Poisson model fitted by maximizing the full likelihood.

FAQ 31

FAQ Frequently Asked Questions, And Others

Description

A place for hints and miscellaneous advice.

How do I install secr?

Follow the usual procedure for installing binaries from CRAN, or ...

Under Windows, install the package binary from the Rgui. Save the file secr_1.4.x.zip to a local
folder (‘x’ is the release number) and use the menu option "Packages | Install packages(s) from local
zip files...".

For other systems you may need to install the source package secr_1.4.x.tar.gz.

Whatever your system, you also need to get the package abind (use Packages | Install package(s)...
in Windows to download from CRAN). Other required packages (MASS, nlme, stats) should be
available as part of your R installation.

Like other contributed packages, secr needs to be loaded before each use e.g.,library(secr).

You can learn about changes in the current version with news(package = ’secr’).

How can I get help?

There are three general ways of displaying documentation from within R. Firstly, you can bring up
help pages for particular functions from the command prompt. For example:

? secr.fit

Secondly, help.search() lets you ask for a list of the help pages on a vague topic. From R version
2.8.0 you can use just ??. For example:

?? ’linear models’

Thirdly, you can display various documents:

RShowDoc (’secr-manual’, package=’secr’)

RShowDoc (’secr-overview’, package=’secr’)

See below for more R tips.

How should I report a problem?

If you get really stuck or find something you think is a bug then please report the problem. There
is a support forum at www.phidot.org/forum under ’DENSITY/secr’. Please read the FAQ
there before posting.

You may be asked to send an actual dataset - ideally, the simplest one that exhibits the problem.
The correct address for this is <density.software@otago.ac.nz>. Use save to wrap
several R objects together in one .RData file, e.g., save(’captdata’, ’secrdemo.0’,
’secrdemo.b’, file = ’mydata.RData’). Also, paste into the text of your message
the output from packageDescription("secr").

www.phidot.org/forum

32 FAQ

Why do I get different answers from secr and Density?

Strictly speaking, this should not happen if you have specified the same model and likelihood,
although you may see a little variation due to the different maximization algorithms. Likelihoods
(and estimates) may differ if you use different integration meshes (habitat masks), which can easily
happen because the programs differ in how they set up the mesh. If you want to make a precise
comparison, save the Density mesh to a file and read it into secr, or vice versa.

Extreme data, especially rare long-distance movements, may be handled differently by the two
programs. The ‘minprob’ component of the ‘details’ argument of secr.fit sets a threshold of
probability for capture histories (smaller values are all set to minprob), whereas Density has no
explicit limit. In the current version the default minprob has been reduced from 1e-20 to 1e-50. If
you find a discrepancy with Density it may be worth lowering minprob even further.

How can I speed up model fitting and model selection?

If you don’t need to model variation in density over space or time then consider maximizing the
conditional likelihood in secr.fit (CL = TRUE). This reduces the complexity of the optimiza-
tion problem, especially where there are several sessions and you want session-specific density
estimates (by default, derived returns a separate estimate for each session even if the detection
parameters are constant across sessions).

Check the extent and spacing of the habitat mask that you are using. Execution time is roughly
proportional to the number of mask points. Default settings can lead to very large masks for detector
arrays that are elongated ‘north-south’ because the number of points in the east-west direction is
fixed. Compare results with a much sparser mask (e.g., nx = 32 instead of nx = 64).

Do you really need to fit that complex model? Chasing down small decrements in AIC is so last-
century. Remember that detection parameters are mostly nuisance parameters, and models with big
differences in AIC may barely differ in their density estimates. This is a good topic for further
research - we seem to need a ‘focussed information criterion’ (Claeskens and Hjort 2008) to discern
the differences that matter.

Use score.test to compare nested models. At each stage this requires only the more simple
model to have been fitted in full; further processing is required to obtain a numerical estimate of
the gradient of the likelihood surface for the more complex model, but this is much faster than
maximizing the likelihood.

Things You Might Need To Know About R

The function findFn in package sos lets you search CRAN for R functions by matching text in
their documentation.

There is now a vast amount of R advice available on the web. For the terminally frustrated,
‘R inferno’ by Patrick Burns is recommended (www.burns-stat.com/pages/Tutor/R_
inferno.pdf). "If you are using R and you think you’re in hell, this is a map for you".

Method functions for S3 classes cannot be listed in the usual way by typing the function name at
the R prompt because they are ‘hidden’ in a namespace. Get around this with getAnywhere(). For
example:

getAnywhere(print.secr)

R objects have ‘attributes’ that usually are kept out of sight. Important attributes are ‘class’ (all
objects), ‘dim’ (matrices and arrays) and ‘names’ (lists). secr hides quite a lot of useful data as
named ‘attributes’. Usually you will use summary and extraction methods (traps, covariates,
usage etc.) to view and change the attributes of the various classes of object in secr. If you’re
curious, you can reveal the lot with ‘attributes’. For example:

data(secrdemo)

www.burns-stat.com/pages/Tutor/R_inferno.pdf
www.burns-stat.com/pages/Tutor/R_inferno.pdf

flip 33

traps(captdata) ## extraction method for ’traps’

attributes(captdata) ## all attributes

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Claeskens, G. and Hjort N. L. (2008) Model Selection and Model Averaging. Cambridge: Cam-
bridge University Press.

flip Flip Points

Description

Flip an array of points about a vertical or horizontal axis.

Usage

flip (object, lr = F, tb = F, ...)

Arguments

object a 2-column matrix or object that can be coerced to a matrix

lr either logical for whether array should be flipped left-right, or numeric value for
x-coordinate of axis about which it should be flipped left-right

tb either logical for whether array should be flipped top-bottom, or numeric value
for y-coordinate of axis about which it should be flipped top-bottom

... other arguments (not used)

Details

Logical values for lr or tb indicate that points should be flipped about the mean on the relevant
axis.

Numeric values indicate the particular axis value(s) about which points should be flipped. The
default arguments result in no change.

This is a generic function. A method is provided for traps objects.

Value

A matrix with the coordinates of each point reflected about the desired axis or axes.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

traps, rotate.traps

34 flip.traps

Examples

temp <- matrix(runif (20) * 2 - 1, nc = 2)
temp2 <- flip(temp, lr = 1)
plot(temp, xlim=c(-1.5,4), ylim = c(-1.5,1.5), pch = 16)
points (temp2, pch = 1)
arrows (temp[,1], temp[,2], temp2[,1], temp2[,2], length = 0.1)

flip.traps Flip Detector Array

Description

Flip a detector array about a vertical or horizontal axis.

Usage

S3 method for class 'traps':
flip (object, lr = F, tb = F, ...)

Arguments

object a 2-column matrix or object that can be coerced to a matrix

lr either logical for whether array should be flipped left-right, or numeric value for
x-coordinate of axis about which it should be flipped left-right

tb either logical for whether array should be flipped top-bottom, or numeric value
for y-coordinate of axis about which it should be flipped top-bottom

... other arguments (not used)

Details

Logical values for lr or tb indicate that points should be flipped about the mean on the relevant
axis.

Numeric values indicate the particular axis value(s) about which points should be flipped.

The default arguments result in no change.

Value

Object of class traps with the coordinates of each point reflected about the desired axis or axes.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

traps, rotate.traps, shift.traps

homerange 35

Examples

par(mfrow=c(1,2), xpd = TRUE)
traps1 <- make.grid(nx = 8, ny = 6, ID = 'numxb')
traps2 <- flip (traps1, lr = TRUE)
plot(traps1, border = 5, lab = TRUE, offset = 7, gridl = FALSE)
plot(traps2, border = 5, lab = TRUE, offset = 7, gridl = FALSE)

homerange Home Range Statistics

Description

Some ad hoc measures of home range size may be calculated in secr from capture–recapture data:

dbar is the mean distance between consecutive capture locations, pooled over individuals (e.g.
Efford 2004). moves returns the raw distances.

RPSV (for ’Root Pooled Spatial Variance’) is a measure of the 2-D dispersion of the locations at
which individual animals are detected, pooled over individuals.

MMDM (for ’Mean Maximum Distance Moved’) is the average maximum distance between detec-
tions of each individual i.e. the observed range length averaged over individuals (Otis et al. 1978).

ARL or ’Asymptotic Range Length’) is obtained by fitting an exponential curve to the scatter of
observed individual range length vs the number of detections of each individual (Jett and Nichols
1987: 889).

Usage

dbar(capthist)
RPSV(capthist)
MMDM(capthist, min.recapt = 1, full = FALSE)
ARL(capthist, min.recapt = 1, plt = FALSE, full = FALSE)
moves(capthist)

Arguments

capthist object of class capthist

min.recapt integer minimum number of recaptures for a detection history to be used

plt logical; if TRUE observed range length is plotted against number of recaptures

full logical; set to TRUE for detailed output

Details

dbar is defined as

d =

n∑
i=1

ni−1∑
j=1

√
(xi,j − xi,j+1)2 + (yi,j − yi,j+1)2

n∑
i=1

(ni − 1)

36 homerange

RPSV is defined as

RPSV =

√√√√√√√
n∑
i=1

ni∑
j=1

[(xi,j − xi)2 + (yi,j − yi)2]

n∑
i=1

(ni − 1)− 1

dbar and RPSV have a specific role as proxies for detection scale in inverse-prediction estimation
of density (Efford 2004; see ip.secr).

RPSV is used in autoini to obtain plausible starting values for maximum likelihood estimation.

MMDM and ARL discard data from detection histories containing fewer than min.recapt+1 de-
tections.

Value

Scalar distance in metres, or a list of such values if capthist is a multi-session list.

The full argument may be used with MMDM and ARL to return more extensive output, particularly
the observed range length for each detection history.

Note

All measures are affected by the arrangement of detectors. dbar is also affected quite strongly by
serial correlation in the sampled locations. Using dbar with ’proximity’ detectors raises a problem
of interpretation, as the original sequence of multiple detections within an occasion is unknown.
RPSV is a value analogous to the standard deviation of locations about the home range centre.

The value returned by dbar for ’proximity’ or ’count’ detectors is of little use because multiple
detections of an individual within an occasion are in arbitrary order.

Inclusion of these measures in the secr package does not mean they are recommended for general
use! It is usually better to use a spatial parameter from a fitted model (e.g., σ of the half-normal
detection function). Even then, be careful that σ is not ’contaminated’ with behavioural effects (e.g.
attraction of animal to detector) or ’detection at a distance’.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Efford, M. G. (2004) Density estimation in live-trapping studies. Oikos 106, 598–610.

Jett, D. A. and Nichols, J. D. (1987) A field comparison of nested grid and trapping web density
estimators. Journal of Mammalogy 68, 888–892.

Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978) Statistical inference from
capture data on closed animal populations. Wildlife Monographs 62, 1–135.

See Also

autoini

Examples

data(secrdemo)
dbar(captdata)
RPSV(captdata)

housemouse 37

housemouse House mouse live trapping data

Description

Data of H. N. Coulombe from live trapping of feral house mice (Mus musculus) in a salt marsh,
California, USA.

Usage

data(housemouse)

Details

H. N. Coulombe conducted a live-trapping study on an outbreak of feral house mice in a salt marsh
in mid-December 1962 at Ballana Creek, Los Angeles County, California. A square 10 x 10 grid
was used with 100 Sherman traps spaced 3 m apart. Trapping was done twice daily, morning and
evening, for 5 days.

The dataset was described by Otis et al. (1978) and distributed with their CAPTURE software (now
available from www.mbr-pwrc.usgs.gov/software.html). Otis et al. (1978 p. 62, 68)
cite Coulombe’s unpublished 1965 master’s thesis from the University of California, Los Angeles,
California.

The data are provided as a single-session capthist object. There are two individual covariates:
sex (factor levels ‘f’, ‘m’) and age class (factor levels ‘j’, ‘sa’, ‘a’). The sex of two animals is not
available (NA); it is necessary to drop these records for analyses using ‘sex’.

The datasets were originally in the CAPTURE ‘xy complete’ format which for each detection gives
the ‘column’ and ‘row’ numbers of the trap (e.g. ‘ 9 5’ for a capture in the trap at position (x=9,
y=5) on the grid). Trap identifiers have been recoded as strings with no spaces by inserting zeros
(e.g. ‘0905’ in this example).

Sherman traps are designed to capture one animal at a time, but the data include 30 double captures
and one occasion when there were 4 individuals in a trap at one time. The true detector type
therefore falls between ‘single’ and ‘multi’. Detector type is set to ‘multi’ in the distributed data
objects.

Otis et al. (1978) report various analyses including a closure test on the full data, and model selec-
tion and density estimation on data from the mornings only. We include several secr models fitted
to the ‘morning’ data (morning.0, morning.b etc.). Of these, a model including individual
heterogeneity in both g0 and sigma has the lowest AIC.

Object Description
housemouse capthist object
housemouse.0 fitted secr model – null
housemouse.ampm fitted secr model – g0 differs morning vs afternoon
housemouse.ampmh2h2 fitted secr model – as above, finite mixture g0, sigma
morning.0 fitted secr model – morning data only, null
morning.0h2 fitted secr model – mornings, null g0, finite mixture sigma
morning.b fitted secr model – mornings, trap response g0
morning.h2 fitted secr model – mornings, finite mixture g0
morning.h2h2 fitted secr model – mornings, finite mixture g0, sigma
morning.t fitted secr model – mornings, day-specific g0

www.mbr-pwrc.usgs.gov/software.html

38 ip.secr

Source

File ‘examples’ distributed with program CAPTURE.

References

Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978) Statistical inference from
capture data on closed animal populations. Wildlife Monographs 62, 1–135.

Examples

require (graphics)
data(housemouse)
plot(housemouse, title = paste('Coulombe (1965), Mus musculus,',

'California salt marsh'), border = 5, rad = 0.5,
gridlines = FALSE)

morning <- subset(housemouse, occ = c(1,3,5,7,9))
summary(morning)

drop 2 unknown-sex mice
known.sex <- subset(housemouse, !is.na(covariates(housemouse)$sex))

reveal multiple captures
table(trap(housemouse), occasion(housemouse))

AIC(morning.0, morning.b, morning.t, morning.h2, morning.0h2, morning.h2h2)

assess need to distinguish morning and afternoon samples
Not run:
housemouse.0 <- secr.fit (housemouse, buffer = 20)
housemouse.ampm <- secr.fit (housemouse, model = g0~tcov, buffer = 20,

timecov = c(0,1,0,1,0,1,0,1,0,1))
AIC(housemouse.0, housemouse.ampm)

End(Not run)

ip.secr Spatially Explicit Capture–Recapture by Inverse Prediction

Description

Estimate population density by simulation and inverse prediction (Efford 2004; Efford, Dawson &
Robbins 2004). A restricted range of SECR models may be fitted (detection functions with more
than 2 parameters are not supported, nor are covariates).

Usage

ip.secr (capthist, predictorfn = pfn, predictortype = 'null',
detectfn = 0, mask = NULL, start = NULL, boxsize = 0.1,
centre = 3, min.nsim = 10, max.nsim = 2000, CVmax = 0.002,
var.nsim = 1000, maxbox = 5, ...)

ip.secr 39

pfn(capthist, N.estimator)

Arguments

capthist capthist object including capture data and detector (trap) layout

predictorfn a function with two arguments (the first a capthist object) that returns a vector
of predictor values

predictortype
value (usually character) passed as the second argument of predictorfn

detectfn integer code or character string for shape of detection function 0 halfnormal, 2
exponential, 3 uniform) – see detectfn

mask optional habitat mask to limit simulated population

start vector of np initial parameter values (density, g0 and sigma)

boxsize scalar or vector of length np for size of design as fraction of central parameter
value

centre number of centre points in simulation design

min.nsim minimum number of simulations per point

max.nsim maximum number of simulations per point

CVmax tolerance for precision of points in predictor space

var.nsim number of additional simulations to estimate variance-covariance matrix

maxbox maximum number of attempts to ’frame’ solution

... further arguments passed to sim.popn

N.estimator character value indicating population estimator to use

Details

’Inverse prediction’ uses methods from multivariate calibration (Brown 1982). The goal is to es-
timate population density (D) and the parameters of a detection function (usually g0 and sigma)
by ’matching’ statistics from predictorfn(capthist) (the target vector) and statistics from
simulations of a 2-D population using the postulated detection model. Statistics (see Notes) are
defined by the predictor function, which should return a vector equal in length to the number of
parameters (np = 3). Simulations of the 2-D population use sim.popn. The simulated popula-
tion is sampled with sim.capthist according to the detector type (e.g., ’single’ or ’multi’) and
detector layout specified in traps(capthist).

. . . may be used to control aspects of the simulation by passing named arguments (other than D)
to sim.popn. The most important arguments of sim.popn to keep an eye on are ’buffer’ and
’Ndist’. ’buffer’ defines the region over which animals are simulated (unless mask is specified) - the
region should be large enough to encompass all animals that might be caught. ’Ndist’ controls the
number of individuals simulated within the buffered or masked area. The default is ’poisson’. Use
’Ndist = fixed’ to fix the number in the buffered or masked area A at N = DA. This conditioning
reduces the estimated standard error of D̂, but conditioning is not always justified - seek advice
from a statistician if you are unsure.

The simulated 2-D distribution of animals is Poisson by default. There is no ’even’ option as in
Density.

Simulations are conducted on a factorial experimental design in parameter space - i.e. at the vertices
of a cuboid ’box’ centred on the working values of the parameters, plus an optional number of centre

40 ip.secr

points. The size of the ’box’ is specified as a fraction of the working values, so for example the
limits on the density axis are D*(1–boxsize) and D*(1+boxsize) where D* is the working value of
D. For g0, this computation uses the odds transformation (g0/(1–g0)). boxsize may be a vector
defining different scaling on each parameter dimension.

A multivariate linear model is fitted to predict each set of simulated statistics from the known
parameter values. The number of simulations at each design point is increased (doubled) until the
residual standard error divided by the central value is less than CVmax for all parameters. An error
occurs if max.nsim is exceeded.

Once a model with sufficient precision has been obtained, a new working vector of parameter es-
timates is ’predicted’ by inverting the linear model and applying it to the target vector. A working
vector is accepted as the final estimate when it lies within the box; this reduces the bias from using
a linear approximation to extrapolate a nonlinear function. If the working vector lies outside the
box then a new design is centred on value for each parameter in the working vector.

Once a final estimate is accepted, further simulations are conducted to estimate the variance-
covariance matrix. These also provide a parametric bootstrap sample to evaluate possible bias.
Set var.nsim = 0 to suppress the variance step.

See Efford et al. (2004) for another description of the method, and Efford et al. (2005) for an
application.

The value of predictortype is passed as the second argument of the chosen predictorfn.
By default this is pfn, for which the second argument (N.estimator) is a character value from
c(’n’, ’null’,’zippin’,’jackknife’), corresponding respectively to the number of individuals caught
(Mt+1), and N̂ from models M0, Mh and Mb of Otis et al. (1978).

If not provided, the starting values are determined automatically with autoini.

Linear measurements are assumed to be in metres and density in animals per hectare (10 000 m2).

Value

For ip.secr, a list comprising

call the function call

IP dataframe with estimated density ha−1, g0 and sigma (m)

vcov variance-covariance matrix of estimates

ip.nsim total number of simulations
variance.bootstrap

dataframe summarising simulations for variance estimation

proctime processor time (seconds)

For pfn, a vector of numeric values corresponding to N̂ , p̂, and RPSV, a measure of the spatial
scale of individual detections.

Note

Each statistic is expected to have a monotonic relationship with one parameter when the other
parameters are held constant. Typical statistics are -

Statistic Parameter
N̂ D
p̂ g0
RPSV σ

ip.secr 41

where N̂ and p̂ are estimates of population size and capture probability from the naive application of
a nonspatial population estimator, and RPSV is a trap-revealed measure of the scale of movement.

This method provides nearly unbiased estimates of the detection parameter g0 when data are from
single-catch traps (likelihood-based estimates of g0 are biased in this case - Efford, Borchers &
Byrom 2009).

The implementation largely follows that in Density, and it may help to consult the Density online
help. There are some differences: the M0 and Mb estimates of population-size in ip.secr can
take non-integer values; the simulation design used by ip.secr uses odds(g0) rather than g0; the
default boxsize and CVmax differ from those in Density 4.4. There is no provision in ip.secr for
two-phase estimation, using a different experimental design at the second phase. If you wish you
can achieve the same effect by using the estimates as starting values for a second call of ip.secr
(see examples).

Maximum likelihood estimates from secr.fit are preferable in several respects to estimates
from inverse prediction (speed*; more complex models; tools for model selection). ip.secr is
provided for checking estimates of g0 from single-catch traps, and for historical continuity.

* autoini with thin = 1 provides fast estimates from a simple halfnormal model if variances are
not required.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Brown, P. J. (1982) Multivariate calibration. Journal of the Royal Statistical Society, Series B 44,
287–321.

Efford, M. G. (2004) Density estimation in live-trapping studies. Oikos 106, 598–610.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit
capture–recapture: likelihood-based methods. In: D. L. Thompson, E. G. Cooch and M. J. Conroy
(eds) Modeling Demographic Processes in Marked Populations. Springer. Pp. 255–269.

Efford, M. G., Dawson, D. K. and Robbins C. S. (2004) DENSITY: software for analysing capture-
recapture data from passive detector arrays. Animal Biodiversity and Conservation 27, 217–228.

Efford, M. G., Warburton, B., Coleman, M. C. and Barker, R. J. (2005) A field test of two methods
for density estimation. Wildlife Society Bulletin 33, 731–738.

Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978) Statistical inference from
capture data on closed animal populations. Wildlife Monographs 62.

See Also

capthist, secr.fit, RPSV, autoini, sim.popn, detection functions

Examples

Not run:
these calculations may take several minutes

data(secrdemo)

default settings
ip.secr (captdata)

42 LLsurface.secr

coarse initial fit, no variance step
ip1 <- ip.secr (captdata, boxsize = 0.2, CVmax=0.01, var=0)
refined fit
ip2 <- ip.secr (captdata, start = ip1$IP[,'estimate'],

boxsize = 0.1, CVmax=0.002, var=1000)
ip2

improvise another predictor function (dbar instead of RPSV)
pfn2 <- function (capthist, v) { ## v is not used

sumni <- sum(capthist!=0) ## total detections
n <- nrow(capthist) ## number of individuals
nocc <- ncol(capthist) ## number of occasions
c(N = n, p = sumni/n/nocc, dbar = dbar(capthist))

}
ip.secr (captdata, predictorfn = pfn2)

End(Not run)

LLsurface.secr Plot likelihood surface

Description

Calculate log likelihood over a grid of values of two beta parameters from a fitted secr model and
optionally make an approximate contour plot of the log likelihood surface.

Usage

LLsurface.secr(object, betapar = c("g0", "sigma"), xval = NULL,
yval = NULL, centre = NULL, realscale = TRUE, plot = TRUE,
plotfitted = TRUE, ...)

Arguments

object secr object output from secr.fit

betapar character vector giving the names of two beta parameters

xval vector of numeric values for x-dimension of grid

yval vector of numeric values for y-dimension of grid

centre vector of central values for all beta parameters

realscale logical. If TRUE input and output of x and y is on the untransformed (inverse-
link) scale.

plot logical. If TRUE a contour plot is produced

plotfitted logical. If TRUE the MLE from object is shown on the plot (+)

... other arguments passed to contour

logit 43

Details

centre is set by default to the fitted values of the beta parameters in object. This has the effect
of holding parameters other than those in betapar at their fitted values.

If xval or yval is not provided then 11 values are set at equal spacing between 0.8 and 1.2
times the values in centre (on the ‘real’ scale if realscale = TRUE and on the ‘beta’ scale
otherwise).

Contour plots may be customized by passing graphical parameters through the . . . argument.

Value

Invisibly returns a matrix with the log likelihood evaluated at each grid point

Note

LLsurface.secr works for named ‘beta’ parameters rather than ‘real’ parameters. The default
realscale = TRUE only works for beta parameters that share the name of the real parameter
to which they relate i.e. the beta parameter for the base level of the real parameter. This is because
link functions are defined for real parameters not beta parameters.

The contours are approximate because they rely on interpolation. See Examples for a more reliable
way to compare the likelihood at the MLE with nearby points on the surface.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

Examples

Not run:
data(secrdemo)
LLsurface.secr(secrdemo.CL, xval = seq(0.16,0.40,0.02),

yval = 25:35, nlevels = 20)

now verify MLE
click on MLE and apparent 'peak'
xy <- locator(2)
temp <- LLsurface.secr(secrdemo.CL, xval = xy$x,

yval = xy$y, plot = FALSE)
temp

End(Not run)

logit Logit Transformation

Description

Transform real values to the logit scale, and the inverse.

Usage

logit(x)
invlogit(y)

44 logmultinom

Arguments

x vector of numeric values in (0,1) (possibly a probability)

y vector of numeric values

Details

The logit transformation is defined as logit(x) = log(x
1−x) for x ∈ (0, 1).

Value

Numeric value on requested scale.

Note

logit is equivalent to qlogis, and invlogit is equivalent to plogis (both R functions in
the stats package). logit and invlogit are used in secr because they are slightly more robust
to bad input, and their names are more memorable!

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

Examples

logit(0.5)
invlogit(logit(0.2))

logmultinom Multinomial Coefficient of SECR Likelihood

Description

Compute the constant multinomial component of the SECR log likelihood

Usage

logmultinom(capthist, grp = NULL)

Arguments

capthist capthist object

grp factor defining group membership, or a list (see Details)

logmultinom 45

Details

For a particular dataset and grouping, the multinomial coefficient is a constant; it does not depend on
the parameters and may be ignored when maximizing the likelihood to obtain parameter estimates.
Nevertheless, the log likelihood reported by secr.fit includes this component.

If grp is NULL then all animals are assumed to belong to one group. Otherwise, the length of grp
should equal the number of rows of capthist.

grpmay also be any vector that can be coerced to a factor. If capthist is a multi-session capthist
object then grp should be a list with one factor per session.

If capture histories are not assigned to groups the value is the logarithm of(
n

n1, ..., nC

)
=

n!

n1!n2!...nC !

where n is the total number of capture histories and n1 ... nC are the frequencies with which each
of the C unique capture histories were observed.

If capture histories are assigned to G groups the value is the logarithm of

G∏
g=1

ng!

ng1!ng2!...ngCg !

where ng is the number of capture histories of group g and ng1 ... ngCg
are the frequencies with

which each of the Cg unique capture histories were observed for group g.

For multi-session data, the value is the sum of the single-session values. Both session structure and
group structure therefore affect the value computed. Users will seldom need this function.

Value

The numeric value of the log likelihood component.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture–recapture studies. Biometrics 64, 377–385.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit
capture–recapture: likelihood-based methods. In: D. L. Thompson, E. G. Cooch and M. J. Conroy
(eds) Modeling Demographic Processes in Marked Populations. Springer. Pp. 255–269.

See Also

stoatDNA

Examples

data(stoatDNA)
no groups
logmultinom(stoatCH)

46 LR.test

LR.test Likelihood Ratio Test for SECR Models

Description

Compute likelihood ratio test to compare two fitted models, one nested within the other.

Usage

LR.test(secr1, secr2)

Arguments

secr1 fitted secr model

secr2 fitted secr model

Details

The test statistic is twice the difference of the maximized likelihoods. It is compared to a chi-square
distribution with df equal to the number of extra parameters in the more complex model.

The models must be nested (no check is performed - this is up to the user), but either secr1 or secr2
may be the more general model.

Value

Object of class ’htest’, a list with components

statistic value the test statistic

parameter degrees of freedom of the approximate chi-squared distribution of the test statis-
tic

p.value probability of test statistic assuming chi-square distribution

method character string indicating the type of test performed

data.name character string with names of secr models compared

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

AIC.secr, score.test

Examples

data(secrdemo)
AIC (secrdemo.0, secrdemo.b)
LR.test (secrdemo.0, secrdemo.b)

make.capthist 47

make.capthist Construct capthist Object

Description

Form a capthist object from a data frame of capture records and a traps object.

Usage

make.capthist(captures, traps, fmt = "trapID", noccasions = NULL,
covnames = NULL, bysession = TRUE, sortrows = TRUE,
cutval = NULL, tol = 0.01)

Arguments

captures dataframe of capture records in one of two possible formats (see Details)

traps object of class traps describing an array of passive detectors

fmt character string for capture format. Valid values are ’XY’ and ’trapID’.

noccasions number of occasions on which detectors were operated

covnames character vector of names for individual covariate fields

bysession logical, if true then ID are made unique by session

sortrows logical, if true then rows are sorted in ascending order of animalID

cutval numeric, threshold of signal strength for ’signal’ detector type

tol numeric, tolerance in metres when assigning coordinates for ’transect’ detector
type

Details

make.capthist is the most flexible way to prepare data for secr.fit. See read.capthist
for a more streamlined way to read data from text files for common detector types. Each row of the
input data frame captures represents a detection on one occasion. The capture data frame may
be formed from a text file with read.table.

Input formats are based on the Density software (Efford 2009; see also ../doc/secr-datainput.
pdf). If fmt = ’XY’ the required fields are (session, ID, occasion, x, y) in that order. If fmt =
’trapID’ the required fields are (session, ID, occasion, trap), where trap is the numeric index of
the relevant detector in traps. session and ID may be character-, vector- or factor-valued;
other required fields are numeric. Fields are matched by position (column number), not by name.
Columns after the required fields are interpreted as individual covariates that may be continuous
(e.g., size) or categorical (e.g., age, sex).

If captures has data from multiple sessions then traps may be either a list of traps ob-
jects, one per session, or a single traps object that is assumed to apply throughout. Similarly,
noccasions may be a vector specifying the number of occasions in each session.

Covariates are assumed constant for each individual; the first non-missing value is used. The length
of covnames should equal the number of covariate fields in captures.

bysession takes effect when the same individual is detected in two or more sessions: TRUE
results in one capture history per session, FALSE has the effect of generating a single capture
history (this is not appropriate for the models currently provided in secr).

../doc/secr-datainput.pdf
../doc/secr-datainput.pdf

48 make.capthist

Deaths are coded as negative values in the occasion field of captures. Occasions should be
numbered 1, 2, ..., noccasions. By default, the number of occasions is the maximum value of
’occasion’ in captures.

Value

An object of class capthist (a matrix or array of detection data with attributes for detector
positions etc.). For ’single’ and ’multi’ detectors this is a matrix with one row per animal and one
column per occasion (dim(capthist)=c(nc,noccasions)); each element is either zero (no detection)
or a detector number (the row number in traps not the row name). For ’proximity’ detectors
capthist is an array of values {-1, 0, 1} and dim(capthist)=c(nc,noccasions,ntraps). The number
of animals nc is determined from the input, as is noccasions if it is not specified. traps,
covariates and other data are retained as attributes of capthist.

Deaths during the experiment are represented as negative values in capthist.

If the input has data from multiple sessions then the output is an object of class c(’list’,’capthist’)
comprising a list of single-session capthist objects.

Note

make.capthist requires that the data for captures and traps already exist as R objects. To
read data from external (text) files, first use read.table and read.traps, or try read.capthist
for a one-step solution.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Efford, M. G. (2009) Density 4.4: software for spatially explicit capture–recapture. Department of
Zoology, University of Otago, Dunedin, New Zealand. http://www.otago.ac.nz/density.

See Also

capthist, traps, read.capthist, secr.fit, sim.capthist

Examples

load demonstration data and peek at XY data
data(secrdemo)
captXY[1:5,]
trapXY[1:5,]

demotraps <- read.traps(data = trapXY)
demoCHxy <- make.capthist (captXY, demotraps, fmt = 'XY')

demoCHxy ## print method for capthist
plot(demoCHxy) ## plot method for capthist
summary(demoCHxy) ## summary method for capthist

http://www.otago.ac.nz/density

make.mask 49

make.mask Build Habitat Mask

Description

Construct a habitat mask object for spatially explicit capture-recapture. A mask object is a set of
points with optional attributes.

Usage

make.mask(traps, buffer = 100, spacing = NULL, nx = 64,
type = "traprect", poly = NULL, pdotmin = 0.001, ...)

Arguments

traps object of class traps

buffer width of buffer in metres

spacing spacing between grid points (metres)

nx number of grid points in ’x’ direction

type character string for method to use (’traprect’, ’trapbuffer’, ’pdot’, ’polygon’)

poly matrix of two columns interpreted as the x and y coordinates of a bounding
polygon (optional)

pdotmin minimum detection probability for inclusion in mask when type = ’pdot’ (op-
tional)

... additional arguments passed to pdot when type = ’pdot’

Details

The ’traprect’ method constructs a grid of points in the rectangle formed by adding a buffer strip
to the minimum and maximum x-y coordinates of the detectors in traps. Both ’trapbuffer’ and
’pdot’ start with a ’traprect’ mask and drop some points.

The ’trapbuffer’ method restricts the grid to points within distance buffer of any detector.

The ’pdot’ method restricts the grid to points for which the net detection probability p.(X) (see
pdot) is at least pdotmin. Additional parameters are used by pdot (detectpar, noccasions). Set
these with the . . . argument; otherwise make.mask will silently use the arbitrary defaults.

The ’polygon’ method places points on a rectangular grid clipped to the polygon (buffer is not
used).

If spacing is not specified then it is determined by dividing the range of the x coordinates (in-
cluding any buffer) by nx.

Value

an object of class mask

50 make.traps

Note

A warning is displayed if type = ’pdot’ and the buffer is too small to include all points with p. >
pdotmin.

A habitat mask is needed to fit an SECR model and for some related computations. The default mask
settings in secr.fit may be good enough, but it is preferable to use make.mask to construct a
mask in advance and to pass that mask as an argument to secr.fit.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

mask, subset.mask, pdot

Examples

temptrap <- make.grid(nx = 10, ny = 10, spacing = 30)

default method: traprect
tempmask <- make.mask(temptrap, spacing = 5)
plot(tempmask)
summary (tempmask)

make irregular detector array by subsampling
form mask by 'trapbuffer' method
temptrap <- subset (temptrap, sample(nrow(temptrap), size = 30))
tempmask <- make.mask (temptrap, spacing = 5, type = 'trapbuffer')
plot (tempmask)
plot (temptrap, add = TRUE)

form mask by 'pdot' method
temptrap <- make.grid(nx = 6, ny = 6)
tempmask <- make.mask (temptrap, buffer = 150, type = 'pdot',

pdotmin = 0.0001, detectpar = list(g0 = 0.1, sigma = 30),
noccasions = 4)

plot (tempmask)
plot (temptrap, add = TRUE)

make.traps Build Detector Array

Description

Construct a rectangular array of detectors (trapping grid) or a circle of detectors or a polygonal
search area.

make.traps 51

Usage

make.grid(nx = 6, ny = 6, spacex = 20, spacey = 20, spacing = NULL,
detector = "multi", binomN = 0, originxy = c(0,0), hollow = F,
ID = 'alphay')

make.circle (n = 20, radius = 100, spacing = NULL,
detector = "multi", originxy = c(0,0), IDclockwise = T)

make.poly (polylist = NULL, x = c(-50,-50,50,50), y = c(-50,50,50,-50))

make.transect (transectlist = NULL, x = c(-50,-50,50,50),
y = c(-50,50,50,-50))

Arguments

nx number of columns of detectors

ny number of rows of detectors

spacex distance between detectors in ’x’ direction (nominally in metres)

spacey distance between detectors in ’y’ direction (nominally in metres)

spacing distance between detectors (x and y directions)

detector character value for detector type - ’single’, ’multi’ etc.

binomN maximum value when detector == ’count’

originxy vector origin for x-y coordinates

hollow logical for hollow grid

ID character string to control row names

n number of detectors

radius radius of circle (nominally in metres)

IDclockwise logical for numbering of detectors

polylist list of dataframes with coordinates for polygons

transectlist list of dataframes with coordinates for transects

x x coordinates of vertices

y y coordinates of vertices

Details

make.grid generates coordinates for nx.ny traps at separations spacex and spacey. If
spacing is specified it replaces both spacex and spacey. The bottom-left (southwest) cor-
ner is at originxy. For a hollow grid, only detectors on the perimeter are retained. By default,
identifiers are constructed from a letter code for grid rows and an integer value for grid columns
(’A1’, ’A2’,...). ’Hollow’ grids are always numbered clockwise in sequence from the bottom-left
corner. Other values of ID have the following effects:

ID Effect
numx column-dominant numeric sequence
numy row-dominant numeric sequence
numxb column-dominant boustrophedonical numeric sequence (try it!)
numyb row-dominant boustrophedonical numeric sequence

52 make.traps

alphax column-dominant alphanumeric
alphay row-dominant alphanumeric
xy combine column (x) and row(y) numbers

’xy’ adds leading zeros as needed to give a string of constant length with no blanks.

make.circle generates coordinates for n traps in a circle centred on originxy. If spacing
is specified then it overrides the radius setting; the radius is adjusted to provide the requested
straightline distance between adjacent detectors. Traps are numbered from the trap due east of the
origin, either clockwise or anticlockwise as set by IDclockwise.

Specialised functions for arrays using a triangular grid are described separately (make.tri, clip.hex).

Polygon vertices may be specified with x and y in the case of a single polygon, or as polylist
for one or more polygons. Each component of polylist is a dataframe with columns ’x’ and ’y’.
polylist takes precedence. make.poly automatically closes the polygon by repeating the first
vertex if the first and last vertices differ.

Transects are defined by a sequence of vertices as for polygons, except that they are not closed.

Value

An object of class traps comprising a data frame of x- and y-coordinates, the detector type (’sin-
gle’, ’multi’, or ’proximity’ etc.), and possibly other attributes.

Note

Several methods are provided for manipulating detector arrays - see traps.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Efford, M.G. (2007) Density 4.1: software for spatially explicit capture–recapture. Department of
Zoology, University of Otago, Dunedin, New Zealand. http://www.otago.ac.nz/density

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit
capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy
(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255–269.

See Also

read.traps,detector, print.traps, plot.traps, traps, make.tri

Examples

demo.traps <- make.grid()
plot(demo.traps)

compare numbering schemes
par (mfrow = c(2,4), mar = c(1,1,1,1), xpd = TRUE)
for (id in c('numx', 'numy', 'alphax', 'alphay', 'numxb',

'numyb'))
{

temptrap <- make.grid(nx = 7, ny = 5, ID = id)

http://www.otago.ac.nz/density

make.tri 53

plot (temptrap, border = 10, lab = TRUE, offset = 7,
gridl = FALSE)

}

temptrap <- make.grid(nx = 7, ny = 5, hollow = TRUE)
plot (temptrap, border = 10, lab = TRUE, gridl = FALSE)

plot(make.circle(n = 20, spacing = 30), lab = TRUE, offset = 9)
summary(make.circle(n = 20, spacing = 30))

make.tri Build Detector Array on Triangular Grid

Description

Construct an array of detectors on a triangular grid and optionally select a hexagonal subset of
detectors.

Usage

make.tri (nx = 10, ny = 12, spacing = 20, detector = 'multi',
binomN = 0, originxy = c(0,0))

clip.hex (traps, side = 20, centre = c(50, 60*cos(pi/6)),
fuzz = 1e-3, ID = 'num', ...)

Arguments

nx number of columns of detectors

ny number of rows of detectors

spacing distance between detectors (x and y directions)

detector character value for detector type - ’single’, ’multi’ etc.

binomN maximum value when detector == ’count’

originxy vector origin for x-y coordinates

traps traps object

side length of hexagon side

centre x-y coordinates of hexagon centre

fuzz floating point fuzz value

ID character string to control row names

... other parameters passed to subset.traps (not used)

54 make.tri

Details

make.tri generates coordinates for nx.ny traps at separations spacing. The bottom-left
(southwest) corner is at originxy. Identifiers are numeric. See make.grid for further ex-
planation.

clip.hex clips a triangular grid of detectors, retaining only those within a bounding hexagon.
Detectors are re-labelled according to ID as follows:

mask 55

ID Effect
NULL no change
num numeric sequence
alpha letter for ’shell’; number within shell

Value

An object of class traps comprising a data frame of x- and y-coordinates, the detector type (’sin-
gle’, ’multi’, or ’proximity’ etc.), and possibly other attributes.

Note

Several methods are provided for manipulating detector arrays - see traps.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

make.grid, detector

Examples

tri.grid <- make.tri(spacing = 10)
plot(tri.grid, border = 5)

hex <- clip.hex(tri.grid, side = 30, ID = 'alpha')
plot (hex, add = TRUE, detpar = list(pch = 16, cex = 1.4),

lab = TRUE, offset = 2.5)

mask Mask Object

Description

Encapsulate a habitat mask for spatially explicit capture–recapture.

Details

A habitat mask serves four main purposes in spatially explicit capture–recapture. Firstly, it defines
an outer limit to the area of integration; habitat beyond the mask may be occupied, but animals there
should have negligible chance of being detected (see pdot and below). Secondly, it distinguishes
sites in the vicinity of the detector array that are ’habitat’ (i.e. have the potential to be occupied)
from ’non-habitat’. Thirdly, it discretizes continuous habitat as a list of points. Each point is notion-
ally associated with a cell (pixel) of uniform density. Discretization allows the SECR likelihood to
be evaluated by summing over grid cells. Fourthly, the x-y coordinates of the mask and any habitat
covariates may be used to build spatial models of density. For example, a continuous or categorical
habitat covariate ’cover’ measured at each point on the mask might be used in a formula for density
such as D ∼cover.

56 model.average

In relation to the first purpose, the definition of ’negligible’ is fluid. Any probability less than 0.01
seems OK in the sense of not causing noticeable bias in density estimates, but extent of the mask
affects the binomial sampling variance of density derived from conditional likelihood estimates of
the detection function (M. Efford unpubl. results).

Mask points are stored in a data frame with columns ’x’ and ’y’. The number of rows equals the
number of points.

Possible mask attributes –

type ’traprect’, ’trapbuffer’, ’pdot’, ’polygon’ (see make.mask) or ’user’
polygon vertices of polygon defining habitat boundary, for type = ’polygon’
pdotmin threshold of p.(X) for type = ’pdot’
covariates dataframe of site-specific covariates
meanSD data frame with centroid (mean and SD) of x and y coordinates
area area (ha) of the grid cell associated with each point
spacing nominal spacing (metres) between adjacent points
boundingbox data frame of 4 rows, the vertices of the bounding box of all grid cells in the mask

Attributes other than covariates are generated automatically by make.mask. Type ’user’
refers to masks input from a text file with read.mask.

Note

A habitat mask is needed by secr.fit, but one will be generated automatically if none is pro-
vided. You should be aware of this and check that the default settings (e.g. buffer) are appropri-
ate.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

make.mask, read.mask, secr.fit, secr density models

model.average Model averaging for SECR Models

Description

AICc-weighted average of estimated ’real’ or ’beta’ parameters from multiple fitted secr models.

Usage

model.average(..., realnames = NULL, betanames = NULL, newdata = NULL,
alpha = 0.05, dmax = 10, covar = FALSE, average = 'link')

collate (..., realnames = NULL, betanames = NULL, newdata = NULL,
scaled = FALSE, alpha = 0.05, perm = 1:4, fields = 1:4)

model.average 57

Arguments

... secr objects

realnames character vector of real parameter names

betanames character vector of beta parameter names

newdata optional dataframe of values at which to evaluate models

scaled logical for scaling of sigma and g0 (see Details)

alpha alpha level for confidence intervals

dmax numeric, the maximum AIC difference for inclusion in confidence set

covar logical, if TRUE then return variance-covariance matrix

average character string for scale on which to average real parameters

perm permutation of dimensions in output from collate

fields vector to restrict summary fields in output

Details

Models to be compared must have been fitted to the same data and use the same likelihood method
(full vs conditional). If realnames == NULL and betanames == NULL then all real param-
eters will be averaged; in this case all models must use the same real parameters. To average beta
parameters, specify betanames (this is ignored if a value is provided for realnames). See
predict.secr for an explanation of the optional argument newdata; newdata is ignored
when averaging beta parameters.

Model-averaged estimates for parameter θ are given by

θ̂ =
∑
k

wkθ̂k

where the subscript k refers to a specific model and the wk are AIC weights with small sample ad-
justment (see AIC.secr for details). Averaging of real parameters may be done on the link scale
before back-transformation (average=’link’) or after back-transformation (average=’real’).

Models for which dAICc > dmax are given a weight of zero and effectively are excluded from
averaging.

Also,

var(θ̂) =
∑
k

wk(var(θ̂k|βk) + β2
k)

where β̂k = θ̂k − θ̂ and the variances are asymptotic estimates from fitting each model k. This
follows Burnham and Anderson (2004) rather than Buckland et al. (1997).

collate extracts parameter estimates from a set of fitted secr model objects. fields may be
used to select a subset of summary fields (’estimate’,’SE.estimate’,’lcl’,’ucl’) by name or number.

The argument scaled applies only to the detection parameters g0 and sigma, and only to models
fitted with scalesigma or scaleg0 switched on. If scaled is TRUE then each estimate is
multiplied by its scale factor (1/D^0.5 and 1/sigma^2 respectively).

58 ovenbird

Value

For model.average, an array of model-averaged estimates, their standard errors, and a 100(1−
α)% confidence interval. The interval for real parameters is backtransformed from the link scale.
If there is only one row in newdata or beta parameters are averaged or averaging is requested
for only one parameter then the array is collapsed to a matrix. If covar = TRUE then a list is
returned with separate components for the estimates and the variance-covariance matrices.

For collate, a 4-dimensional array of model-specific parameter estimates. By default, the di-
mensions correspond respectively to rows in newdata (usually sessions), models, statistic fields
(estimate, SE.estimate, lcl, ucl), and parameters (’D’, ’g0’ etc.). For particular comparisons it often
helps to reorder the dimensions with the perm argument.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Buckland S. T., Burnham K. P. and Augustin, N. H. (1997) Model selection: an integral part of
inference. Biometrics 53, 603–618.

Burnham, K. P. and Anderson, D. R. (2002) Model Selection and Multimodel Inference: A Practical
Information-Theoretic Approach. Second edition. New York: Springer-Verlag.

Burnham, K. P. and Anderson, D. R. (2004) Multimodel inference - understanding AIC and BIC in
model selection. Sociological Methods & Research 33, 261–304.

See Also

AIC.secr, secr.fit

Examples

Compare two models fitted previously
secrdemo.0 is a null model
secrdemo.b has a learned trap response

data(secrdemo)
model.average(secrdemo.0, secrdemo.b)
model.average(secrdemo.0, secrdemo.b, betanames = c('D','g0','sigma'))

In this case we find the difference was actually trivial...
(subscripting of output is equivalent to setting fields = 1)

collate (secrdemo.0, secrdemo.b, perm = c(4,2,3,1))[,,1,]

ovenbird Ovenbird Mist-netting Dataset

Description

Data from a multi-year mist-netting study of ovenbirds (Seiurus aurocapilla) at a site in Maryland,
USA.

ovenbird 59

Usage

data(ovenbird)

Details

From 2005 to 2009 D. K. Dawson and M. G. Efford conducted a capture–recapture survey of breed-
ing birds in deciduous forest at the Patuxent Research Refuge near Laurel, Maryland, USA. The
forest was described by Stamm, Davis & Robbins (1960), and has changed little since. Analyses of
data from previous mist-netting at the site by Chan Robbins were described in Efford, Dawson &
Robbins (2004) and Borchers & Efford (2008).

Forty-four mist nets (12 m long, 30-mm mesh) spaced 30 m apart on the perimeter of a 600-m x
100-m rectangle were operated for approximately 9 hours on each of 9 or 10 non-consecutive days
during late May and June in each year. Netting was passive (i.e. song playback was not used to
lure birds into the nets). Birds received individually numbered bands, and both newly banded and
previously banded birds were released at the net where captured. Sex was determined in the hand
from the presence of a brood patch (females) or cloacal protuberance (males). A small amount of
extra netting was done by other researchers after the main session in some years.

This dataset comprises all records of adult (after-hatch-year) ovenbirds caught during the main
session in each of the five years 2005–2009. One ovenbird was killed by a predator in the net in
2009, as indicated by a negative net number in the dataset. Sex was determined in the hand from
the presence of a brood patch (females) or cloacal protuberance (males). Birds are listed by their
band number (4-digit prefix, ’.’, and 5-digit number). Recaptures within a day are not included in
this dataset, so each bird occurs at most once per day and the detector type is ’multi’ rather than
’proximity’. Although several individuals were captured in more than one year, no use is made of
this information in the analyses presently offered in secr.

The data are provided as a multi-session capthist object ’ovenCH’. Sex is coded as a categorical
individual covariate (’M’ or ’F’).

An analysis of the data for males in the first four years showed that they tended to avoid nets after
their first capture within a season (Dawson & Efford in press). While the species was present
consistently, the number of detections in any one year was too small to give reliable estimates of
density; pooling of detection parameters across years helped to improve precision.

Included with the data are a mask and four models fitted as in Examples.

Object Description
ovenCH multi-session capthist object
ovenbird.model.1 fitted secr model – null
ovenbird.model.1b fitted secr model – g0 net shyness
ovenbird.model.1T fitted secr model – g0 time trend within years
ovenbird.model.h2 fitted secr model – g0 finite mixture
ovenmask mask object

Source

D. K. Dawson (<ddawson@usgs.gov>) and M. G. Efford unpublished data.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture-recapture studies. Biometrics 64, 377–385.

60 ovenbird

Dawson, D. K. and Efford, M. G. (2009) Bird population density estimated from acoustic signals.
Journal of Applied Ecology 46, 1201–1209.

Efford, M. G., Dawson, D. K. and Robbins C. S. (2004) DENSITY: software for analysing capture-
recapture data from passive detector arrays. Animal Biodiversity and Conservation 27, 217–228.

Stamm, D. D., Davis, D. E. and Robbins, C. S. (1960) A method of studying wild bird populations
by mist-netting and banding. Bird-Banding 31, 115–130.

See Also

capthist

Examples

Not run:

commands used to create ovenCH from the input files
'netsites0509.txt' and 'ovencapt.txt'
for information only - these files not distributed
netsites0509 <- read.traps(file = 'netsites0509.txt',

skip = 1, detector = 'multi')
temp <- read.table('ovencapt.txt', colClasses=c('character',

'character', 'numeric', 'numeric', 'character'))
ovenCH <- make.capthist(temp, netsites0509, covnames=c('Sex','Age'))

End(Not run)

require (graphics)
data(ovenbird)
par(mfrow = c(1,5), mar = c(1,1,4,1))
plot(ovenCH, tracks = TRUE, varycol = TRUE)

counts(ovenCH, 'n')

Not run:

array constant over years, so build mask only once
ovenmask <- make.mask(traps(ovenCH)[['2005']], type='pdot', buffer=400,

spacing=15, detectpar=list(g0=0.03, sigma=90), nocc=10)

fit constant-density model
ovenbird.model.1 <- secr.fit(ovenCH, mask = ovenmask)
ovenbird.model.1

fit net avoidance model
ovenbird.model.1b <- secr.fit(ovenCH, mask = ovenmask, model =

list(g0~b))
ovenbird.model.1b

fit model with time trend in detection
ovenbird.model.1T <- secr.fit(ovenCH, mask = ovenmask, model =

list(g0 ~ T))
ovenbird.model.1T

fit model with 2-class mixture for g0

ovensong 61

ovenbird.model.h2 <- secr.fit(ovenCH, mask = ovenmask, model =
list(g0~h2))

ovenbird.model.h2

End(Not run)

compare & average pre-fitted models
AIC (ovenbird.model.1, ovenbird.model.1b, ovenbird.model.1T,

ovenbird.model.h2)
model.average (ovenbird.model.1,ovenbird.model.1b, ovenbird.model.1T,

ovenbird.model.h2, realnames='D')

select one year to plot
plot(ovenbird.model.1b, newdata = data.frame(session = '2005',

b = 0))

ovensong Ovenbird Acoustic Dataset

Description

Data from an acoustic survey of ovenbirds (Seiurus aurocapilla) at a site in Maryland, USA.

Usage

data(ovensong)

Details

In June 2007 D. K. Dawson and M. G. Efford used a moving 4-microphone array to survey breeding
birds in deciduous forest at the Patuxent Research Refuge near Laurel, Maryland, USA. The data
for ovenbirds were used to demonstrate a new method for analysing acoustic data (Dawson and
Efford 2009). See ovenbird for mist-netting data from the same site over 2005–2009, and for
other background.

Over five days, four microphones were placed in a square (21-m side) centred at each of 75 points
in a rectangular grid (spacing 50 m); on each day points 100 m apart were sampled sequentially.
Recordings of 5 minutes duration were made in .wav format on a 4-channel digital sound recorder.

The data are estimates of average power on each channel (microphone) for the first song of each
ovenbird distinguishable in a particular 5-minute recording. Power was estimated with the sound
analysis software Raven Pro 1.4 (Charif et al. 2008), using a window of 0.7 s duration and frequen-
cies between 4200 and 5200 Hz, placed manually at the approximate centre of each ovenbird song.
Sometimes this frequency range was obscured by insect noise so an alternative 1000-Hz range was
measured and the values were adjusted by regression.

The data are provided as a single-session, single-occasion capthist object signalCH. The ’sig-
nal’ attribute contains the power measurement in decibels for each detected sound on each channel
where the power threshold is exceeded. As the threshold signal (attribute cutval = 35) is less
than any signal value in this dataset, all detection histories are complete (1,1,1,1) across micro-
phones. For analysis Dawson and Efford applied a higher threshold that treated weaker signals as
’not detected’ (see Examples).

62 ovensong

The row names of signalCH (e.g. ’3755AX’) are formed from a 4-digit number indicating the
sampling location (one of 75 points on a 50-m grid) and a letter A–D to distinguish individual
ovenbirds within a 5-minute recording; ’X’ indicates power values adjusted by regression.

The default model for sound attenuation is a log-linear decline with distance from the source (linear
decline on dB scale). Including a spherical spreading term in the sound attenuation model causes the
likelihood surface to become multimodal in this case. Newton-Raphson, the default maximization
method in secr.fit, is particularly inclined to settle on a local maximum; in the example below
we use a set of starting values that have been found by trial and error to yield the global maximum.

Two fitted models are included (ovensong.model.1 and ovensong.model.2). See Examples for de-
tails.

Object Description
signalCH capthist object
ovensong.model.1 fitted secr model – spherical spreading
ovensong.model.2 fitted secr model – no spherical spreading

Source

D. K. Dawson (<ddawson@usgs.gov>) and M. G. Efford unpublished data.

References

Charif, R. A., Waack, A. M. and Strickman, L. M. (2008) Raven Pro 1.3 User’s Manual. Cornell
Laboratory of Ornithology, Ithaca, New York.

Dawson, D. K. and Efford, M. G. (2009) Bird population density estimated from acoustic signals.
Journal of Applied Ecology 46, 1201–1209.

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009) Population density estimated from loca-
tions of individuals on a passive detector array. Ecology 90, 2676–2682.

See Also

capthist, ovenbird, detection functions

Examples

data(ovensong)
summary(signalCH)
traps(signalCH)
signal(signalCH)

apply signal threshold
signalCH.525 <- subset(signalCH, cutval = 52.5)

Not run:
models with and without spherical spreading
omask <- make.mask(traps(signalCH), buffer = 200)
ostart <- c(log(20), 80, log(0.1), log(2))
ovensong.model.1 <- secr.fit(signalCH.525, mask = omask,

start = ostart, detectfn = 11)
ovensong.model.2 <- secr.fit(signalCH.525, mask = omask,

start = ostart, detectfn = 10)

pdot 63

End(Not run)

compare fit of models
AIC(ovensong.model.1, ovensong.model.2)

density estimates, dividing by 75 to allow for replication
collate(ovensong.model.1, ovensong.model.2)[1,,,'D']/75

plot attenuation curves cf Dawson & Efford (2009) Fig 5
pars1 <- predict(ovensong.model.1)[c('beta0', 'beta1'), 'estimate']
pars2 <- predict(ovensong.model.2)[c('beta0', 'beta1'), 'estimate']
attenuationplot(pars1, xval=0:150, spherical = TRUE, ylim = c(40,110))
attenuationplot(pars2, xval=0:150, spherical = FALSE, add = TRUE,

col = 'red')
spherical spreading only
pars1[2] <- 0
attenuationplot(pars1, xval=0:150, spherical = TRUE, add = TRUE, lty=2)

pdot Net Detection Probability

Description

Compute spatially explicit net probability of detection for individual(s) at given coordinates.

Usage

pdot(X, traps, detectfn = 0, detectpar = list(g0 = 0.2, sigma = 20),
noccasions = 5)

Arguments

X coordinates

traps traps object

detectfn integer code for detection function q.v.

detectpar a list giving a value for each named parameter of detection function

noccasions number of intervals (occasions)

Details

The probability computed is p.(X) = 1−
∏
k

{1−ps(X, k)}S where the product is over the detectors

in traps. The per-occasion detection function ps is by default half-normal, and is assumed not to
vary over the S occasions.

The calculation is not valid for single-catch traps because p.(X) is reduced by competition between
animals.

Value

A vector of probabilities, one for each row in X.

64 plot.capthist

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

secr, make.mask, detection functions

Examples

temptrap <- make.grid()
per-session detection probability for an individual centred
at a corner trap. By default, noccasions = 5.
pdot (c(0,0), temptrap, detectpar = list(g0 = 0.2, sigma = 20))

plot.capthist Plot Detection Histories

Description

Display a plot of detection (capture) histories over a map of the detectors.

Usage

S3 method for class 'capthist':
plot(x, rad = 5, hidetraps = FALSE, tracks = FALSE,

title = TRUE, subtitle = TRUE, add = FALSE, varycol = TRUE,
icolours = NULL, randcol = FALSE,
lab1cap = FALSE, laboffset = 4, ncap = FALSE,
splitocc = NULL, col2 = "green",
cappar = list(cex = 1.3, pch = 16, col = "blue"),
trkpar = list(col = "blue", lwd = 1),
labpar = list(cex = 0.7, col = "black"), ...)

Arguments

x an object of class capthist

rad radial displacement of dot indicating each capture event from the detector loca-
tion (used to separate overlapping points)

hidetraps logical indicating whether trap locations should be displayed

tracks logical indicating whether consecutive locations of individual animals should be
joined by a line

title logical or character string for title

subtitle logical or character string for subtitle

add logical for whether to add to existing plot

varycol logical for whether to distinguish individuals by colour

icolours vector of individual colours (when varycol = TRUE)

randcol logical to use random colours (varycol = TRUE)

lab1cap logical for whether to label the first capture of each animal

plot.capthist 65

laboffset distance by which to offset labels from points

ncap logical to display the number of detections per trap per occasion

splitocc optional occasion from which second colour is to be used

col2 second colour (used with splitocc)

cappar list of named graphical parameters for detections (passed to par)

trkpar list of named graphical parameters for tracks (passed to par)

labpar list of named graphical parameters for labels (passed to par)

... arguments to be passed to lines if tracks are plotted

Details

A plot is generated in the style of Density (Efford 2007) using eqscplot from the MASS library.

If title = FALSE no title is displayed; if title = TRUE, the session identifer is used for the
title.

If subtitle = FALSE no subtitle is displayed; if subtitle = TRUE, the subtitle gives the
numbers of occasions, detections and individuals.

If icolours = NULL and varycol = TRUE then a vector of colours is generated automati-
cally as terrain.colors((nrow(x)+1) * 1.5). If there are too few values in icolours for the number
of individuals then colours will be re-used.

If x is a multi-session capthist object then a separate plot is produced for each session. Use
par(mfrow = c(nr, nc)) to allow a grid of plots to be displayed simultaneously (nr rows x
nc columns).

Value

The number of detections in x.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Efford, M. G. (2007) Density 4.1: software for spatially explicit capture–recapture. Department of
Zoology, University of Otago, Dunedin, New Zealand. http://www.otago.ac.nz/density

See Also

capthist

Examples

demotrap <- make.grid()
tempcapt <- sim.capthist(demotrap,

popn = list(D = 5, buffer = 50),
detectpar = list(g0 = 0.15, sigma = 30))

plot(tempcapt, border = 10, rad = 3, tracks = TRUE,
lab1cap = TRUE, laboffset = 2.5)

http://www.otago.ac.nz/density

66 plot.mask

plot.mask Plot Habitat Mask

Description

Plot a habitat mask either as points or as an image plot. Colours may be used to show the value of
one mask covariate.

Usage

S3 method for class 'mask':
plot(x, border = 20, add = F, covariate = NULL, axes = F,

dots = T, col = "grey", breaks = 12, ppoly = T, polycol = "red", ...)

Arguments

x mask object

border width of blank display border (metres)

add logical for adding mask points to an existing plot

covariate name (as character string in quotes) or column number of a covariate to use for
colouring

axes logical for plotting axes

dots logical for plotting mask points as dots, rather than as square pixels

breaks number of levels to use when cutting continuous covariate for plotting

col colour(s) to use for plotting

ppoly logical for whether the bounding polygon should be plotted (applies only if mask
type = ’polygon’)

polycol colour for outline of polygon (ppoly = TRUE)

... other arguments passed to eqscplot

Details

The argument dots selects between two distinct types of plot. If using a covariate to colour points,
the col argument should be a colour vector of length equal to the number of levels.

Border lines around pixels are drawn in the current foreground colour (par(’fg’)). Set this to NA
with par(fg=NA) to eliminate borders, but remember to reset it when you’ve finished.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

colours, mask

plot.popn 67

Examples

simple

temptrap <- make.grid()
tempmask <- make.mask(temptrap)
plot (tempmask)

restrict to points over an arbitrary detection threshold,
add covariate, plot image and overlay traps

tempmask <- subset(tempmask, pdot(tempmask,temptrap)>0.001)

covariates (tempmask) <- data.frame(circle =
exp(-(tempmask$x^2 + tempmask$y^2)/10000))

par(fg='white')
plot (tempmask, covariate = 'circle', dots = FALSE, axes = TRUE,

add = TRUE, breaks = 8, col = terrain.colors(8))
par(fg='black')

plot (temptrap, add = TRUE)

add a legend

par(cex = 0.9)
covrange <- range(covariates(tempmask)$circle)
step <- diff(covrange)/8
colourlev <- terrain.colors(9)
zlev <- formatC(seq(covrange[1],covrange[2],step), format='f',

digits=2, width=4)
legend (x = 'topright', fill = colourlev, legend = zlev,

y.intersp = 0.8, title = 'Covariate')
title('Colour mask points with p.(X) > 0.001')
mtext(side=3,line=-1, 'g0 = 0.2, sigma = 20, nocc = 5')

plot.popn Plot popn Object

Description

Display animal locations from a popn object.

Usage

S3 method for class 'popn':
plot(x, add = FALSE, frame = TRUE, ...)

Arguments

x object of class popn

add logical to add points to an existing plot

68 plot.secr

frame logical to add frame within which points were simulated

... arguments passed to eqscplot and points

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

popn, sim.popn

Examples

temppopn <- sim.popn(D = 5, expand.grid(x = c(0,100), y = c(0,100)))
plot(temppopn, pch = 16, col = 'blue')

plot.secr Plot Detection Functions

Description

Plot detection functions using estimates of parameters in an secr object, or as provided by the user.

Usage

S3 method for class 'secr':
plot(x, newdata = NULL, add = FALSE,

sigmatick = FALSE, rgr = FALSE, limits = TRUE, alpha = 0.05,
xval = 0:200, ylim = NULL, xlab = NULL, ylab = NULL, ...)

detectfnplot (detectfn, pars, details = NULL, add = FALSE,
sigmatick = FALSE, rgr = FALSE, xval = 0:200, ylim = NULL,
xlab = NULL, ylab = NULL, ...)

attenuationplot (pars, add = FALSE, spherical = TRUE,
xval = 0:200, ylim = NULL, xlab = NULL, ylab = NULL, ...)

Arguments

x an secr object

newdata dataframe of data to form estimates

add logical to add curve(s) to an existing plot

sigmatick logical; if TRUE the scale parameter sigma is shown by a vertical line

rgr logical; if TRUE a scaled curve r.g(r) is plotted instead of g(r)

limits logical; if TRUE pointwise confidence limits are drawn

alpha alpha level for confidence intervals

xval vector of distances at for which detection to be plotted

plot.secr 69

ylim vector length 2 giving limits of y axis

xlab label for x axis

ylab label for y axis

... arguments to pass to lines

detectfn integer code or character string for shape of detection function 0 = halfnormal
etc. – see detectfn

pars vector or matrix of parameter values

details list of ancillary parameters

spherical logical for whether to include spherical spreading term

Details

newdata is usually NULL, in which case one curve is plotted for each session and group. Other-
wise, predict.secr is used to form estimates and plot a curve for each row in newdata.

If axis labels are not provided they default to ’Distance (m)’ and ’Detection probability’ or ’Detec-
tion lambda’.

detectfnplot is an alternative in which the user nominates the type of function and provides
parameter values. If pars is a matrix then a separate curve is plotted with the parameter values in
each row.

For detectfnplot the signal threshold parameters ’cutval’ and ’spherical’ should be provided
in details (see examples).

Approximate confidence limits for g(r) are calculated using a numerical first-order delta-method
approximation to the standard error at each xval. The distribution is assumed to be normal on the
logit scale; limits are back-transformed from that scale.

attenuationplot plots the expected decline in signal strength with distance, given parameters
β0 and β1 for a log-linear model of sound attenuation.

Value

plot.secr invisibly returns a dataframe of the plotted values (or a list of dataframes in the case
that newdata has more than one row).

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

detection functions, plot, secr

Examples

data(secrdemo)
plot (secrdemo.b, xval = 0:100, ylim = c(0, 0.4))
Add recapture probability
plot (secrdemo.b, newdata = data.frame(b = 1), add = TRUE,

col='red')

signal strength detection: 70dB at source, attenuation
0.3dB/m, sdS 5dB; detection threshold 40 dB.

70 plot.traps

detectfnplot (detectfn = 10, c(70, -0.3, 5), details =
list(cutval = 40))

add a function with louder source and spherical spreading...
detectfnplot (detectfn = 11, c(110, -0.3, 5), details =

list(cutval = 40), add = TRUE, col = 'red')

matching sound attenuation curves; 'spherical-only' dashed line
attenuationplot (c(70, -0.3), spherical = FALSE, ylim=c(-10,110))
attenuationplot (c(110, 0), spherical = TRUE, add=TRUE, lty=2)
attenuationplot (c(110, -0.3), spherical = TRUE, add = TRUE,

col = 'red')

plot.traps Plot traps Object

Description

Map the locations of detectors (traps).

Usage

S3 method for class 'traps':
plot(x, border = 100, label = FALSE, offset = c(6,6), add = FALSE,

hidetr = FALSE, detpar = list(), txtpar = list(), bg = "white",
gridlines = TRUE, gridspace = 100, gridcol = "grey",
markvarying = FALSE, ...)

Arguments

x a traps object

border width of blank margin around the outermost detectors

label logical indicating whether a text label should appear by each detector

offset vector displacement of label from point on x and y axes

add logical to add detectors to an existing plot

hidetr logical to suppress plotting of detectors

detpar list of named graphical parameters for detectors (passed to par)

txtpar list of named graphical parameters for labels (passed to par)

bg background colour

gridlines logical for plotting grid lines

gridspace spacing of gridlines

gridcol colour of gridlines

markvarying logical to distinguish detectors whose usage varies among ocasions

... arguments to pass to eqscplot

popn 71

Details

offset may also be a scalar value for equal displacement on the x and y axes. The hidetr
option is most likely to be used when plot.traps is called by plot.capthist. See par and colours
for more information on setting graphical parameters. The initial values of graphical parameters are
restored on exit.

Axes are not labeled. Use axis and mtext if necessary.

Value

None

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

plot, traps

Examples

temptrap <- make.grid()
plot (temptrap, detpar = list(pch = 16, col = 'blue'),

label = TRUE, offset = 7)

popn Population Object

Description

Encapsulate the locations of a set of individual animals.

Details

An object of class popn records the locations of a set of individuals, together with ancillary data
such as their sex. Often used for a realisation of a spatial point process (e.g. homogeneous Poisson)
with known density (intensity). Locations are stored in a data frame with columns ’x’ and ’y’.

A popn object has attributes

covariates data frame with numeric, factor or character variables to be used as individual covariates
model2D 2-D distribution (’poisson’, ’cluster’, ’IHP’)
Ndist distribution of number of individuals (’poisson’, ’fixed’)
boundingbox data frame of 4 rows, the vertices of the rectangular area

The number of rows in covariates must match the length of x and y. See sim.popn for more
information on Ndist and model2D.

Note

The popn class is used only occasionally: it is not central to spatially explicit capture recapture.

72 possum

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

sim.popn, plot.popn

possum Brushtail Possum Trapping Dataset

Description

Data from a trapping study of brushtail possums at Waitarere, North Island, New Zealand.

Usage

data(possum)

Details

Brushtail possums (Trichosurus vulpecula) are an unwanted invasive species in New Zealand. Al-
though most abundant in forests, where they occasionally exceed densities of 15 / ha, possums live
wherever there are palatable food plants and shelter.

Efford et al. (2005) reported a live-trapping study of possums in Pinus radiata plantation on coastal
sand dunes. The 294-ha site at Waitarere in the North Island of New Zealand was a peninsula,
bounded on one side by the sea and on two other sides by the Manawatu river. Cage traps were
set in groups of 36 at 20-m spacing around the perimeter of five squares, each 180 m on a side.
The squares (’hollow grids’) were centred at random points within the 294-ha area. Animals were
tagged and released daily for 5 days in April 2002. Subsequently, leg-hold trapping was conducted
on a trapping web centred on each square (data not reported here), and strenuous efforts were made
to remove all possums by cyanide poisoning and further leghold trapping across the entire area.
This yielded a density estimate of 2.26 possums / ha.

Traps could catch at most one animal per day. The live-trapped animals comprised 46 adult females,
33 adult males, 10 immature females and 11 immature males; sex and/or age were not recorded for
4 individuals (M. Coleman unpubl. data). One female possum was twice captured at two sites on
one day, having entered a second trap after being released; one record in each pair was selected
arbitrarily and discarded.

The data are provided as a single-session capthist object ’possumCH’. ’possummask’ is a
matching mask object - see Examples. Two fitted models (’possum.model.1’ & ’possum.model.1b’)
are provided for illustration.

Object Description
possumCH capthist object
possummask mask object
possum.model.1 fitted secr model – null
possum.model.1b fitted secr model – trap response g0

possum 73

Source

Landcare Research, New Zealand.

References

Borchers, D.L. and Efford, M.G. (2008) Spatially explicit maximum likelihood methods for capture-
recapture studies. Biometrics 64, 377–385.

Efford, M. G., Dawson, D. K. and Robbins C. S. (2004) DENSITY: software for analysing capture-
recapture data from passive detector arrays. Animal Biodiversity and Conservation 27, 217–228.

Efford, M. G., Warburton, B., Coleman, M. C. and Barker, R. J. (2005) A field test of two methods
for density estimation. Wildlife Society Bulletin 33, 731–738.

See Also

capthist

Examples

Not run:

setwd('d:\density communication\webtest\foxton\')
possumtraps <- read.traps(file = 'foxtraps.txt', detector = 'single')
temp <- read.table('foxton.txt', colClasses=c('character',

'character', 'numeric', 'character'))
drop within-day duplicates of animal 5861
temp <- temp[-c(184,186),]

possumCH <- make.capthist(temp, possumtraps)
possummask <- make.mask(possumtraps, buffer = 300, type='pdot',

pdotmin = 0.001, detectpar = list(g0=0.2, sigma=60), spacing = 10)

fit constant-density model
possum.model.1 <- secr.fit(possumCH, mask = possummask)
fit learned trap response model
possum.model.1b <- secr.fit(possumCH, mask = possummask, model = list(g0~b))

End(Not run)

require (graphics)
data(possum)
plot(possummask)
plot(possumCH, tracks = TRUE, add = TRUE)
plot(traps(possumCH), add = TRUE)
summary(possumCH)

compare & average pre-fitted models
AIC(possum.model.1, possum.model.1b)
model.average(possum.model.1, possum.model.1b)

74 predict.secr

predict.secr SECR Model Predictions

Description

Evaluate a spatially explicit capture–recapture model. That is, compute the ’real’ parameters corre-
sponding to the ’beta’ parameters of a fitted model for arbitrary levels of any variables in the linear
predictor.

Usage

S3 method for class 'secr':
predict(object, newdata = NULL, se.fit = TRUE, alpha = 0.05,

savenew = FALSE, scaled = FALSE, ...)

Arguments

object secr object output from secr.fit

newdata optional dataframe of values at which to evaluate model

se.fit logical for whether output should include SE and confidence intervals

alpha alpha level for confidence intervals

savenew logical for whether newdata should be saved

scaled logical for scaling of sigma and g0 (see Details)

... other arguments

Details

The variables in the various linear predictors are described in secr models and listed for the partic-
ular model in the vars component of object.

Optional newdata should be a dataframe with a column for each of the variables in the model (see
’vars’ component of object). If newdata is missing then a dataframe is constructed automati-
cally. Default newdata are for a naive animal on the first occasion; numeric covariates are set to
zero and factor covariates to their base (first) level.

Standard errors are by the delta method (Lebreton et al. 1992). Confidence intervals are backtrans-
formed from the link scale.

The argument scaled applies only to the detection parameters g0 and sigma, and only to models
fitted with scalesigma or scaleg0 switched on. If scaled is TRUE then each estimate is
multiplied by its scale factor (1/D^0.5 and 1/sigma^2 respectively).

The value of newdata is optionally saved as an attribute.

Value

When se.fit = FALSE, a dataframe identical to newdata except for the addition of one column
for each ’real’ parameter. Otherwise, a list with one component for each row in newdata. Each
component is a dataframe with one row for each ’real’ parameter (density, g0, sigma, b) and columns
as below

link link function
estimate estimate of real parameter

print.capthist 75

SE.estimate standard error of the estimate
lcl lower 100(1–alpha)% confidence limit
ucl upper 100(1–alpha)% confidence limit

When newdata has only one row, the structure of the list is ’dissolved’ and the return value is one
data frame.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Lebreton, J.-D., Burnham, K. P., Clobert, J., Anderson, D. R. (1992) Modeling survival and testing
biological hypotheses using marked animals: a unified approach with case studies. Ecological
Monographs 62, 67–118.

See Also

secr.fit

Examples

load previously fitted secr model with trap response
and extract estimates of 'real' parameters for both
naive (b = 0) and previously captured (b = 1) animals

data(secrdemo)
predict (secrdemo.b, newdata = data.frame(b=0:1))

temp <- predict (secrdemo.b, newdata = data.frame(b=0:1),
save = TRUE)

attr(temp, 'newdata')

print.capthist Print Detections

Description

Print method for capthist objects.

Usage

S3 method for class 'capthist':
print(x, ..., condense = FALSE, sortrows = FALSE)

76 print.secr

Arguments

x capthist object

... arguments to pass to print.default

condense logical, if true then use condensed format for 3-D data

sortrows logical, if true then sort output by animal

Details

The condense option may be used to format data from proximity detectors in a slightly more
readable form. Each row then presents the detections of an individual in a particular trap, dropping
rows (traps) at which the particular animal was not detected.

Value

Invisibly returns a dataframe (condense = TRUE) or array in the format printed.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

print, capthist

Examples

simulated detections of simulated default population of 5/ha
print(sim.capthist(make.grid(nx=5,ny=3)))

print.secr Print secr Object

Description

Print results from fitting a spatially explicit capture–recapture model.

Usage

S3 method for class 'secr':
print (x, newdata = NULL, alpha = 0.05, deriv = FALSE, ...)

Arguments

x secr object output from secr.fit

newdata optional dataframe of values at which to evaluate model

alpha alpha level

deriv logical for calculation of derived D and esa

... other arguments (not used currently)

print.secr 77

Details

Results are potentially complex and depend upon the analysis (see below). Optional newdata
should be a dataframe with a column for each of the variables in the model. If newdata is missing
then a dataframe is constructed automatically. Default newdata are for a naive animal on the
first occasion; numeric covariates are set to zero and factor covariates to their base (first) level.
Confidence intervals are 100 (1 – alpha) % intervals.

call the function call
time date and time fitting started
N animals number of distinct animals detected
N captures number of detections
N occasions number of sampling occasions
N detectors number of detectors
Detector type ’single’, ’multi’, ’proximity’ etc.
Model model formula for each ’real’ parameter
Fixed fixed real parameters
Detection fn detection function type (halfnormal or hazard-rate)
N parameters number of parameters estimated
Log likelihood log likelihood
AIC Akaike’s information criterion
AICc AIC with small sample adjustment (Burnham and Anderson 2002)
Beta parameters coef of the fitted model, SE and confidence intervals
vcov variance-covariance matrix of beta parameters
Real parameters fitted (real) parameters evaluated at base levels of covariates
Derived parameters derived estimates of density and mean effective sampling area

Derived parameters (see derived) are computed only for models fitted by maximizing the condi-
tional likelihood (CL = TRUE).

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Burnham, K. P. and Anderson, D. R. (2002) Model selection and multimodel inference: a practical
information-theoretic approach. Second edition. New York: Springer-Verlag.

See Also

AIC.secr, secr.fit

Examples

load & print previously fitted null (constant parameter) model
data(secrdemo)
print(secrdemo.0)
print(secrdemo.CL, deriv = TRUE)

78 rbind.capthist

print.traps Print Detectors

Description

Print method for traps objects.

Usage

S3 method for class 'traps':
print(x, ...)

Arguments

x traps object

... arguments to pass to print.default

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

print, traps

Examples

print(make.grid(nx = 5, ny = 3))

rbind.capthist Combine capthist Objects

Description

Form a single capthist object from two or more compatible capthist objects.

Usage

rbind.capthist(..., renumber = TRUE, pool = NULL)
MS.capthist(...)

Arguments

... one or more simple capthist objects (i.e., single-session)

renumber assign new composite individual ID: sourceobject.oldID

pool list of vectors of indices

rbind.capthist 79

Details

In its simplest usage, the source objects in . . . each provide detection histories from a single ses-
sion, and the result is a single-session object. For this to work the objects must be compati-
ble. capthist objects are compatible if they use the same detectors (traps) and have consistent
covariates and other attributes.

If the . . . argument includes at least one multi-session capthist object then the elements will be
formed into a single multi-session capthist object. If . . . is a single multi-session object then the
components of pool are used to define combinations of old sessions (e.g. pool = list(1:3, 4:5)
forms two new sessions from 5 old ones).

Although rbind.capthist looks like an S3 method, it isn’t. The full function name must be
used.

MS.capthist treats each source object as the data for a separate session. Compatibility is not
required. The . . . argument may include lists of single-session capthist objects regardless of whether
the list has the class (’list’,’capthist’).

Value

For rbind.capthist, an object of class capthist with number of rows equal to the sum of
the rows in the input objects.

For MS.capthist, a multi-session object of class capthist with number sessions equal to the
number of objects in

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

capthist, subset.capthist

Examples

simulate 2-part mixture
temptrap <- make.grid(nx = 8, ny = 8)
temp1 <- sim.capthist(temptrap,

detectpar = list(g0 = 0.1, sigma = 40))
temp2 <- sim.capthist(temptrap,

detectpar = list(g0 = 0.2, sigma = 20))
temp3 <- rbind.capthist(temp1, temp2)

compare mixture to sum of components
note 'traps visited' is not additive for 'multi' detector
nor is 'traps set'
(summary(temp1)$counts + summary(temp2)$counts) -

summary(temp3)$counts

assemble a multi-session object
we fake the 2010 data by copying from 2005
note must provide name each session
data(ovenbird)
fakeCH <- ovenCH[['2005']]
MS.capthist(ovenCH, '2010' = fakeCH)

80 rbind.popn

rbind.popn Combine popn Objects

Description

Form a single popn object from two or more existing popn objects, or a list.

Usage

rbind.popn(..., renumber = TRUE)

Arguments

... one or more popn objects, or a single list of popn objects

renumber logical for whether row names in the new object should be set to the row indices

Details

An attempt to combine objects will fail if they conflict in their covariates attributes. This is not
an S3 method.

Value

An object of class popn with number of rows equal to the sum of the rows in the input objects.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

popn

Examples

generate and combine two subpopulations
trapobj <- make.grid()
p1 <- sim.popn(D = 3, core = trapobj)
p2 <- sim.popn(D = 2, core = trapobj)
covariates(p1) <- data.frame(size = rep('small', nrow(p1)))
covariates(p2) <- data.frame(size = rep('large', nrow(p2)))
pop <- rbind.popn(p1,p2)

rbind.traps 81

rbind.traps Combine traps Objects

Description

Form a single traps object from two or more existing traps objects.

Usage

S3 method for class 'traps':
rbind(..., renumber = TRUE)

Arguments

... one or more traps objects

renumber logical for whether row names in the new object should be set to the row indices

Details

An attempt to combine objects will fail if they conflict in their covariates attributes. Differences
in the usage attribute are handled as follows. If usage is specified for one input but not other(s),
the missing values are constructed assuming all detectors were operated for the maximum number
of occasions in any input. If inputs differ in the number of ‘usage’ columns (occasions), the smaller
matrices are padded with ‘zero’ columns to the maximum number of columns in any input.

Value

An object of class traps with number of rows equal to the sum of the rows in the input objects.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

traps, subset.traps

Examples

nested hollow grids
hollow1 <- make.grid(nx = 8, ny = 8, hollow = TRUE)
hollow2 <- shift(make.grid(nx = 6, ny = 6, hollow = TRUE),

c(20, 20))
nested <- rbind (hollow1, hollow2)
plot(nested, gridlines = FALSE, lab = TRUE)

82 read.capthist

read.capthist Import or export data

Description

Data in the DENSITY formats for capture data and trap layouts may be imported as a capthist
object for analysis in secr. Data in a capthist object may also be exported in these formats for
use in DENSITY (Efford 2009). read.capthist inputs data from text files and constructs a
capthist object in one step using the functions read.traps and make.capthist.

Usage

read.capthist(captfile, trapfile, detector = "multi", fmt = "trapID",
noccasions = NULL, covnames = NULL, verify = TRUE, ...)

write.capthist(object, filestem = deparse(substitute(object)),
sess = "1", ndec = 2, ...)

Arguments

captfile name of capture data file

trapfile name of trap layout file

detector character value for detector type (‘single’, ‘multi’ etc.)

fmt character value for capture format (‘XY’ or ‘trapID’)

noccasions number of occasions on which detectors were operated

covnames character vector of names for individual covariate fields

verify logical if TRUE then the resulting capthist object is checked with verify

... other arguments passed to read.table, write.table and count.fields

object capthist object with the captures and trap locations to export

filestem character value used to form names of output files

sess character session identifier

ndec number of digits after decimal point for x,y coordinates

Details

read.capthist

captfile should record one detection on each line. A detection comprises a session identifier,
animal identifier, occasion number (1, 2,...,S where S is the number of occasions), and a detector
identifier (fmt = ’trapID’) or X- and Y-coordinates (fmt = ’XY’). Each line of trapfile
has a detector identifier and its X- and Y-coordinates. In either file type the identifiers (labels) may
be numeric or alphanumeric values. Values should be separated by blanks or tabs unless (i) the file
name ends in ‘.csv’ or (ii) sep = ’,’ is passed in . . . , in which case commas are assumed. Blank
lines and any text after ‘#’ are ignored. For further details see ../doc/secr-datainput.pdf,
make.capthist and ‘Data formats’ in the help for DENSITY.

../doc/secr-datainput.pdf

read.capthist 83

The noccasions argument is needed only if there were no detections on the final occasion; it
may be a positive integer (constant across all sessions) or a vector of positive integers, one for each
session. covnames is needed only when captfile includes individual covariates. Values of
noccasions and covnames are passed directly to make.capthist.

A session identifier is required even for single-session capture data. In the case of data from multiple
sessions, trapfile may be a vector of file names, one for each session.

Additional data may be coded as for DENSITY. Specifically, captfilemay include extra columns
of individual covariates, and trapfile may code varying usage of each detector over occasions
and detector covariates. [These features have yet to be thoroughly tested in 1.4.0].

write.capthist

For a single-session analysis, DENSITY requires one text file of capture data and one text file with
detector coordinates (the ‘trap layout’ file). write.capthist constructs names for these files by
appending ‘capt.txt’ and ‘trap.txt’ to filestem which defaults to the name of the capthist object.
If filestem is empty then output goes to the console.

If object contains multiple sessions with differing traps then a separate trap layout file is ex-
ported for each session and each file name includes the session name. All capture data are exported
to one file regardless of the number of sessions. The DENSITY format used is ‘TrapID’.

Existing text files will be replaced without warning. In the case of a multi-session capthist file, ses-
sion names are taken from object rather than sess. Session names are truncated to 17 characters
with blanks and commas removed.

To export data in comma-delimited (‘.csv’) format, pass sep = ’,’ in The resulting files
have extension ‘.csv’ rather than ‘.txt’ and may be opened with spreadsheet software.

Note

The DENSITY formats accommodate ‘single’, ‘multi’ and ‘proximity’ data but not the newer de-
tector types ‘count’, ‘signal’, ‘polygon’, ‘transect’ etc. See detector for more.

The . . . argument is useful for some special cases. For example, if your input uses ‘;’ instead of ‘#’
for comments (‘;’ is also valid in DENSITY) then set comment.char = ’;’ in read.capthist.

In a similar fashion, write comma- or tab-separated values by setting sep = ’,’ or sep =
’\t’ respectively.

The arguments of count.fields are a subset of those of read.table so . . . is limited to any
of {sep, quote, skip, blank.lines.skip, comment.char}.

If you fail to set fmt correctly in read.capthist then the error message from verify may be
uninformative.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Efford, M. G. (2009) DENSITY 4.4: software for spatially explicit capture–recapture. Depart-
ment of Zoology, University of Otago, Dunedin, New Zealand http://www.otago.ac.nz/
density.

See Also

read.traps, make.capthist, write.captures, write.traps, read.table

http://www.otago.ac.nz/density
http://www.otago.ac.nz/density

84 read.mask

Examples

data(ovenbird)
write.capthist(ovenCH)

read.mask Read Habitat Mask From File

Description

Read coordinates of points on a habitat mask from a text file.

Usage

read.mask(file, spacing = NULL, ...)

Arguments

file character string with name of text file

spacing spacing of grid points in metres

... other arguments to pass to read.table

Details

Usually, the x and y coordinates are the first two values on each line, separated by white space. If
the file starts with a line of column headers and ’header = TRUE’ is passed to read.table in the
. . . argument then ’x’ and ’y’ need not be the first two fields.

If the grid cell size spacing is not provided then an attempt is made to infer it from the minimum
spacing of points. This can be slow and may demand more memory than is available. In rare cases
(highly fragmented masks) it may also yield the wrong answer.

Value

object of class mask with type ’user’

Note

The package SPACECAP uses a ’state-space’ file in ’csv’ text format with columns ’X_COORD’,
’Y_COORD’ and ’HABITAT’. Such a file may be input directly to read.mask; rows with HABI-
TAT != 1 are dropped.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

mask

read.traps 85

Examples

Replace file name with a valid local name and remove '#'
read.mask (file = 'c:\\myfolder\\mask.txt', spacing = 3, header = TRUE)
'mask.txt' should have lines like this
x y
265 265
268 265
...

read.traps Read Detector Data From File

Description

Construct an object of class traps with detector locations from a text file or data frame. Usage
per occasion and covariates may be included.

Usage

read.traps(file = NULL, data = NULL, detector = "multi", ...)

Arguments

file character string with name of text file

data data frame of detector coordinates

detector character string for detector type

... other arguments to pass to read.table

Details

Reads a text file in which the first column is a character string identifying a detector and the next
two columns are its x- and y-coordinates, separated by white space. The coordinates optionally
may be followed by a string of codes ’0’ or ’1’ indicating whether the detector was operated on
each occasion. A single trap-specific numeric covariate is allowed; it should be at the end of the
line preceded by ’/’. This format is compatible with the Density software (Efford 2007), except that
all detectors are assumed to be of the same type (usage codes greater than 1 are treated as 1).

If file is missing then x-y coordinates will be taken instead from data. This option does not
allow for covariates or usage, but they maybe added later.

detector specifies the behaviour of the detector following Efford et al. (2009). ’single’ refers to
a trap that is able to catch at most one animal at a time; ’multi’ refers to a trap that may catch more
than one animal at a time. For both ’single’ and ’multi’ detectors a trapped animals can appear at
only one detector per occasion. Detectors of type ’proximity’, such as camera traps and hair snags
for DNA sampling, allow animals to be recorded at several detectors on one occasion.

Value

An object of class traps comprising a data frame of x- and y-coordinates, the detector type (’sin-
gle’, ’multi’, or ’proximity’), and possibly other attributes.

86 reduce

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Efford, M. G. (2007) Density 4.1: software for spatially explicit capture–recapture. Department of
Zoology, University of Otago, Dunedin, New Zealand. http://www.otago.ac.nz/density

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit
capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy
(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255–269.

See Also

traps, make.grid

Examples

Replace file name with a valid local name and remove '#'
read.traps ('c:\\myfolder\\mytraps.txt', detector='proximity')
'mytraps.txt' should have lines like this
1 365 365
2 365 395
3 365 425
etc.

reduce Combine Columns

Description

Combine columns in a matrix-like object to create a new data set using the first non-zero value.

Usage

reduce (object, columns, ...)

Arguments

object object that may be coerced to a matrix

columns list in which each component is a vector of subscripts for columns to be pooled

... other arguments (not used currently)

Details

The first element of columns defines the columns of object for the first new column, the second
for the second new column etc. This is a generic method. A method exists for objects of class
capthist.

Value

A matrix with number of columns equal to length(columns).

http://www.otago.ac.nz/density

reduce.capthist 87

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

capthist, reduce.capthist

Examples

matrix with random zeros
temp <- matrix(runif(20), nc = 4)
temp[sample(20,10)] <- 0
temp

reduce(temp, list(1:2, 3:4))

reduce.capthist Combine Occasions

Description

Combine columns (occasions) in a capthist object to create a new data set, possibly converting
between detector types

Usage

S3 method for class 'capthist':
reduce(object, columns = NULL, outputdetector =

detector(traps(object)), select='last', dropunused = TRUE,
verify = TRUE, sessions = NULL, ...)

Arguments

object capthist object

columns list in which each component is a vector of subscripts for occasions to be pooled
outputdetector

character value giving detector type for output

select character value for method to resolve conflicts

dropunused logical, if TRUE any never-used detectors are dropped

verify logical, if TRUE the verify function is applied to the output

sessions vector of session indices or names (optional)

... other arguments (not used currently)

88 rotate

Details

The first component of columns defines the columns of object for new occasion 1, the second
for new occasion 2, etc. If columns is NULL then all occasions are output. When the output de-
tector is one of the trap types (’single’, ’multi’), reducing capture occasions can result in locational
ambiguity for individuals caught on more than one occasion, and for single-catch traps there may
also be conflicts between individuals at the same trap. The method for resolving conflicts among
’multi’ detectors is determined by select which should be one of ’first’, ’last’ or ’random’. With
’single’ detectors select is ignored and the method is: first, randomly select* one trap per animal
per day; second, randomly select* one animal per trap per day; third, when collapsing multiple days
use the first capture, if any, in each trap. With signal detectors, select determines how multiple
signal measurements are combined; options ’min’, ’max’ or ’mean’ are also allowed.

Usage data in the traps attribute are also pooled if present; a trap is considered ’used’ on a pooled
occasion if it was used on any contributing occasion.

* i.e., in the case of a single capture, use that capture; in the case of multiple ’competing’ captures
draw one at random.

Value

An object of class capthist with number of columns equal to length(occasions). The de-
tector type is inherited from object unless a new type is specified with the argument outputdetector.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

capthist, subset.capthist

Examples

tempcapt <- sim.capthist (make.grid(nx = 6, ny = 6), nocc = 6)
class(tempcapt)

pooled.tempcapt <- reduce(tempcapt, col = list(1,2:3,4:6))
summary (pooled.tempcapt)

rotate Rotate Points

Description

Rotate a set of points.

Usage

rotate (object, degrees, centrexy = NULL, ...)

rotate.traps 89

Arguments

object object that may be coerced to a numeric matrix

degrees clockwise angle of rotation in degrees

centrexy vector with xy coordinates of rotation centre

... other arguments (not used)

Details

The first column of object holds the x coordinates of the points and the second holds the y
coordinates. If centrexy is NULL then rotation is about (0,0).

A generic method, introduced for the class-specific method rotate.traps.

Value

A matrix with the location of each point rotated about the centre.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

shift

Examples

temp <- matrix(runif (20) * 2 - 1, nc = 2)
temp2 <- rotate(temp, 25)
plot(temp, xlim=c(-1.5,1.5), ylim = c(-1.5,1.5), pch = 16)
points (0,0, pch=2)
points (temp2, pch = 1)
arrows (temp[,1], temp[,2], temp2[,1], temp2[,2], length = 0.1)

rotate.traps Rotate Detectors

Description

Rotate detectors while retaining other attributes.

Usage

S3 method for class 'traps':
rotate(object, degrees, centrexy = NULL, ...)

Arguments

object object of class traps

degrees clockwise angle of rotation in degrees

centrexy vector with x,y coordinates of point about which to rotate

... other arguments (not used).

90 score.test

Details

May be used with flip.traps, rbind.traps and shift.traps to create complex geome-
tries.

Value

An object of class traps with the location of each detector rotated about the centre.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

traps, shift.traps

Examples

hollow1 <- make.grid(nx = 8, ny = 8, hollow = TRUE)
hollow2 <- make.grid(nx = 8, ny = 8, hollow = TRUE)
nested <- rbind (hollow1, rotate(hollow2, 45, c(70, 70)))
plot(nested, gridlines = FALSE)

score.test Score Test for SECR Models

Description

Compute score tests comparing a fitted model and a more general alternative model.

Usage

score.test(secr, ..., betaindex = NULL, trace = FALSE)

score.table(object, ..., sort = TRUE, dmax = 10)

Arguments

secr fitted secr model

... one or more alternative models OR a fitted secr model

trace logical. If TRUE then output one-line summary at each evaluation of the likeli-
hood

betaindex vector of indices mapping fitted values to parameters in the alternative model

object score.test object or list of such objects

sort logical for whether output rows should be in descending order of AICc

dmax threshold of dAICc for inclusion in model set

score.test 91

Details

Score tests allow fast model selection (e.g. Catchpole & Morgan 1996). Only the simpler model
need be fitted. This implementation uses the observed information matrix, which may sometimes
mislead (Morgan et al. 2007). The gradient and second derivative of the likelihood function are
evaluated numerically at the point in the parameter space of the second model corresponding to the
fit of the first model. This operation uses the function fdHess of the nlme package; the likelihood
must be evaluated several times, but many fewer times than would be needed to fit the model. The
score statistic is an approximation to the likelihood ratio; this allows the difference in AIC to be
estimated.

Mapping of parameters between the fitted and alternative models sometimes requires user interven-
tion via the betaindex argument. For example betaindex = c(1,2,4) is the correct mapping
when comparing the null model (D∼ 1, g0∼ 1, sigma∼ 1) to one with a behavioural effect on g0
((D∼ 1, g0∼ b, sigma∼ 1).

score.table summarises one or more score tests in the form of a model comparison table. The
. . . argument here allows the inclusion of additional score test objects (note the meaning differs from
score.test). Approximate AICc values are used to compute relative AIC model weights for all
models within dmax AICc units of the best model.

Value

An object of class ’score.test’ that inherits from ’htest’, a list with components

statistic the value the chi-squared test statistic (score statistic)

parameter degrees of freedom of the approximate chi-squared distribution of the test statis-
tic (difference in number of parameters H0, H1)

p.value probability of test statistic assuming chi-square distribution

method a character string indicating the type of test performed

data.name character string with null hypothesis, alternative hypothesis and arguments to
function call from fit of H0

H0 simpler model

np0 number of parameters in simpler model

H1 alternative model

H1.beta coefficients of alternative model

AIC Akaike’s information criterion, approximated from score statistic

AICc AIC with small-sample adjustment of Hurvich & Tsai 1989

If . . . defines several alternative models then a list of score.test objects is returned.

The output from score.table is a dataframe with one row per model, including the reference
model.

Note

This implementation is experimental. The AIC values, and values derived from them, are approx-
imations that may differ considerably from AIC values obtained by fitting and comparing the re-
spective models. Use of the observed information matrix may not be optimal.

score.test cannot be used to compare models that differ in the arguments scalesigma or
scaleg0.

92 secr.design.MS

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Catchpole, E. A. and Morgan, B. J. T. (1996) Model selection of ring-recovery models using score
tests. Biometrics 52, 664–672.

Hurvich, C. M. and Tsai, C. L. (1989) Regression and time series model selection in small samples.
Biometrika 76, 297–307.

Morgan, B. J. T., Palmer, K. J. and Ridout, M. S. (2007) Negative score test statistic. American
statistician 61, 285–288.

See Also

AIC, LR.test

Examples

Not run:
data(secrdemo)
AIC (secrdemo.0, secrdemo.b)
st <- score.test (secrdemo.0, g0 ~ b)
st
score.table(st)

End(Not run)

secr.design.MS Construct Detection Model Design Matrices and Lookups

Description

Internal function used by secr.fit.

Usage

secr.design.MS(capthist, models, timecov = NULL, sessioncov = NULL,
groups = NULL, dframe = NULL, naive = FALSE, bygroup = FALSE, ...)

Arguments

capthist capthist object

models list of formulae for parameters of detection

timecov optional dataframe of values of time (occasion-specific) covariate(s).

sessioncov optional dataframe of values of session-specific covariate(s).

groups optional vector of one or more variables with which to form groups. Each ele-
ment should be the name of a factor variable in the covariates attribute of
capthist.

secr.design.MS 93

dframe optional data frame of design data for detection parameters

naive logical if TRUE then modelled detection probability is for a naive animal (not
caught previously); if FALSE then detection probability is contingent on indi-
vidual’s history of detection

bygroup logical if TRUE then the individual dimension of the parameter matrix is auto-
matically collapsed to one row per group; if FALSE then the full dimensionality
is retained (one row per individual)

... other arguments passed to the R function model.matrix

Details

This is an internal secr function that you are unlikely ever to use. . . . may be used to pass contrasts.arg
to model.matrix.

Each real parameter is notionally different for each unique combination of session, individual, oc-
casion and detector, i.e., forR sessions, n individuals, S occasions andK detectors there are poten-
tially R×n×S×K different values. Actual models always predict a much reduced set of distinct
values, and the number of rows in the design matrix is reduced correspondingly; a parameter index
array allows these to retrieved for any combination of session, individual, occasion and detector.

Value

A list with the components

designMatrices
list of reduced design matrices, one for each real detection parameter

parameterTable
index to row of the reduced design matrix for each real detection parameter;
dim(parameterTable) = c(uniquepar, np), where uniquepar is the number of
unique combinations of paramater values (uniquepar < RnSK) and np is the
number of parameters in the detection model.

PIA Parameter Index Array - index to row of parameterTable for a given session,
animal, occasion and detector; dim(PIA) = c(R,n,S,K)

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

D.designdata

Examples

data(secrdemo)
secr.design.MS (captdata, models = list(g0 = ~b))$designMatrices
secr.design.MS (captdata, models = list(g0 = ~b))$parameterTable

94 secr.fit

secr.fit Spatially Explicit Capture–Recapture

Description

Estimate animal population density with data from an array of passive detectors (traps) by fitting a
spatial detection model by maximizing the likelihood. Data must have been assembled as an object
of class capthist. Integration is by summation over the grid of points in mask.

Usage

secr.fit (capthist, model = list(D~1, g0~1, sigma~1),
mask = NULL, buffer = 100, CL = FALSE, detectfn = NULL,
start = NULL, link = list(), fixed = list(),
timecov = NULL, sessioncov = NULL, groups = NULL,
dframe = NULL, details = list(), method = 'Newton-Raphson',
verify = TRUE, trace = NULL, ...)

Arguments

capthist capthist object including capture data and detector (trap) layout
mask mask object
buffer scalar mask buffer radius if mask not specified
CL logical, if true then the model is fitted by maximizing the conditional likelihood
detectfn integer code or character string for shape of detection function 0 = halfnormal,

1 = hazard rate etc. – see detectfn
start vector of initial values for beta parameters, or secr object from which they

may be derived
link list with optional components ‘D’, ‘g0’, ‘sigma’ and ‘z’, each a character string

in {‘log’, ‘logit’, ‘identity’, ‘sin’} for the link function of the relevant real pa-
rameter

fixed list with optional components corresponding to each ‘real’ parameter (e.g., ‘D’,
‘g0’, ‘sigma’), the scalar value to which parameter is to be fixed

model list with optional components ‘D’, ‘g0’, ‘sigma’ and ‘z’, each symbolically
defining a linear predictor for the relevant real parameter using formula nota-
tion

timecov optional dataframe of values of time (occasion-specific) covariate(s).
sessioncov optional dataframe of values of session-specific covariate(s).
groups optional vector of one or more variables with which to form groups. Each ele-

ment should be the name of a factor variable in the covariates attribute of
capthist.

dframe optional data frame of design data for detection parameters
details list of additional settings, mostly model-specific (see Details)
method character string giving method for maximizing log likelihood
verify logical, if TRUE the input data are checked with verify
trace logical, if TRUE then output each evaluation of the likelihood, and other mes-

sages
... other arguments passed to the maximization function

secr.fit 95

Details

secr.fit fits a SECR model by maximizing the likelihood. The likelihood depends on the de-
tector type (‘multi’ or ‘proximity’) of the traps attribute of capthist (Borchers and Efford
2008, Efford, Borchers and Byrom 2009, Efford, Dawson and Borchers 2009). The ‘multi’ form
of the likelihood is also used, with a warning, when detector type = ‘single’ (see Efford et al.
2009). The default model is null (constant density and detection probability). The set of vari-
ables available for use in linear predictors includes some that are constructed automatically (t, T, b,
B), group (g), and others that appear in the covariates of the input data. See secr models and
../doc/secr-overview.pdf for more on defining models.

The length of timecov should equal the number of sampling occasions (ncol(capthist)).
Arguments timecov, sessioncov and groups are used only when needed for terms in one of
the model specifications. Default link is list(D=’log’, g0=’logit’, sigma=’log’).

If start is missing then autoini is used for D, g0 and sigma, and other beta parameters are set
initially to arbitrary values, mostly zero. start may be a previously fitted nested model. In this
case, a vector of starting beta values is constructed from the nested model and additional betas are
set to zero. Mapping of parameters follows the default in score.test, but user intervention is
not allowed.

details is used for various specialized settings –

details$distribution specifies the distribution of the number of individuals detected; this
may be conditional on the number in the masked area (‘binomial’) or unconditional (‘poisson’).
distribution affects the sampling variance of the estimated density. The default is ‘poisson’.

details$binomN determines the distribution that is fitted to each count (detections of an indi-
vidual at a particular detector, on a particular occasion) when the detectors are of type ‘count’:

• binomN > 1 binomial with size binomN

• binomN = 1 Bernoulli

• binomN = 0 Poisson

• binomN < 0 negative binomial with size abs(binomN) – see help(dnbinom)

In this version the ‘size’ parameter of the negative binomial is not estimated: it must be supplied.
binomN should be an integer unless negative.

details$hessian is a character string controlling the computation of the Hessian matrix from
which variances and covariances are obtained. Options are ‘none’ (no variances), ‘auto’ (the de-
fault) or ‘fdhess’ (use the function fdHess in nlme). If ‘auto’ then the Hessian from the optimisation
function is used.

details$LLonly = TRUE causes the function to returns a single evaluation of the log likelihood
at the ‘start’ values.

details$scalesigma = TRUE causes sigma to be scaled by D−0.5.

details$scaleg0 = TRUE causes g0 to be scaled by sigma−2.

details$centred = TRUE causes coordinates of both traps and mask to be centred on the
centroid of the traps, computed separately for each session in the case of multi-session data. This
may be necessary to overcome numerical problems when x- or y-coordinates are large numbers.
The default (1.4.0) is not to centre coordinates.

If method = ’Newton-Raphson’ then nlm is used to maximize the log likelihood; otherwise
optim is used with the chosen method (‘BFGS’, ‘Nelder-Mead’, etc.). A feature of nlm is that it
takes a large step early on in the maximization that may cause floating point underflow or overflow
in one or more real parameters. This can be controlled by passing the ‘stepmax’ argument of nlm
in the . . . argument of secr.fit (see first example).

../doc/secr-overview.pdf

96 secr.fit

If verify = TRUE then verify is called to check capthist and mask; analysis is aborted if errors
are found.

Value

The function secr.fit returns an object of class secr. This has components

call function call

capthist saved input

mask saved input

detectfn saved input

CL saved input

timecov saved input

sessioncov saved input

groups saved input

dframe saved input

design reduced design matrices, parameter table and parameter index array for actual
animals (see secr.design.MS)

design0 reduced design matrices, parameter table and parameter index array for ‘naive’
animal (see secr.design.MS)

start vector of starting values for beta parameters

link list with components for each real parameter (e.g., ‘D’, ‘g0’), the name of the
link function used for each real parameter. Component ‘z’ is NULL unless de-
tectfn = 1 (hazard-rate).

fixed saved input

parindx list with possible components ‘D’, ‘g0’, ‘sigma’ and ‘z’, for the indices of the
‘beta’ parameters associated with each real parameter (‘z’ NULL unless detectfn
= 1).

model saved input

details saved input

vars vector of unique variable names in model

betanames names of beta parameters

realnames names of fitted (real) parameters

fit list describing the fit (output from nlm or optim)

beta.vcv variance-covariance matrix of beta parameters

D array of predicted densities of each group at each mask point in each session,
dim(D) = c(nrow(mask), ngroups, nsessions)

version secr version number

starttime character string of date and time at start of fit

proctime processor time for model fit, in seconds

secr.fit 97

Note

One system of units is used throughout secr. Distances are in metres and areas are in hectares (ha).
The unit of density is animals per hectare. 1 ha = 10000 m^2 = 0.01 km^2. To convert density to
animals / km^2, multiply by 100.

print, AIC, vcov, and predict methods are provided. derived is used to compute the
derived parameters ‘esa’ (effective sampling area) and ‘D’ (density) for models fitted by maximizing
the conditional likelihood (CL = TRUE).

Components ‘version’ and ‘starttime’ were introduced in version 1.2.7, and recording of the com-
pletion time in ‘fitted’ was discontinued.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture–recapture studies. Biometrics 64, 377–385.

Efford, M. G. (2004) Density estimation in live-trapping studies. Oikos 106, 598–610.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit
capture–recapture: likelihood-based methods. In: D. L. Thompson, E. G. Cooch and M. J. Conroy
(eds) Modeling Demographic Processes in Marked Populations. Springer. Pp. 255–269.

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009) Population density estimated from loca-
tions of individuals on a passive detector array. Ecology 90, 2676–2682.

See Also

capthist, mask, detection functions, print.secr, vcov.secr, AIC.secr, derived,
predict.secr, verify

Examples

construct test data (array of 48 'multi-catch' traps)

detectors <- make.grid (nx = 6, ny = 8, detector = 'multi')
detections <- sim.capthist (detectors, popn = list(D = 10,

buffer = 100), detectpar = list(g0 = 0.2, sigma = 25))

fit & print null (constant parameter) model
stepmax is passed to nlm (not usually needed)

secr0 <- secr.fit (detections, stepmax = 50)
secr0 ## uses print method for secr

compare fit of null model with learned-response model for g0

secrb <- secr.fit (detections, model = g0~b)
AIC (secr0, secrb)

typical result

model detectfn npar logLik AIC AICc dAICc AICwt

98 secr.make.newdata

secr0 D~1 g0~1 sigma~1 halfnormal 3 -347.1210 700.242 700.928 0.000 0.7733
secrb D~1 g0~b sigma~1 halfnormal 4 -347.1026 702.205 703.382 2.454 0.2267

secr.make.newdata Create Default Design Data

Description

Generate a dataframe containing design data for the base levels of all predictors in an secr object.

Usage

secr.make.newdata(object)

Arguments

object fitted secr model object

Details

secr.make.newdata is used by predict in lieu of user-specified ’newdata’. There is seldom
any need to call secr.make.newdata directly.

Value

A dataframe with one row for each session and group, and columns for the predictors used by
object$model.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

predict.secr, secr.fit

Examples

data(secrdemo)
secr.make.newdata(secrdemo.b)

secr.model 99

secr.model Spatially Explicit Capture–Recapture Models

Description

A family of capture–recapture models (e.g. SECR) may include submodels that constrain variation
in core parameters and include the effects of covariates. The language of generalised linear models
is convenient for describing submodels (e.g. Huggins 1989, Lebreton et al. 1992). Each parameter
is treated as a linear combination of effects on its transformed (’link’) scale. This is useful for
combining effects because, given a suitable link function, any combination maps to a feasible value
of the parameter. The logit scale has this property for probabilities in (0,1), and the natural log scale
works for positive parameters i.e. (0, +Inf).

Submodels for spatially explicit capture–recapture in secr are defined symbolically using the R
formula notation. A separate linear predictor is used for each core parameter. Core parameters
are ’real’ parameters in the terminology of MARK, and secr uses that term to reduce confusion.
Four real parameters are commonly modelled in secr: D (density), g0, sigma and z. Only the
last three real parameters, the ones jointly defining detection probability as a function of location,
can be estimated directly when the model is fitted by maximizing the conditional likelihood. D is
then a derived parameter. ’z’ is a shape parameter used only for a ’hazard-rate’ detection function
(Hayes and Buckland 1983). Other real parameters are used for acoustic models (beta0, beta1;
../doc/secr-sound.pdf) and for the mixture proportion (pmix) in finite mixture models
(../doc/secr-finitemixtures.pdf).

Each real parameter has a linear predictor of the form

y = X * beta,

where y is vector of parameter values on the link scale, X is a design matrix of predictor values,
beta is a vector of coefficients, and ’*’ stands for matrix multiplication. The elements of beta are
estimated when we fit the model; in MARK these are called ’beta parameters’ to distinguish them
from the ’real’ parameter values in y. X has one column for each element of beta. To repeat: there
is an X and a beta for each real parameter; elsewhere in the documentation we use ’beta’ to refer to
the vector got by concatenating all the parameter-specific beta’s. We now describe design matrices
in more detail.

[Some variations on the basic SECR model do not fit easily into this framework. An example is the
choice of detection function (halfnormal vs hazard-rate). These are treated as higher-level choices.]

Design matrices
The design matrix contains a column of ’1’s (for the constant or intercept term) and additional
columns as needed to describe the effects in the submodel. Depending on the model, these may
be continuous predictors (e.g. air temperature to predict occasion-to-occasion variation in g0),
indicator variables (e.g. 1 if animal i was caught before occasion s, 0 otherwise), or coded factor
levels.

Within secr.fit, a design matrix is constructed automatically from the input data (capthist)
and the model formula (e.g. model$g0) in a 2-stage process. First, a data frame is built con-
taining ’design data’ with one column for each variable in the formula. Second, the R function
model.matrix() is used to construct the design matrix. This process is hidden from the user.
The design matrix will have at least one more column than the design data, and more if the formula
includes interactions or factors with more than two levels. For a good description of the general
approach see the documentation for RMark (Laake and Rexstad 2008). The key point is that the
necessary design data can be either extracted from the inputs (capthist and mask) or generated
automatically (e.g. indicator of previous capture, mentioned in the previous paragraph).

../doc/secr-sound.pdf
../doc/secr-finitemixtures.pdf

100 secr.model.density

Real parameters fall into two groups: density (D) and detection (g0, sigma and z). Density and
detection parameters are subject to different types of effect, so they use different design matrices
and are described separately here:

secr detection models, secr density models

Note

The structure of secr precludes certain types of model. Unlike density, detection parameters (g0,
sigma etc.) cannot be modelled as varying in space per se, whether continuously or discretely (e.g.
as a function of habitat class). However, such variation may be modelled between detectors or
between sessions. As an example, consider a measure of vegetation cover in a 50-m circle centred
on each detector. This may be used as a detector covariate in models for g0 or sigma. A ’detector-
centred’ view of habitat effects is almost as sensible as an ’animal-centred’ view; the one reservation
is that the spatial scale (radius of the circle) is arbitrary rather than being driven by sigma as you
might like. Perhaps this could be fixed in future versions by computing the trap covariate ’on the
fly’ from covariates in the habitat mask, given the current magnitude of sigma.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Laake, J. and Rexstad E. (2008) Appendix C. RMark - an alternative approach to building linear
models in MARK. In: Cooch, E. and White, G. (eds) Program MARK: A Gentle Introduction. 6th
edition. Available online at www.phidot.org.

secr.model.density Density Models

Description

SECR can fit an inhomogeneous Poisson model to describe the distribution of animals. This may
be viewed as a surface of expected density across the study area.

The log likelihood is evaluated in secr.fit by summing values at points on a ’habitat mask’.
Each point in a habitat mask represents a grid cell of potentially occupied habitat (their combined
area may be almost any shape and may include disjunct patches). The full design matrix for density
(D) has one row for each point in the mask. The design matrix has one column for the intercept
(constant) term and one for each predictor.

Predictors may be based on Cartesian coordinates (e.g. ’x’ for an east-west trend), a continuous
habitat variable (e.g. vegetation cover) or a categorical (factor) habitat variable. Predictors must be
known for all points in the mask (non-habitat excluded). The variables ’x’, ’y’, ’session’ and ’g’ are
provided automatically. Other covariates should be named columns in the ’covariates’ attribute of
the habitat mask.

The fitted model for density is linear on the link scale (see the link argument of secr.fit. The
default link for density is ’log’.

Variable Description Data source
x x-coordinate automatic
y y-coordinate automatic

www.phidot.org

secr.model.detection 101

session session factor automatic
Session session number 0:(R-1) automatic
g group factor automatic
[user] mask covariate covariates (mask) as named in formula

The submodel for density (D) is a named component of the list used in the model argument of
secr.fit. It is expressed in R formula notation by appending terms to ∼ .

Note

This implementation is still experimental. Note that no density model is fitted when secr.fit is
called with CL = TRUE.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture–recapture studies. Biometrics 64, 377–385.

See Also

secr models, secr detection models, secr.fit

Examples

list(D = ~ 1) ## constant density (homogeneous Poisson)
list(D = ~ x) ## east-west trend
list(D = ~ cover) ## requires 'cover' as a mask covariate

secr.model.detection
Models for Detection Parameters

Description

For spatially explicit capture–recapture estimation of a closed population, we model the detection
of individual i on occasion s at detector k. Given n observed individuals on S occasions at K
detectors there are therefore n.S.K detection probabilities of interest. We can think of these as
elements of a 3-dimensional array. Strictly, we are also interested in the detection probabilities of
unobserved individuals, but these are estimated only by extrapolation from those observed so we do
not consider them in the array.

In a null (constant) model, all n.S.K detection probabilities are the same. The conventional sources
of variation in capture probability (Otis et al. 1978) appear as variation in the n dimension (’in-
dividual heterogeneity’ h), in the S dimension (’time variation’ t) or as a particular interaction in
these two dimensions (’behavioural response to capture’ b). Combined effects are possible.

Spatially explicit capture–recapture introduces two sorts of additional complexity. Firstly, detection
probability is no longer a scalar (even for a particular animal, occasion and detector combination);

102 secr.model.detection

it is described by the detection function, which may have two parameters (e.g. g0, sigma for half-
normal), three parameters (e.g. g0, sigma, z for the hazard-rate function), or potentially more.

Secondly, many more types of variation are possible. Any of the parameters of the detection func-
tion may vary with respect to individual (i), occasion (s) or detector (k). For example, there may be
a covariate associated with trap location that influences detection probability.

The full design matrix for each detection submodel has one row for each combination of i, s and
k (animal, occasion and trap). Allowing a distinct probability for each animal (the ’n’ dimension)
may seem excessive, as continuous individual-specific covariates are feasible only when a model is
fitted by maximizing the conditional likelihood (cf Huggins 1989). However, the full n.S.K array
is convenient for coding both group membership (Lebreton et al. 1992, Cooch and White 2008) and
experience of capture, even when individual-level heterogeneity cannot be modelled.

Variation between ’sessions’ and between latent classes in a finite mixture adds two further di-
mensions: in principle there is an n.S.K array for each latent class (classes are numbered 1..M),
and an n.S.K.M array for each session (sessions are numbered 1..R). The full design matrix has
n.S.K.M.R rows. We do not expand on this here.

Specifying effects on detection parameters

Effects on parameters of detection probability are specified with R formulae using standard variable
names or named covariates supplied by the user. The formula for each detection parameter (g0,
sigma, z) may be constant (∼ 1, the default) or some combination of terms in standard R formula
notation (see formula).

Variable Description Data source Dim
t time factor (one level for each occasion) automatic S
T time trend (integer covariate 0:(S-1)) automatic S
tcov default time covariate timecov[,1] S
kcov default trap covariate covariates (traps)[,1] K
b learned response capthist n.S
B transient (Markovian) response capthist n.S
g group see below n
h2 2-class mixture – 2
h3 3-class mixture – 2
session session factor (one level for each session) automatic R
Session session number 0:(R-1) automatic R
[user] individual covariate covariates (capthist) n
[user] session covariate sessioncov R
[user] time covariate timecov S
[user] detector covariate covariates (traps) K

The classic ’learned response’ is a step change following first detection; this is implemented with
the predictor variable ’b’ which is FALSE up to and including the time of first capture and TRUE
afterwards. An alternative is a response that depends only on detection at the last opportunity (’B’).

Groups (’g’) are defined by the interaction of the capthist categorical (factor) individual covari-
ates identified in secr.fit argument ’groups’. Groups are redundant with conditional likelihood
because individual covariates of whatever sort (continuous or categorical) may be included freely
in the model.

Individual heterogeneity (’h’ in the notation of Otis et al. 1978) may modelled by treating any detec-
tion parameter as a 2-part or 3-part finite mixture e.g. g0∼ h2. See ../doc/secr-finitemixtures.
pdf.

../doc/secr-finitemixtures.pdf
../doc/secr-finitemixtures.pdf

secr.model.detection 103

Any other variable name appearing in a formula is assumed to refer to a user-defined predictor.
These will be interpreted by searching for name matches in the dataframes of individual, session,
time and trap covariates, in that order (remembering that individual covariates other than groups
are allowed only when the model is fitted by maximizing the conditional likelihood). The type of
the predictor is inferred from the data frame in which it first occurs. Thus if the model included
the formula ’g0 ~ wetness’, and ’wetness’ was a column in the data frame of time covariates (time-
cov), then ’wetness’ would be interpreted as a time covariate, and a column of the same name in
covariates(traps) would be ignored. In this case, renaming the column in timecov would expose the
traps covariate, and ’wetness’ would be interpreted as an attribute of detectors, rather than sample
intervals. This is a good reason to give covariates distinctive names!

The design matrix for detection parameters may also be provided manually in the argument dframe.
This feature is untested.

The submodels for ’g0’, ’sigma’ and ’z’ are named components of the model argument of secr.fit.
They are expressed in R formula notation by appending terms to ∼ . The name of the response
may optionally appear on the left hand side of the formula (e.g. g0∼ b).

Note

The parameter ’z’ was previously called ’b’; it was renamed to avoid confusion with the predictor
b used in a formula for a learned trap response.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Cooch, E. and White, G. (eds) (2008) Program MARK: A Gentle Introduction. 6th edition. Avail-
able online at www.phidot.org.

Hayes, R. J. and Buckland, S. T. (1983) Radial-distance models for the line-transect method. Bio-
metrics 39, 29–42.

Huggins, R. M. (1989) On the statistical analysis of capture experiments. Biometrika 76, 133–140.

Lebreton, J.-D., Burnham, K. P., Clobert, J., Anderson, D. R. (1992) Modeling survival and testing
biological hypotheses using marked animals: a unified approach with case studies. Ecological
Monographs 62, 67–118.

See Also

secr models, secr density models, secr.fit

Examples

constant (null) model
list(g0 = ~1, sigma = ~1)

both detection parameters change after first capture
list(g0 = ~b, sigma = ~b)

group-specific parameters; additive time effect on g0
groups are defined via the 'groups' argument of secr.fit
list(g0 = ~ g + t, sigma = ~ g)

www.phidot.org

104 secrdemo

g0 depends on trap-specific covariate
list(g0 = ~ kcov)

secrdemo SECR Models Fitted to Demonstration Data

Description

Demonstration data from program Density are provided both as raw dataframes (trapXY, captXY)
and as a combined capthist object (captdata) ready for input to secr.fit.

The fitted models are objects of class secr formed by

secrdemo.0 <- secr.fit (captdata)

secrdemo.b <- secr.fit (captdata, model = list(g0 = ~b))

secrdemo.CL <- secr.fit (captdata, CL = TRUE)

Usage

data(secrdemo)

Details

The raw data are 235 fictional captures of 76 animals over 5 occasions in 100 single-catch traps 30
metres apart on a square grid with origin at (365,365).

Dataframe trapXY contains the data from the Density input file ‘trap.txt’, and captXY contains
the data from ‘capt.txt’ (Efford 2007).

The fitted models use a halfnormal detection function and the likelihood for multi-catch traps (ex-
pect estimates of g0 to be biased because of trap saturation Efford et al. 2009). The first is a null
model (i.e. parameters constant) and the second fits a learned trap response.

Object Description
captXY data.frame of capture data
trapXY data.frame of trap locations
captdata capthist object
secrdemo.0 fitted secr model – null
secrdemo.b fitted secr model – g0 trap response
secrdemo.CL fitted secr model – null, conditional likelihood

Source

Efford, M.G. (2007) Density 4.1: software for spatially explicit capture-recapture. Department of
Zoology, University of Otago, Dunedin, New Zealand. http://www.otago.ac.nz/density.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit
capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy
(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255–269.

See Also

capthist

http://www.otago.ac.nz/density

session 105

Examples

data (secrdemo)

construct a traps object from raw trap data
this dataset uses fmt = 'XY' (x-y coordinates included in
both trap and capture files), but fmt = 'trapID' (capture file
uses trap identifier) is simpler

temptrap <- read.traps(data = trapXY, detector = 'single')
plot(temptrap)

Not run:
construct a capthist object
captdata <- make.capthist(captXY, temptrap, fmt='XY')

End(Not run)

plot(captdata, tracks = TRUE)

display the null model fit, using the print method for secr
secrdemo.0

session Session Vector

Description

Extract or replace the session names of a capthist object.

Usage

session(object, ...)
session(object) <- value

Arguments

object object with ’session’ attribute e.g. capthist

value character vector or vector that may be coerced to character, one value per session

... other arguments (not used)

Details

Replacement values will be coerced to character.

Value

a character vector with one value for each session in capthist

106 shift

Note

Like Density, secr uses the term ’session’ for a closed-population sample. A session usually in-
cludes data from several closely-spaced capture occasions (often consecutive days). Each ’primary
session’ in the ’robust’ design of Pollock (1982) would be treated as a session in secr. secr also
uses ’session’ for independent subsets of the capture data distinguished by characteristics other than
sampling time (as above). For example, two grids trapped simultaneously could be analysed as
distinct ’sessions’ if (i) they were far enough apart that there was negligible prospect of the same
animal being caught on both grids, and (ii) there was interest in comparing estimates from the two
grids, or fitting a common detection model.

The log likelihood for a session model is the sum of the separate session log likelihoods. Although
this assumes independence of sampling, parameters may be shared across sessions, or session-
specific parameter values may be functions of session-level covariates. For many purposes, ’ses-
sions’ are equivalent to ’groups’. For multi-session models the detector array and mask are specified
separately for each session. Group models are therefore generally simpler to implement. On the
other hand, sessions offer more flexibility in defining and evaluating between-session models, in-
cluding trend models.

Sessions are a recent addition to secr and the documentation and testing of session capability is
therefore less advanced than for other features.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Pollock, K. H. (1982) A capture-recapture design robust to unequal probability of capture. Journal
of Wildlife Management 46, 752–757.

See Also

capthist

Examples

data(secrdemo)
session(captdata)

shift Shift Points

Description

Translate an array of points.

Usage

shift (object, shiftxy, ...)

shift.traps 107

Arguments

object a 2-column matrix or object that can be coerced to a matrix

shiftxy vector of x and y displacements

... other arguments (not used)

Details

This is a generic function. The default method is redundant, but the method for traps objects may
be useful.

Value

A matrix with the location of each point shifted by the desired amount.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

rotate, flip

Examples

temp <- matrix(runif (20) * 2 - 1, nc = 2)
temp2 <- shift(temp, c(0.1, 0.1))
plot(temp, xlim=c(-1.5,1.5), ylim = c(-1.5,1.5), pch = 16)
points (0,0, pch=2)
points (temp2, pch = 1)
arrows (temp[,1], temp[,2], temp2[,1], temp2[,2], length = 0.1)

shift.traps Shift Detectors

Description

Translate detectors while retaining other attributes.

Usage

S3 method for class 'traps':
shift(object, shiftxy, ...)

Arguments

object object of class traps

shiftxy vector with displacements in x and y directions

... other arguments (not used)

Details

May be used with rbind.traps and rotate.traps to create complex geometries.

108 sim.capthist

Value

An object of class traps with the location of each detector shifted by the desired amount.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

traps, rotate.traps, flip.traps

Examples

hollow1 <- make.grid(nx = 8, ny = 8, hollow = TRUE)
hollow2 <- shift(make.grid(nx = 6, ny = 6, hollow = TRUE), c(20, 20))
nested <- rbind (hollow1, hollow2)
plot(nested, gridlines = FALSE, lab = TRUE)

sim.capthist Simulate Detection Histories

Description

Create a set of capture or marking-and-resighting histories by simulated sampling of a 2-D popula-
tion using an array of detectors.

Usage

sim.capthist(traps, popn = list(D = 5, buffer = 100,
Ndist = 'poisson'), detectfn = 0, detectpar = list(),
noccasions = 5, renumber = TRUE, seed = NULL)

sim.resight(traps, ..., q = 1, pID = 1, unmarked = TRUE,
nonID = TRUE)

Arguments

traps traps object with the locations and other attributes of detectors

popn locations of individuals in the population to be sampled, either as a popn object
or a list with named elements ’D’ (density) and ’buffer’

detectfn integer code or character string for shape of detection function 0 = halfnormal
etc. – see detectfn

detectpar list of values for named parameters of detection function

noccasions number of occasions to simulate

renumber logical for whether output rows should labeled sequentially (TRUE) or retain
the numbering of the population from which they were drawn (FALSE)

seed an object specifying if and how the random number generator should be initial-
ized (’seeded’)

... arguments to pass to sim.capthist

sim.capthist 109

q number of marking occasions

pID probability of individual identification for marked animals

unmarked logical, if true unmarked individuals are not recorded during ’sighting’

nonID logical, if true then unidentified marked individuals are not recorded during
’sighting’

Details

If popn is not of class ’popn’ then a homogeneous Poisson population with the desired density
(animals/ha) is first simulated over the rectangular area of the bounding box of traps plus a buffer
of the requested width (metres). The detection algorithm depends on the detector type of traps.
For ’proximity’ detectors, the actual detection probability of animal i at detector j is the naive
probability given by the detection function. For ’single’ and ’multi’ detectors the naive probability
is modified by competition between detectors and, in the case of ’single’ detectors, between animals.
See Efford (2004) and other papers below for details.

Detection parameters in detectpar are specific to the detection function, which is indicated by
a numeric code (detectfn). Parameters may vary with time - for this provide a vector of length
noccasions. The default detection parameters are list(g0 = 0.2, sigma = 25, z =
1).

detectpar may also include ’binomN’ and other arguments for detectors that have yet to be
documented. A zero value for binomN indicates that counts should be modelled with a Poisson
distribution.

detectpar may include a component ’truncate’ for the distance beyond which detection proba-
bility is set to zero. By default this value is NULL (no specific limit).

If popn is specified by an object of class ’popn’ then any individual covariates will be passed on;
the covariates attribute of the output is otherwise set to NULL.

The random number seed is managed as in simulate.

sim.resight generates mark-resight data for ’q’ marking occasions followed by ’noccasions
– q’ sighting occasions. sim.capthist is first called with the arguments ’traps’ and The
detector type must be ’proximity’. The ’usage’ attribute of traps is ignored at present, so the
same detectors are operated on all occasions. Any detection-parameter vector of length 2 in . . . is
interpreted as providing differing constant values for the marking and sighting phases.

Value

For sim.capthist, an object of class capthist, a matrix or 3-dimensional array with addi-
tional attributes. Rows represent individuals and columns represent occasions; the third dimension,
used when detector type = ’proximity’, codes presence or absence at each detector. For trap de-
tectors (’single’, ’multi’) each entry in capthist is either zero (no detection) or the sequence
number of the trap.

The initial state of the R random number generator is stored in the ’seed’ attribute.

For sim.resight, an object of class capthist, always a 3-dimensional array, with additional
attributes Tu and Tm containing counts of ’unmarked’ and ’marked, not identified’ sightings.

Note

External code is called to speed the simulations. The present version assumes a ’null model’ i.e.
naive detection probability is constant except for effects of distance and possibly time (using vector-
valued detection parameters from 1.2.10). You can, however, use rbind.capthist to combine
detections of population subclasses (e.g. males and females) simulated with different parameter

110 sim.popn

values. This is not valid for detector type ’single’ because it fails to allow for competition for traps
between subclasses. Future versions may allow more complex models.

truncate has no effect (i) when using a uniform detection function with radius (sigma) <=
truncate and (ii) with signal strength detection (detectfn 10, 11). Note that truncated detection
functions are provided for de novo simulation, but are not available when fitting models with in
secr.fit or simulating from a fitted model with sim.secr.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture–recapture studies. Biometrics 64, 377–385.

Efford, M. G. (2004) Density estimation in live-trapping studies. Oikos 106, 598–610.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit
capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy
(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255–269.

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009) Population density estimated from loca-
tions of individuals on a passive detector array. Ecology 90, 2676–2682.

See Also

sim.popn, capthist, traps, popn, detection functions, simulate

Examples

simple example
detector = 'multi' (default)
temptrap <- make.grid(nx = 6, ny = 6, spacing = 20)
sim.capthist (temptrap, detectpar = list(g0 = 0.2, sigma = 20))

with detector = 'proximity, there may be more than one
detection per individual per occasion
temptrap <- make.grid(nx = 6, ny = 6, spacing = 20, detector =

'proximity')
summary(sim.capthist (temptrap, detectpar =

list(g0 = 0.2, sigma = 20)))

sim.popn Simulate 2-D Population

Description

Simulate a Poisson process representing the locations of individual animals.

sim.popn 111

Usage

sim.popn (D, core, buffer = 100, model2D = 'poisson',
buffertype = 'rect', covariates = list(sex = c(M=0.5, F=0.5)),
number.from = 1, Ndist = 'poisson', nsession = 1, details =
NULL, seed = NULL)

Arguments

D density animals / hectare (10 000 m\^2)

core data frame of points defining the core area

buffer buffer radius about core area

model2D character string for 2-D distribution (’poisson’, ’cluster’, ’IHP’)

buffertype character string for buffer type

covariates list of named covariates

number.from integer ID for animal

Ndist character string for distribution of number of individuals

nsession number of sessions to simulate

details optional list with additional parameters

seed value for setting .Random.seed - either NULL or an integer

Details

coremust contain columns ’x’ and ’y’; a traps object is suitable. For buffertype = ’rect’, animals
are simulated in the rectangular area obtained by extending the bounding box of core by buffer
metres to top and bottom, left and right. This box has area A.

A notional covariate ’sex’ is generated by default.

Each element of covariates defines a categorical (factor) covariate with the given probabilities
of membership in each class. No mechanism is provided for generating continuous covariates, but
these may be added later (see Examples).

Ndist may be ’poisson’ or ’fixed’. The number of individuals N has expected value DA. If DA is
non-integer then Ndist = ’fixed’ results in N ∈ {trunc(DA), trunc(DA) + 1}, with probabilities
set to yield DA individuals on average.

If model2D = ’cluster’ then the simulated population approximates a Neyman-Scott clustered Pois-
son distribution. Ancillary parameters are passed as components of details: details$mu is the
fixed number of individuals per cluster and details$hsigma is the spatial scale (σ) of a 2-D kernel
for location within each cluster. The algorithm is

1. Determine the number of clusters (parents) as a random Poisson variate with λ = DA/µ

2. Locate each parent by drawing uniform random x- and y-coordinates

3. Generate mu offspring for each parent and locate them by adding random normal error to each
parent coordinate

4. Apply toroidal wrapping to ensure all offspring locations are inside the buffered area

112 sim.popn

Toroidal wrapping is a compromise. The result is more faithful to the Neyman-Scott distribution if
the buffer is large enough that only a small proportion of the points are wrapped.

If model2D = ’IHP’ then an inhomogeneous Poisson distribution is fitted. core should be a habitat
mask and D should be a vector of length equal to the number of cells (rows) in core. The number
of individuals in each cell is Poisson-distributed with meanDAwhereA is the cell area (an attribute
of the mask).

The random number seed is managed as in simulate.lm.

Value

An object of class ’popn’, a data frame with columns ’x’ and ’y’. Rows correspond to individuals.
Individual covariates (optional) are stored as a data frame attribute. The initial state of the R random
number generator is stored in the ’seed’ attribute.

Note

Other buffertypes will be defined later. (e.g. convex hull, concave)

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

popn, simulate

Examples

temppop <- sim.popn (D = 10, expand.grid(x = c(0,100), y =
c(0,100)), buffer = 50)

plot, distinguishing 'M' and 'F'
plot(temppop, pch = 1, cex= 1.5,

col = c('green','red')[covariates(temppop)$sex])

add a continuous covariate
assumes covariates(temppop) is non-null
covariates(temppop)$size <- rnorm (nrow(temppop), mean = 15, sd = 3)
summary(covariates(temppop))

Neyman-Scott cluster distribution
oldpar <- par(xpd = TRUE, mfrow=c(2,3))
for (h in c(5,15))
for (m in c(1,4,16)) {

temppop <- sim.popn (D = 10, expand.grid(x = c(0,100),
y = c(0,100)), model2D = 'cluster', buffer = 100,
details = list(mu = m, hsigma = h))

plot(temppop)
text (50,230,paste(' mu =',m, 'hsigma =',h))

}
par(oldpar)

Inhomogeneous Poisson distribution
data(secrdemo)

sim.secr 113

xy <- secrdemo.0$mask$x + secrdemo.0$mask$y - 900
tempD <- xy^2 / 1000
plot(sim.popn(tempD, secrdemo.0$mask, model2D = 'IHP'))

sim.secr Simulate From Fitted secr Model

Description

Simulate a spatially distributed population, sample from that population with an array of detectors,
and optionally fit an SECR model to the simulated data.

Usage

S3 method for class 'secr':
simulate(object, nsim = 1, seed = NULL, chat = 1, ...)

sim.secr(object, nsim = 1, extractfn = function(x) c(deviance =
deviance(x), df = df.residual(x)), seed = NULL, data = NULL,
tracelevel = 1, hessian = "none", start = objectfitpar)

Arguments

object an secr object

nsim number of replicates

seed value for setting .Random.seed - either NULL or an integer

chat real value for overdispersion parameter

extractfn function to extract output values from fitted model

data optional list of simulated data saved from previous call to simulate.secr

tracelevel integer for level of detail in reporting (0,1,2)

hessian character string controlling the computation of the Hessian matrix

start vector of starting ’beta’ values for secr.fit

... other arguments (not used)

Details

For each replicate, simulate.secr calls sim.popn to generate session- and group-specific
realizations of the (possibly inhomogeneous) 2-D Poisson distribution fitted in object, across the
habitat mask(s) in object. Group subpopulations are combined using rbind.popn within each
session; information to reconstruct groups is retained in the individual-level factor covariate(s) of
the resulting popn object (corresponding to object$groups). Each population is then sampled
using the fitted detection model and detector (trap) array(s) in object.

The random number seed is managed as in simulate.lm.

simulate.secr does not yet work with models fitted using conditional likelihood (object$CL
= TRUE). Detector type is determined by detector(traps(object$capthist)), which
should be one of ’single’, ’multi’, ’proximity’, ’areasearch’ or ’count’.

114 sim.secr

sim.secr is a wrapper function. If data = NULL (the default) then it calls simulate.secr
to generate new datasets. If data is provided then nsim is taken to be length(data). secr.fit
is called to fit the original model to each new dataset. Results are summarized according to the user-
provided function extractfn. The default extractfn returns the deviance and its degrees of
freedom; a NULL value for extractfn returns the fitted secr objects after trimming to reduce
bulk. Simulation uses the detector type of the data, even when another likelihood is fitted (this is the
case with single-catch data, for which a multi-catch likelihood is fitted). Warning messages from
secr.fit are suppressed.

extractfn should be a function that takes an secr object as its only argument.

tracelevel=0 suppresses most messages; tracelevel=1 gives a terse message at the start of
each fit; tracelevel=2 also sets ’details$trace = TRUE’ for secr.fit, causing each likelihood
evaluation to be reported.

It is OK (and faster) to use hessian=’none’ unless extractfn needs variances or covari-
ances.

sim.capthist is a more direct way to simulate data from a null model (i.e. one with constant
parameters for density and detection). It is limited to a single session.

Value

For simulate.secr, a list of data sets (’capthist’ objects). This list has class=(’list’,’secrdata’);
the initial state of the random number generator (roughly, the value of .Random.seed) is stored as
the attribute ’seed’.

The value from sim.secr depends on extractfn: if that returns a numeric vector of length
n.extract then the value is a matrix with dim = c(nsim, n.extract) (i.e., the ma-
trix has one row per replicate and one column for each extracted value). Otherwise, the value
returned by sim.secr is a list with one component per replicate (strictly, an object of class
= c(’list’,’secrlist’)). Each simulated fit may be retrieved in toto by specifying extractfn =
identity, or slimmed down by specifying extractfn = NULL or extractfn = trim,
which are equivalent.

For either form of output from sim.secr the initial state of the random number generator is stored
as the attribute ’seed’.

Note

The value returned by simulate.secr is a list of ’capthist’ objects; if there is more than one
session, each ’capthist’ is itself a sort of list .

The classes ’secrdata’ and ’secrlist’ are used only to override the ugly and usually unwanted printing
of the seed attribute.

The default value for start in sim.secr is the previously fitted parameter vector. Alternatives
are NULL or object$start.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

sim.capthist, secr.fit, simulate

skink 115

Examples

data(secrdemo)
simulate(secrdemo.0, nsim = 2)

Not run:

this would take a long time...
sims <- sim.secr(secrdemo.0, nsim = 99)
deviance(secrdemo.0)
devs <- c(deviance(secrdemo.0),sims$deviance)
quantile(devs, probs=c(0.95))
rank(devs)[1] / length(devs)

to assess bias
extrfn <- function (object) unlist(predict(object)['D',-1])
sims <- sim.secr(secrdemo.0, nsim = 50, extractfn=extrfn)
sims

with a larger sample, could get parametric bootstrap CI
quantile(sims[,1], c(0.025, 0.975))

End(Not run)

skink Skink Pitfall Data

Description

Data from a study of skinks (Oligosoma infrapunctatum and O. lineoocellatum) in New Zealand.

Usage

data(skink)

Details

Lizards were studied over several years on a steep bracken-covered hillside on Lake Station in the
Upper Buller Valley, South Island, New Zealand. Pitfall traps (sunken cans baited with a morsel
of fruit in sugar syrup) were set in two large grids, each 11 x 21 traps nominally 5 meters apart,
surveyed by tape and compass (locations determined later with precision surveying equipment - see
Examples). Three diurnal lizard species were trapped: Oligosoma infrapunctatum, O. lineoocella-
tum and O. polychroma (Scincidae). The smallest species O. polychroma was seldom caught and
these data are not included. The two other species are almost equal in average size (about 160 mm
total length); they are long-lived and probably mature in their second or third year. The study aimed
to examine their habitat use and competitive interactions.

Traps were set for 12 3-day sessions over 1995–1996, but some sessions yielded very few captures
because skinks were inactive, and some sessions were incomplete for logistical reasons. The data
are from sessions 6 and 7 in late spring (17–20 October 1995 and 14–17 November 1995). Traps
were cleared daily; the few skinks present when traps were closed on the morning of the fourth

116 skink

day are treated as Day 3 captures. Individuals were marked uniquely by clipping one toe on each
foot. Natural toe loss caused some problems with long-term identification; captures were dropped
from the dataset when identity was uncertain. Released animals were occasionally recaptured in a
different trap on the same day; these records were also discarded.

The data are provided as two two-session capthist objects ‘infraCH’ and ‘lineoCH’. Also in-
cluded is ‘LStraps’, the traps object with the coordinates and covariates of the trap sites (these
data are also embedded in each of the capthist objects). Pitfall traps are multi-catch traps so
detector(LStraps) = ‘multi’.

Habitat data for each trap site are included as a dataframe of trap covariates in LStraps. Ground
cover and vegetation were recorded for a 1-m radius plot at each trap site. The dataframe also
gives the total number of captures of each species by site on 31 days between April 1995 and
March 1996, and the maximum potential annual solar radiation calculated from slope and aspect
(Frank and Lee 1966). Each site was assigned to a habitat class by fuzzy clustering (Kaufman and
Rousseauw 1990; package cluster) of a distance matrix using the ground cover, vegetation and solar
radiation variables. Sites in class 1 were open with bare ground or low-canopy vegetation including
the heath-like Leucopogon fraseri and grasses; sites in class 2 had more-closed vegetation, lacking
Leucopogon fraseri and with a higher canopy that often included Coriaria arborea. Site variables
are listed with definitions in the attribute habitat.variables of LStraps (see Examples).

Object Description
infraCH multi-session capthist object O. infrapunctatum
lineoCH multi-session capthist object O. lineoocellatum
LStraps traps object – Lake Station grids

Source

M. G. Efford, B. W. Thomas and N. J. Spencer unpublished data.

References

Efford, M. G., Spencer, N. J., Thomas, B. W., Mason, R. F. and Williams, P. In prep. Distribution
of sympatric skink species in relation to habitat.

Frank, E. C. and Lee , R. (1966) Potential solar beam irradiation on slopes. United States Forest
Service Research Paper RM-118.

Kaufman, L. and Rousseauw, P. J. (1990) Finding groups in data: an introduction to cluster analy-
sis. John Wiley & Sons, New York.

Spencer, N. J., Thomas, B. W., Mason, R. F. and Dugdale, J. S. (1998) Diet and life history variation
in the sympatric lizards Oligosoma nigriplantare polychroma and Oligosoma lineoocellatum. New
Zealand Journal of Zoology 25: 457–463.

See Also

capthist, covariates

Examples

data (skink)
summary (infraCH)
summary (lineoCH)

check mean distance to nearest trap etc.

SPACECAP 117

summary(LStraps)

LStraps has several site covariates; terse descriptions are in
an extra attribute that may be displayed thus
attr(LStraps, 'habitat.variables')

For density modelling we need covariate values at each point in the
habitat mask. This requires both on-grid interpolation and
extrapolation beyond the grids. One (crude) possibility is to
extrapolate a mask covariate from a covariate of the nearest trap:

LSmask <- make.mask(LStraps, buffer = 30, type = 'trapbuffer')
temp <- nearesttrap(LSmask, LStraps)
habclass <- covariates(LStraps)$class[temp]
habclass <- factor (habclass, levels = c(1,2))
covariates(LSmask) <- data.frame(habclass)

plot mask with colour-coded covariate
oldpar <- par(fg='white') ## white pixel borders
plot (LSmask, covariate = 'habclass', dots = FALSE, axes = FALSE,

col = c('yellow','green'), border = 0)
plot(LStraps, add = TRUE, detpar = list(pch = 16))
par(oldpar)

SPACECAP Exchange data with SPACECAP package

Description

Data in a single-session secr capthist object may be written directly to the ’csv’ format used by
SPACECAP, a package for Bayesian spatially explicit capture–recapture (Singh et al. 2010). Data
in csv format may also be read to construct a capthist object for analysis in secr.

Usage

write.SPACECAP(object, mask = NULL, buffer = 100, ndec = 2,
filestem = "")

read.SPACECAP(AC, TD, detector = "proximity", session = "1")

Arguments

object capthist object with the captures and trap locations to export
mask mask object to use for state-space file
buffer width of buffer in metres to use when creating a mask if none is specified
ndec number of digits after decimal point for coordinates of mask on output
filestem character value used to form names of output files
AC character value giving name of ’animal capture’ .csv file
TD character value giving name of ’trap deployment’ .csv file
detector detector type (’proximity’ or ’count’)
session character value to use as session name

118 SPACECAP

Details

If successful, write.SPACECAP creates three output files with names ending in ’AC.csv’,’TD.csv’
and ’SS.csv’. These are respectively the ’Animal Capture’, ’Trap Deployment’ and ’State-Space’
files required by SPACECAP.

Value

write.SPACECAP is used for its side effect of writing the required csv files. read.SPACECAP
returns a capthist object.

Note

State-space csv files may be imported with read.mask.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Singh, P., Gopalaswamy, A. M., Royle, A. J., Kumar, N. S. and Karanth, K. U. (2010) SPACECAP:
A program to estimate animal abundance and density using Bayesian spatially explicit capture-
recapture models. Version 1.0. Wildlife Conservation Society - India Program, Centre for Wildlife
Studies, Bangalure, India.

See Also

capthist, mask, read.mask

Examples

Not run:
data(secrdemo)

coerce data to proximity detector type for export
demo <- reduce(captdata, output = 'proximity')
write.SPACECAP (demo, filestem = 'demo')

now read back the data just exported...
temp <- read.SPACECAP ('demoAC.csv', 'demoTD.csv')
temp <- reduce(temp, output = 'single')
summary (temp)
summary (captdata)
should match exactly

End(Not run)

stoatDNA 119

stoatDNA Stoat DNA data

Description

Data of A. E. Byrom from a study of stoats (Mustela erminea) in New Zealand. Individuals were
identified from DNA in hair samples.

Usage

data(stoatDNA)

Details

The data are from a pilot study of stoats in red beech (Nothofagus fusca) forest in the Matakitaki
Valley, South Island, New Zealand. Sticky hair-sampling tubes (n = 94) were placed on a 3-km x 3-
km grid with 500-m spacing between lines and 250-m spacing along lines. Tubes were baited with
rabbit meat and checked daily for 7 days, starting on 15 December 2001. Stoat hair samples were
identified to individual using DNA microsatellites amplified by PCR from follicular tissue (Gleeson
et al. 2010). Six loci were amplified and the mean number of alleles was 7.3 per locus. Not all
loci could be amplified in 27% of samples. A total of 40 hair samples were collected (Gleeson et
al. 2010), but only 30 appear in this dataset; the rest presumably did not yield sufficient DNA for
genotyping.

The data are provided as a single-session capthist object ’stoatCH’. Hair tubes are treated as
’proximity’ detectors which allow an individual to be detected at multiple detectors on one occa-
sion (day), although there are no multiple detections in this dataset. Three pre-fitted models are
included: stoat.model.HN, stoat.model.HZ, and stoat.model.EX (with halfnormal,
hazard-rate and negative exponential detection functions, respectively).

Object Description
stoatCH capthist object
stoat.model.EX fitted secr model – null, exponential detection function
stoat.model.HN fitted secr model – null, halfnormal detection function
stoat.model.HZ fitted secr model – null, hazard-rate detection function

Note

The log-likelihood values reported for these data by secr.fit differ by a constant from those
published by Efford et al. (2009) because the earlier version of DENSITY used in that analysis
did not include the multinomial coefficient, which in this case is log(20!) or about +42.336. The
previous analysis also used a coarser habitat mask than the default in secr (32 x 32 rather than 64
x 64) and this slightly alters the log-likelihood and ∆AIC values. Fitting the hazard-rate detection
function previously required the shape parameter z (or b) to be fixed, but the model can be fitted in
secr without fixing z.

Gleeson et al. (2010) address the question of whether there is enough variability at the sampled
microsatellite loci to distinguish individuals. The reference to 98 sampling sites in that paper is a
minor error (A. E. Byrom pers. comm.).

120 subset.capthist

Source

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit
capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy
(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255–269.

References

Gleeson, D. M., Byrom, A. E. and Howitt, R. L. J. (2010) Non-invasive methods for genotyping of
stoats (Mustela erminea) in New Zealand: potential for field applications. New Zealand Journal of
Ecology in press. Available on-line at http://www.newzealandecology.org.

See Also

capthist, detection functions, secr.fit

Examples

data(stoatDNA)
summary(stoatCH)

Not run:
stoat.model.HN <- secr.fit(stoatCH, buffer = 1000, detectfn = 0)
stoat.model.HZ <- secr.fit(stoatCH, buffer = 1000, detectfn = 1)
stoat.model.EX <- secr.fit(stoatCH, buffer = 1000, detectfn = 2)
confint(stoat.model.HN, 'D')
Profile likelihood interval(s)...
lcl ucl
D 0.01381419 0.04563511

End(Not run)

plot fitted detection functions
xv <- seq(0,800,10)
plot(stoat.model.EX, xval = xv, ylim = c(0,0.12), limits = FALSE,

lty = 2)
plot(stoat.model.HN, xval = xv, limits = FALSE, lty = 1, add = TRUE)
plot(stoat.model.HZ, xval = xv, limits = FALSE, lty = 3, add = TRUE)

review density estimates
collate(stoat.model.HZ, stoat.model.HN, stoat.model.EX,

realnames='D', perm=c(2,3,4,1))
model.average(stoat.model.HZ, stoat.model.HN, stoat.model.EX,

realnames='D')

subset.capthist Subset or Split capthist Object

Description

Create a new capthist object or list of objects by selecting rows (individuals), columns (occa-
sions) and traps from an existing capthist object.

http://www.newzealandecology.org

subset.capthist 121

Usage

S3 method for class 'capthist':
subset(x, subset = NULL, occasions = NULL, traps = NULL,

sessions = NULL, cutval = NULL, dropnull = TRUE, dropunused =
TRUE, renumber = FALSE, ...)

S3 method for class 'capthist':
split(x, f, drop = FALSE, prefix = 'S', ...)

Arguments

x object of class capthist

subset vector of subscripts to select rows (individuals)

occasions vector of subscripts to select columns (occasions)

traps vector of subscripts to select detectors (traps)

sessions vector of subscripts to select sessions

cutval new threshold for signal strength

dropnull logical for whether null (all-zero) capture histories and occasions with no detec-
tions should be dropped

dropunused logical for whether never-used detectors should be dropped

renumber logical for whether row.names should be replaced with sequence number in new
capthist

f factor or object that may be coerced to a factor

drop logical indicating if levels that do not occur should be dropped (if f is a factor)

prefix a character prefix to be used for component names when values of f are numeric

... other arguments (not used currently)

Details

Subscript vectors may be either logical (length equal to the relevant dimension of x) or integer-
valued. Subsetting is applied to attributes (e.g. covariates, traps) as appropriate. The default
action is to include all rows, columns and traps if the relevant argument is omitted.

When traps is provided, detections at other detectors are set to zero, as if the detector had not
been used, and the corresponding rows are removed from traps. If the detector type is ’proximity’
then selecting traps also reduces the third dimension of the capthist array.

split generates a list in which each component is a capthist object. Each component corre-
sponds to a level of f.

To combine (pool) occasions use reduce.capthist. There is no equivalent of unlist for
lists of capthist objects.

Value

capthist object with the requested subset of observations, or a list of such objects (i.e., a multi-
session capthist object). List input results in list output, except when a single session is selected.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

122 subset.mask

See Also

capthist, rbind.capthist, reduce.capthist

Examples

tempcapt <- sim.capthist (make.grid(nx=6, ny=6), nocc=6)
summary(subset(tempcapt, occ=c(1,3,5)))

Consider 'proximity' detections at a random subset of detectors
This would not make sense for 'multi' detectors, as the
excluded detectors influence detection probabilities in
sim.capthist.

tempcapt2 <- sim.capthist (make.grid(nx = 6, ny = 6,
detector = 'proximity'), nocc = 6)

tempcapt3 <- subset(tempcapt2, traps = sample(1:36, 18,
replace=FALSE))

summary(tempcapt3)
plot(tempcapt3)

split (tempcapt2, f = sample (c('A','B'), nrow(tempcapt2),
replace = TRUE))

subset.mask Subset Mask Object

Description

Retain selected rows of a mask object.

Usage

S3 method for class 'mask':
subset(x, subset, ...)

S3 method for class 'mask':
rbind(...)

Arguments

x mask object

subset numeric or logical vector to select rows of mask

... two or more mask objects (rbind only)

Details

The subscripts in subset may be of type integer, character or logical as described in Extract.

Covariates are ignored by rbind.mask.

subset.traps 123

Value

For subset, an object of class ’mask’ with only the requested subset of rows and ’type’ attribute
set to ’subset’.

For rbind, an object of class ’mask’ with all unique rows from the masks in . . . , and ’type’ attribute
set to ’rbind’.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

mask

Examples

tempmask <- make.mask(make.grid())
OK <- (tempmask$x + tempmask$y) > 100
tempmask <- subset(tempmask, subset = OK)
plot(tempmask)

subset.traps Subset traps Object

Description

Retain selected rows of a traps object.

Usage

S3 method for class 'traps':
subset(x, subset, ...)
S3 method for class 'traps':
split(x, f, drop = FALSE, prefix = 'S', ...)

Arguments

x traps object

subset vector to subscript the rows of x

... arguments passed to other functions

f factor or object that may be coerced to a factor

drop logical indicating if levels that do not occur should be dropped (if f is a factor)

prefix a character prefix to be used for component names when values of f are numeric

Details

The subscripts in subset may be of type integer, character or logical as described in Extract.

split generates a list in which each component is a traps object. Each component corresponds
to a level of f. The argument ’x’ of split cannot be a list.

124 summary.capthist

Value

An object of class traps with only the requested subset of rows. Subsetting is applied to usage
and covariates attributes if these are present.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

traps, rbind.traps

Examples

odd-numbered traps only, using modulo operator
temptrap <- make.grid(nx = 7, ny = 7)
t2 <- subset(temptrap, as.logical(1:nrow(temptrap) %% 2))
plot(t2)

summary.capthist Summarise Detections

Description

Concise description of capthist object.

Usage

S3 method for class 'capthist':
summary(object, ...)

S3 method for class 'summary.capthist':
print(x, ...)

counts(CHlist, counts = 'M(t+1)')

Arguments

object capthist object

x summary.capthist object

... arguments passed to other functions

CHlist capthist object, especially a multi-session object

counts character vector of count names

summary.capthist 125

Details

These counts are reported by summary.capthist

n number of individuals detected on each occasion
u number of individuals detected for the first time on each occasion
f number of individuals detected exactly f times
M(t+1) cumulative number of individuals detected
losses number of individuals reported as not released on each occasion
detections number of detections, including within-occasion ’recaptures’
traps visited number of detectors at which at least one detection was recorded
traps set number of detectors, excluding any ‘not set’ in usage attribute of traps attribute

counts may be used to return the specified counts in a compact session x occasion table. If more
than one count is named then a list is returned with one component for each type of count.

Value

An object of class summary.capthist, a list with at least these components

detector detector type in {’single’, ’multi’, ’proximity’}

ndetector number of detectors

xrange range of x coordinates of detectors

yrange range of y coordinates of detectors

spacing mean distance from each trap to nearest other trap

counts matrix of summary counts (rows) by occasion (columns). See Details.

dbar mean recapture distance

RPSV root pooled spatial variance

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

dbar, RPSV, capthist

Examples

temptrap <- make.grid(nx = 5, ny = 3)
summary(sim.capthist(temptrap))
summary(sim.capthist(temptrap))$counts['n',]

126 summary.mask

summary.mask Summarise Habitat Mask

Description

Concise summary of a mask object.

Usage

S3 method for class 'mask':
summary(object, ...)
S3 method for class 'summary.mask':
print(x, ...)

Arguments

object mask object

x summary.mask object

... other arguments (not used)

Details

The bounding box is the smallest rectangular area with edges parallel to the x- and y-axes that
contains all points and their associated grid cells. A print method is provided for objects of class
summary.mask.

Value

Object of class ’summary.mask’, a list with components

detector character string for detector type (’single’,’multi’,’proximity’)

type mask type (’traprect’, ’trapbuffer’, ’pdot’, ’polygon’, ’user’, ’subset’)

nmaskpoints number of points in mask

xrange range of x coordinates

yrange range of y coordinates

meanSD dataframe with mean and SD of x, y, and each covariate

spacing nominal spacing of points

cellarea area (ha) of grid cell associated with each point

bounding box dataframe with x-y coordinates for vertices of bounding box

covar summary of each covariate

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

mask

summary.traps 127

Examples

tempmask <- make.mask(make.grid())
left to right gradient
covariates (tempmask) <- data.frame(x = tempmask$x)
summary(tempmask)

summary.traps Summarise Detector Array

Description

Concise description of traps object.

Usage

S3 method for class 'traps':
summary(object, getspacing = TRUE, ...)
S3 method for class 'summary.traps':
print(x, terse = FALSE, ...)

Arguments

object traps object

getspacing logical to calculate spacing of detectors from scratch

x summary.traps object

terse if TRUE suppress printing of usage and covariate summary

... arguments passed to other functions

Details

When object includes both categorical (factor) covariates and usage, usage is tabulated for each
level of the covariates.

Computation of spacing (mean distance to nearest trap) is slow and may hit a memory limit when
there are many traps. In this case, turn off the computation with getspacing = FALSE.

Value

An object of class summary.traps, a list with elements

detector detector type (’multi’, ’proximity’ etc.)

ndetector number of detectors

xrange range of x coordinates

yrange range of y coordinates

spacing mean distance from each trap to nearest other trap

usage table of usage by occasion

covar summary of covariates

128 traps

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

print, traps

Examples

demo.traps <- make.grid()
summary(demo.traps) ## uses print method for summary.traps object

traps Detector Array

Description

An object of class traps encapsulates a set of detector (trap) locations and related data. A method
of the same name extracts or replaces the traps attribute of a capthist object.

Usage

traps(object, ...)
traps(object) <- value

Arguments

object a capthist object.

value traps object to replace previous.

... other arguments (not used).

Details

An object of class traps holds detector (trap) locations as a data frame of x-y coordinates. Trap
identifiers are used as row names. The required attribute ’detector’ records the type of detector
(’single’, ’multi’ or ’proximity’ etc.; see detector for more).

Other possible attributes of a traps object are trap-specific covariates (covariates) and a ma-
trix of binary (0/1) codes indicating whether each detector was used on each occasion (usage). If
usage is specified, at least one detector must be ’used’ on each occasion.

Note

Generic methods are provided to select rows (subset.traps), combine two or more arrays
(rbind.traps), shift an array (shift.traps), and to rotate an array (rotate.traps). The
attributes usage and covariates may be extracted or replaced using generic methods of the
same name.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

traps.info 129

References

Efford, M. G. (2007) Density 4.1: software for spatially explicit capture–recapture. Department of
Zoology, University of Otago, Dunedin, New Zealand. http://www.otago.ac.nz/density

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit
capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy
(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255–269.

See Also

make.grid, read.traps, plot.traps, secr.fit

Examples

demotraps <- make.grid(nx = 8, ny = 6, spacing = 30)
demotraps ## uses print method for traps
summary (demotraps)

plot (demotraps, border = 50, label = TRUE, offset = 8,
gridlines=FALSE)

generate an arbitrary covariate 'randcov'
covariates (demotraps) <- data.frame(randcov = rnorm(48))

overplot detectors that have high covariate values
temptr <- subset(demotraps, covariates(demotraps)$randcov > 0.5)
plot (temptr, add = TRUE,

detpar = list (pch = 16, col = 'green', cex = 2))

traps.info Detector Attributes

Description

Extract or replace attributes of an object of class ’traps’.

Usage

polyID(object)
polyID(object) <- value
transectID(object)
transectID(object) <- value
searcharea(object)
searcharea(object) <- value
transectlength(object)

Arguments

object a ’traps’ object

value replacement value (see Details)

http://www.otago.ac.nz/density

130 trim

Details

The ’polyID’ and ’transectID’ functions assign and extract the attribute of a ’traps’ object that
relates vertices (rows) to particular polygons or transects. The replacement value should be a factor
of length equal to nrow(object).

The ’searcharea’ attribute of a ’quadratbinary’ or ’quadratcount’ traps object is the area in hectares
searched at each detector point (quadrat). Usually, this is the area of a rectangular pixel determined
by the detector spacing (spacex, spacey). Replacement creates square pixels with dimensions spacex
= spacey = value^0.5 * 100.

The ’searcharea’ of a ’polygon’ traps object is a vector of the areas of the component polygons.
This is a read-only value (i.e. ’searcharea<-’ does not apply).

The ’transectlength’ of a ’transect’ traps object is a vector of the lengths of the component transects
in metres. This is a read-only value.

Value

polyID - a factor with one level per polygon. searcharea - numeric value of quadrat area or
polygon areas, in hectares. transectlength - numeric value of transect lengths, in metres.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

traps

Examples

default is a single polygon
temp <- make.grid(detector = 'polygon', hollow = TRUE)
polyID(temp)
plot(temp)

split in two
temp <- make.grid(detector = 'polygon', hollow = TRUE)
polyID(temp) <- factor(rep(c(1,2),rep(10,2)))
plot(temp)

trim Drop Unwanted List Components

Description

Drop unwanted components from a list object, usually to save space.

usage 131

Usage

Default S3 method:
trim(object, drop, keep)
S3 method for class 'secr':
trim(object, drop = c("mask", "design", "design0", "D"),

keep = NULL)

Arguments

object a list object

drop vector identifying components to be dropped

keep vector identifying components to be kept

Details

drop may be a character vector of names or a numeric vector of indices. If both drop and keep
are given then the action is conservative, dropping only components in drop and not in keep.

Value

a list retaining selected components.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

Examples

data(secrdemo)
names(secrdemo.0)
names(trim(secrdemo.0))
object.size(secrdemo.0)
object.size(trim(secrdemo.0))

usage Detector Usage

Description

Extract or replace usage information of a traps object.

Usage

usage(object, ...)
usage(object) <- value

132 vcov.secr

Arguments

object a traps object

value a matrix of traps x occasions 1 if trap[i] used on occasion[j], zero otherwise.

... other arguments (not used)

Details

For replacement, the number of rows of valuemust match exactly the number of traps in object.

Value

usage(object) returns the usage matrix of the traps object. usage(object) may be NULL.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

traps

Examples

demo.traps <- make.grid(nx = 6, ny = 8)
random usage over 5 occasions
usage(demo.traps) <- matrix (sample(0:1, 48*5, replace = TRUE,

p = c(0.5,0.5)), nc = 5)
usage(demo.traps)
summary(demo.traps)

vcov.secr Variance - Covariance Matrix of SECR Parameters

Description

Variance-covariance matrix of beta or real parameters from fitted secr model.

Usage

S3 method for class 'secr':
vcov(object, realnames = NULL, newdata = NULL,

byrow = FALSE, ...)

Arguments

object secr object output from the function secr.fit

realnames vector of character strings for names of ’real’ parameters

newdata dataframe of predictor values

byrow logical for whether to compute covariances among ’real’ parameters for each
row of new data, or among rows for each real parameter

... other arguments (not used)

verify 133

Details

By default, returns the matrix of variances and covariances among the estimated model coefficients
(beta parameters).

If realnames and newdata are specified, the result is either a matrix of variances and covari-
ances for each ’real’ parameter among the points in predictor-space given by the rows of newdata
or among real parameters for each row of newdata. Failure to specify newdata results in a list
of variances only.

Value

A matrix containing the variances and covariances among beta parameters on the respective link
scales, or a list of among-parameter variance-covariance matrices, one for each row of newdata,
or a list of among-row variance-covariance matrices, one for each ’real’ parameter.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

vcov, secr.fit, print.secr

Examples

Use previosuly fitted secr object
data(secrdemo)
vcov(secrdemo.0)

verify Check SECR Data

Description

Check that the data and attributes of an object are internally consistent to avoid crashing functions
such as secr.fit

Usage

Default S3 method:
verify(object, report, ...)
S3 method for class 'traps':
verify(object, report = 2, ...)
S3 method for class 'capthist':
verify(object, report = 2, tol = 0.01, ...)
S3 method for class 'mask':
verify(object, report = 2, ...)

134 verify

Arguments

object an object of class ’traps’, ’capthist’ or ’mask’

report integer code for level of reporting to the console. 0 = no report, 1 = errors only,
2 = full.

tol numeric tolerance for deviations from transect line (m)

... other arguments (not used)

Details

Checks are performed specific to the class of ’object’. The default method is called when no specific
method is available (i.e. class not ’traps’, capthist’ or ’mask’), and does not perform any checks.

verify.capthist

1. No ’traps’ component

2. Invalid ’traps’ component reported by verify.traps

3. No live detections

4. Missing values not allowed in capthist

5. Live detection(s) after reported dead

6. More than one capture in single-catch trap(s)

7. More than one detection per detector per occasion at proximity detector(s)

8. Count detector counts less than zero

9. Signal detector signal(s) less than threshold or invalid threshold

10. Number of rows in ’traps’ object not compatible with reported detections

11. Number of rows in dataframe of individual covariates differs from capthist

12. Number of occasions in usage matrix differs from capthist

13. Detections at unused detectors

14. Coordinates of detection(s) outside polygons (’polygon’ detectors)

15. Coordinates of detection(s) do not lie on any transect (’transect’ detectors)

verify.traps

1. Missing detector coordinates not allowed

2. Number of rows in dataframe of detector covariates differs from expected

3. Number of detectors in usage matrix differs from expected

4. Occasions with no used detectors

5. Area detectors, but quadrats overlap or no area specified

verify.mask

1. Valid x and y coordinates

2. Number of rows in covariates dataframe differs from expected

Earlier errors may mask later errors: fix & re-run.

write.captures 135

Value

A list with the component errors, a logical value indicating whether any errors were found.
If object contains multi-session data then session-specific results are contained in a further list
component bysession.

Full reporting is the same as ’errors only’ except that a message is posted when no errors are found.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

capthist, secr.fit

Examples

data(secrdemo)
verify(captdata)

create null (complete) usage matrix, and mess it up
temptraps <- make.grid()
usage(temptraps) <- matrix(1, nr = nrow(temptraps), nc = 5)
usage(temptraps)[,5] <- 0
verify (temptraps)

create mask, and mess it up
tempmask <- make.mask(temptraps)
verify(tempmask)
tempmask[1,1] <- NA
verify(tempmask)

write.captures Write Data to Text File

Description

Export detections or detector layout to a text file in format suitable for input to DENSITY.

Usage

write.captures(object, file = "", ..., deblank = TRUE, header = TRUE,
append = FALSE, sess = '1', ndec = 2)

write.traps(object, file = "", ..., deblank = TRUE, header = TRUE,
ndec = 2)

136 write.captures

Arguments

object capthist or traps object

file character name of output file

... other arguments passed to write.table

deblank logical; if TRUE remove any blanks from character string used to identify de-
tectors

header logical; if TRUE output descriptive header

append logical; if TRUE output is appended to an existing file

sess character session identifier

ndec number of digits after decimal point for x,y coordinates

Details

Existing file will be replaced without warning if append = FALSE. In the case of a multi-session
capthist file, session names are taken from object rather than sess.

write.capthist is generally simpler to use if you want to export both the capture data and trap
layout from a capthist object.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

Examples

data (secrdemo)
write.captures (captdata)

Index

∗Topic IO
read.capthist, 80
read.mask, 82
SPACECAP, 115
write.captures, 133

∗Topic classes
capthist, 6
mask, 53
popn, 69
traps, 126

∗Topic datagen
make.mask, 47
make.traps, 48
make.tri, 51
sim.capthist, 106
sim.popn, 108

∗Topic datasets
deermouse, 16
housemouse, 35
ovenbird, 56
ovensong, 59
possum, 70
secrdemo, 102
skink, 113
stoatDNA, 117

∗Topic hplot
ellipse.secr, 26
LLsurface.secr, 40
plot.capthist, 62
plot.mask, 64
plot.popn, 65
plot.secr, 66
plot.traps, 68

∗Topic htest
closure.test, 11
LR.test, 44
score.test, 88

∗Topic manip
capthist.parts, 7
covariates, 15
D.designdata, 15
distancetotrap, 25
FAQ, 29

flip, 31
flip.traps, 32
logit, 41
pdot, 61
rbind.capthist, 76
rbind.popn, 78
rbind.traps, 79
read.traps, 83
reduce, 84
reduce.capthist, 85
rotate, 86
rotate.traps, 87
secr.design.MS, 90
shift, 104
shift.traps, 105
subset.capthist, 118
subset.traps, 121
traps.info, 127
trim, 128
usage, 129
verify, 131

∗Topic models
AIC.secr, 3
autoini, 5
closedN, 8
coef.secr, 12
confint.secr, 13
derived, 18
detectfn, 20
detector, 22
deviance, 24
empirical.varD, 27
homerange, 33
ip.secr, 36
logmultinom, 42
make.capthist, 45
model.average, 54
predict.secr, 72
secr.fit, 92
secr.make.newdata, 96
secr.model, 97
secr.model.density, 98
secr.model.detection, 99

137

138 INDEX

session, 103
sim.secr, 111
subset.mask, 120
summary.capthist, 122
summary.mask, 124
summary.traps, 125
vcov.secr, 130

∗Topic package
secr-package, 1

∗Topic print
print.capthist, 73
print.secr, 74
print.traps, 76

AIC, 4, 90
AIC.secr, 3, 44, 55, 56, 75, 95
animalID (capthist.parts), 7
ARL (homerange), 33
attenuationplot (plot.secr), 66
autoini, 5, 34, 38, 39, 93
axis, 69

captdata (secrdemo), 102
capthist, 2, 6, 6, 8–10, 12, 33, 39, 42, 46,

58, 60, 63, 71, 74, 77, 85, 86, 92, 95,
102, 104, 108, 114, 116, 118, 120,
122, 123, 133

capthist.parts, 7
captXY (secrdemo), 102
clip.hex, 50
clip.hex (make.tri), 51
closedN, 8
closure.test, 10, 11, 18
coef.secr, 12
collate (model.average), 54
colours, 64, 69
confint.secr, 13, 15
contour, 40
Coulombe (housemouse), 35
counts (summary.capthist), 122
covariates, 15, 114
covariates<- (covariates), 15

D.designdata, 15, 91
dbar, 6, 123
dbar (homerange), 33
deermouse, 16
derived, 18, 27, 28, 75, 95
detectfn, 5, 20, 37, 67, 92, 106, 107
detectfnplot, 22
detectfnplot (plot.secr), 66
detection functions, 39, 60, 62, 67,

95, 108, 118

detection functions (detectfn), 20
detector, 22, 50, 53, 81, 126
detector<- (detector), 22
deviance, 24
deviance.secr, 4
df.residual (deviance), 24
distancetotrap, 25

ellipse.secr, 26
empirical.varD, 27
esa, 5, 28
esa (derived), 18
ESG.0 (deermouse), 16
ESG.b (deermouse), 16
ESG.h2 (deermouse), 16
ESG.t (deermouse), 16
Extract, 120, 121

FAQ, 29
flip, 31, 105
flip.traps, 32, 106
formula, 100

homerange, 33
housemouse, 35

infraCH (skink), 113
invlogit (logit), 41
ip.secr, 34, 36

lineoCH (skink), 113
LLsurface.secr, 40
logit, 41
logmultinom, 42
LR.test, 4, 44, 90
LStraps (skink), 113

make.capthist, 7, 45, 80, 81
make.circle (make.traps), 48
make.grid, 52, 53, 84, 127
make.grid (make.traps), 48
make.mask, 26, 47, 54, 62
make.poly (make.traps), 48
make.transect (make.traps), 48
make.traps, 48
make.tri, 50, 51
mask, 2, 6, 7, 16, 48, 53, 64, 82, 92, 95, 110,

116, 121, 124
MMDM (homerange), 33
model.average, 4, 54
model.matrix, 91
morning.0 (housemouse), 35
morning.0h2 (housemouse), 35
morning.b (housemouse), 35

INDEX 139

morning.h2 (housemouse), 35
morning.h2h2 (housemouse), 35
morning.t (housemouse), 35
moves (homerange), 33
MS.capthist, 7
MS.capthist (rbind.capthist), 76
mtext, 69

nearesttrap (distancetotrap), 25
nlm, 93

occasion (capthist.parts), 7
optim, 93
ovenbird, 56, 59, 60
ovenCH (ovenbird), 56
ovenmask (ovenbird), 56
ovensong, 59

par, 69
pdot, 47, 48, 53, 61
pfn (ip.secr), 36
plogis, 42
plot, 67, 69
plot.capthist, 62
plot.mask, 64
plot.popn, 65, 70
plot.secr, 66
plot.traps, 50, 68, 127
polyID, 8
polyID (traps.info), 127
polyID<- (traps.info), 127
popn, 66, 69, 78, 106, 108, 110
possum, 70
possumCH (possum), 70
possummask (possum), 70
predict.secr, 20, 55, 72, 95, 96
print, 74, 76, 126
print.capthist, 73
print.default, 74, 76
print.secr, 4, 20, 74, 95, 131
print.summary.capthist

(summary.capthist), 122
print.summary.mask

(summary.mask), 124
print.summary.traps

(summary.traps), 125
print.traps, 50, 76

qlogis, 42

rbind.capthist, 7, 76, 107, 120
rbind.mask (subset.mask), 120
rbind.popn, 78, 111

rbind.traps, 79, 88, 105, 122, 126
read.capthist, 7, 45, 46, 80
read.mask, 54, 82, 116
read.SPACECAP (SPACECAP), 115
read.table, 81
read.traps, 50, 81, 83, 127
reduce, 84
reduce.capthist, 7, 85, 85, 119, 120
rotate, 86, 105
rotate.traps, 31, 32, 87, 87, 105, 106,

126
RPSV, 5, 6, 39, 123
RPSV (homerange), 33
RShowDoc, 23

save, 29
score.table (score.test), 88
score.test, 4, 15, 44, 88, 93
searcharea (traps.info), 127
searcharea<- (traps.info), 127
secr, 62, 67
secr (secr-package), 1
secr density models, 54, 98, 101
secr density models

(secr.model.density), 98
secr detection models, 22, 98, 99
secr detection models

(secr.model.detection), 99
secr FAQ (FAQ), 29
secr models, 72, 93, 99, 101
secr models (secr.model), 97
secr-package, 1
secr.design.MS, 16, 90, 94
secr.fit, 2–7, 13, 15, 20, 25, 39, 46, 54,

56, 73, 75, 90, 92, 96, 98, 99, 101,
112, 118, 127, 130, 131, 133

secr.make.newdata, 96
secr.model, 97
secr.model.density, 98
secr.model.detection, 99
secrdemo, 102
session, 103
session<- (session), 103
shift, 87, 104
shift.traps, 32, 88, 105, 126
signal (capthist.parts), 7
signal<- (capthist.parts), 7
signalCH (ovensong), 59
sim.capthist, 5, 7, 37, 46, 106, 112
sim.popn, 37, 39, 66, 69, 70, 108, 108, 111
sim.resight (sim.capthist), 106
sim.secr, 25, 111
simulate, 107, 108, 110, 112

140 INDEX

simulate (sim.secr), 111
skink, 113
SPACECAP, 115
split.capthist (subset.capthist),

118
split.traps (subset.traps), 121
stoat.model.EX (stoatDNA), 117
stoat.model.HN (stoatDNA), 117
stoat.model.HZ (stoatDNA), 117
stoatCH (stoatDNA), 117
stoatDNA, 43, 117
subset.capthist, 7, 77, 86, 118
subset.mask, 48, 120
subset.traps, 79, 121, 126
summary.capthist, 122
summary.mask, 124
summary.traps, 125

transectID (traps.info), 127
transectID<- (traps.info), 127
transectlength (traps.info), 127
trap (capthist.parts), 7
traps, 2, 7, 23, 31, 32, 46, 50, 53, 69, 76, 79,

84, 88, 106, 108, 122, 125, 126, 126,
128, 130

traps object (traps), 126
traps.info, 127
traps<- (traps), 126
trapXY (secrdemo), 102
trim, 112, 128

uniroot, 5, 13, 14
usage, 129
usage<- (usage), 129

vcov, 131
vcov.secr, 95, 130
verify, 80, 92, 94, 95, 131

write.capthist, 134
write.capthist (read.capthist), 80
write.captures, 81, 133
write.SPACECAP (SPACECAP), 115
write.traps, 81
write.traps (write.captures), 133
WSG.0 (deermouse), 16
WSG.b (deermouse), 16
WSG.h2 (deermouse), 16
WSG.t (deermouse), 16

xy (capthist.parts), 7
xy<- (capthist.parts), 7

	secr-package
	AIC.secr
	autoini
	capthist
	capthist.parts
	closedN
	closure.test
	coef.secr
	confint.secr
	covariates
	D.designdata
	deermouse
	derived
	detectfn
	detector
	deviance
	distancetotrap
	ellipse.secr
	empirical.varD
	FAQ
	flip
	flip.traps
	homerange
	housemouse
	ip.secr
	LLsurface.secr
	logit
	logmultinom
	LR.test
	make.capthist
	make.mask
	make.traps
	make.tri
	mask
	model.average
	ovenbird
	ovensong
	pdot
	plot.capthist
	plot.mask
	plot.popn
	plot.secr
	plot.traps
	popn
	possum
	predict.secr
	print.capthist
	print.secr
	print.traps
	rbind.capthist
	rbind.popn
	rbind.traps
	read.capthist
	read.mask
	read.traps
	reduce
	reduce.capthist
	rotate
	rotate.traps
	score.test
	secr.design.MS
	secr.fit
	secr.make.newdata
	secr.model
	secr.model.density
	secr.model.detection
	secrdemo
	session
	shift
	shift.traps
	sim.capthist
	sim.popn
	sim.secr
	skink
	SPACECAP
	stoatDNA
	subset.capthist
	subset.mask
	subset.traps
	summary.capthist
	summary.mask
	summary.traps
	traps
	traps.info
	trim
	usage
	vcov.secr
	verify
	write.captures
	Index

